首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent studies argue for an important role for cholesterol in maintaining plasma membrane heterogeneity and influencing a variety of cellular processes, including signaling, adhesion, and permeability. Here, we document that tolerance-sensitive transitional immature B cells maintain significantly lower membrane unesterified cholesterol levels than mature-stage splenic B cells. In addition, the relatively low level of cholesterol in transitional immature B cells impairs compartmentalization of their B cell receptor (BCR) into cholesterol-enriched domains following BCR aggregation and reduces their ability to sustain certain aspects of BCR signaling as compared with mature B cells. These studies establish an unexpected difference in the lipid composition of peripheral transitional immature and mature B cells and point to a determining role for development-associated differences in cholesterol content for the differential responses of these B cells to BCR engagement.  相似文献   

2.
The BCR-triggered responses of mature and transitional immature B cells differ at both the biochemical and functional level. In this study, we show that in mature B cells, BCR signaling triggers Vav phosphorylation and Rac1 activation. Furthermore, we demonstrate that although downstream actin-dependent BCR capping is independent of Rac1 activation, actin-dependent membrane ruffling and cell spreading are Rac1-dependent processes. In contrast, BCR-induced Vav phosphorylation and Rac1 activation is impaired in transitional immature B cells, resulting in defects in actin polymerization-dependent spreading and membrane ruffling while Rac1-independent BCR capping remains intact. Because transitional immature murine B cells maintain lower steady-state levels of plasma membrane cholesterol, we augmented their levels to that of mature B cells and found that BCR-induced Rac1 activation and Rac1-dependent membrane ruffling and cell spreading were restored. These studies provide a direct link between B cell cholesterol levels and downstream cellular signaling processes.  相似文献   

3.
Lipids of human leukocytes: relation to celltype   总被引:11,自引:0,他引:11  
Significant differences in lipid composition have been found between normal human lymphocytes and polymorphonuclear leukocytes (isolated from blood by means of glass-bead columns), abnormal leukocytes from patients with acute and chronic leukemia, and leukocytes from peritoneal exudates. Lipid extracts of isolated leukocytes were analyzed for total lipid, phosphorus, cholesterol, and plasmalogens. Individual phospholipids and neutral lipids were separated by thin-layer chromatography. The major phospholipids were phosphatidyl choline, ethanolamine glycerophosphatides, sphingomyelin, phosphatidyl serine, and phosphatidyl inositol. Plasmalogen was found mainly as phosphatidal ethanolamine. The neutral lipid fractions contained free cholesterol and various amounts of triglyceride, but little esterified cholesterol. Normal lymphocytes contained about half as much total lipid per cell as normal polymorphonuclear leukocytes, with a similar cholesterol:-lipid-P ratio but relatively more lecithin and less ethanolamine glycerophosphatide. Normal mature leukocytes, compared with immature cells of the same morphological series, had a higher total lipid content per cell, more cholesterol, and a higher ratio of cholesterol to lipid-P. Little difference was found in total lipid-P per cell, but mature cells contained relatively less lecithin and more sphingomyelin. These findings may reflect differences in the relative content of various intracellular organelles as well as possible differences in the quantity and composition of the plasma membrane.  相似文献   

4.
The lipid composition of immature myeloid cells from the bone marrow of normal persons and myeloblasts from patients with acute myeloblastic leukemia was studied and compared with the lipid composition of normal mature human neutrophils. Total cholesterol, phospholipid, and fatty acid composition was determined on each cell type. The leukemic cells showed decreased total cholesterol and cholesterol-to-phospholipid ratio, increase phosphatidylcholine and phosphatidylinositol, decreased phosphatidylethanolamine, and an increased percentage of unsaturated fatty acids when compared to normal mature neutrophils. A nearly identical pattern was seen in the normal immature myeloid precursors from normal bone marrow. We conclude that the altered lipid composition of acute myeloblastic leukemia cells is related to unexplained factors related to cell age and not to malignancy per se.  相似文献   

5.
Agents that extract or sequester membrane cholesterol stimulate IkappaB degradation and lead to NF-kappaB activation in a subset of B cells. Although the extraction of cholesterol by methyl-beta-cyclodextrin is the most potent stimulus of NF-kappaB, other agents that sequester cholesterol have similar effects. B cells and B cell lines with an immature phenotype are significantly more sensitive to the effects of cholesterol perturbation than their mature B cell counterparts. NF-kappaB activation does not involve signaling from the B cell receptor complex. Instead, the disruption of membrane cholesterol activates NF-kappaB through a MyD88-dependent pathway involving the pattern recognition receptor, Toll-like receptor 4. We suggest that lipid raft microdomains may serve not only to orchestrate receptor signaling, but to sequester signaling components one from one another, which serves to prevent receptor-mediated signaling from occurring. A role for this process during B cell development is suggested.  相似文献   

6.
B cell Ag receptor (BCR) signaling changes dramatically during B cell development, resulting in activation in mature B cells and apoptosis, receptor editing, or anergy in immature B cells. BCR signaling in mature B cells was shown to be initiated by the translocation of the BCR into cholesterol- and sphingolipid-enriched membrane microdomains that include the Src family kinase Lyn and exclude the phosphatase CD45. Subsequently the BCR is rapidly internalized into the cell. Here we show that the BCR in the immature B cell line, WEHI-231, does not translocate into lipid rafts following cross-linking nor is the BCR rapidly internalized. The immature BCR initiates signaling from outside lipid rafts as evidenced by the immediate induction of an array of phosphoproteins and subsequent apoptosis. The failure of the BCR in immature B cells to enter lipid rafts may contribute to the dramatic difference in the outcome of signaling in mature and immature B cells.  相似文献   

7.
Developmental control of endocytosis in dendritic cells by Cdc42   总被引:25,自引:0,他引:25  
Dendritic cells (DCs) developmentally regulate antigen uptake by controlling their endocytic capacity. Immature DCs actively internalize antigen. However, mature DCs are poorly endocytic, functioning instead to present antigens to T cells. We have found that endocytic downregulation reflects a decrease in endocytic activity controlled by Rho family GTPases, especially Cdc42. Blocking Cdc42 function by Toxin B treatment or injection of dominant-negative inhibitors of Cdc42 abrogates endocytosis in immature DCs. In mature DCs, injection of constitutively active Cdc42 or microbial delivery of a Cdc42 nucleotide exchange factor reactivates endocytosis. DCs regulate endogenous levels of Cdc42-GTP with activated Cdc42 detectable only in immature cells. We conclude that DCs developmentally regulate endocytosis at least in part by controlling levels of activated Cdc42.  相似文献   

8.
The lipid composition and metabolism of isolated guinea pig megakaryocyte subgroups at various stages of maturation were investigated. Three groups were studied: 1) 67% of megakaryocytes in Group A were immature; 2) Group B was heterogeneous and contained both immature and mature subgroups of megakaryocytes; 3) 92% of megakaryocytes in Group C were mature. Lipid composition was determined by thin-layer chromatography, lipid-phosphorus, and gas-liquid chromatography. Cholesterol, ceramide, and de novo fatty acid synthesis were evaluated with [14C]acetate. [14C]Glycerol was used to assess de novo phospholipid synthesis. 14C-Labeled fatty acids were used to evaluate fatty acid uptake. The phospholipid and cholesterol content was found to be four times greater in mature megakaryocytes than that in immature megakaryocytes, which paralleled the protein content and volume of mature and immature cells. The cholesterol-phospholipid ratio was similar and there were no differences in the phospholipid species in the three groups. Phospholipid and cholesterol synthesis were established in immature megakaryocytes and persisted at about the same level in mature megakaryocytes. The uptake of arachidonic and palmitic acids also occurred primarily in immature cells, while the de novo synthesis of palmitic acid occurs predominantly in mature megakaryocytes. There was an inverse relationship between the uptake of exogenous palmitic acid and fatty acid synthesis, but the uptake of palmitic acid primarily inhibited fatty acid synthesis in mature megakaryocytes. There were differences in the acylation of phospholipid species with arachidonic acid in megakaryocytes at different stages of maturation since the acylation of phosphatidylcholine occurred primarily in immature megakaryocytes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Platelet lipid composition, c arachidonic acid (AA) metabolism by platelets (stimulated with thrombin), serum thromboxane (Tx)B2 production and plasma lipid composition were investigated in 53 healthy females (18-45 years) and 65 males (19-45 years) with similar dietary habits. In males, serum TxB2 production and cholesterol platelet membrane levels were found significantly higher (p less than 0.001 and p less than 0.05) than in females. No differences were observed between the two groups in the AA conversion through cyclo-oxygenase and lipoxygenase pathways or in the platelet phospholipid fatty acid composition. These findings indicate that in males the platelet proaggregatory capacity is greater than in females and the higher platelet TxB2 production does not depend on a larger AA availability or on enzyme activation for its conversion. The increased TxB2 production may be, at least in part, induced by functional differences such as a different membrane cholesterol content inducing, in its turn, an increased microviscosity and/or higher number of platelet receptors for thrombin.  相似文献   

10.
Investigations were carried out on the effect of plasma membrane lipid modifications on the fusogenic capacity of control and ras-transformed fibroblasts. The plasma membrane lipid composition was modified by treatment of cells with exogenous phospholipases C and D, sphingomyelinase and cyclodextrin. The used enzymes hydrolyzed definite membrane lipids thus inducing specific modifications of the lipid composition while cyclodextrin treatment reduced significantly the level of cholesterol. The cells with modified membranes were used for assessment of their fusogenic capacity with model membranes with a constant lipid composition. Treatment with phospholipases C and D stimulated the fusogenic potential of both cell lines whereas the specific reduction of either sphingomyelin or cholesterol induced the opposite effect. The results showed that all modifications of the plasma membrane lipid composition affected the fusogenic capacity irrespective of the initial differences in the membrane lipid composition of the two cell lines. These results support the notion that the lipid composition plays a significant role in the processes of membrane-membrane fusion. This role could be either direct or through modulation of the activity of specific proteins which regulate membrane fusion.  相似文献   

11.
Lipid composition of biological membranes is closely related to the function of the ATP-binding cassette (ABC) transporter P-Glycoprotein (Pgp). Herein, we studied how membrane physico-chemical properties affect Pgp-activity. We effectively modulated the cellular cholesterol content using methyl-beta-cyclodextrin (MbetaCD) and MbetaCD-cholesterol-inclusion complex. Pgp was not liberated from the plasma membrane during cholesterol modulation and functional inhibition of Pgp was related to varying cholesterol levels in the plasma membrane. Our data indicate that membrane fluidity does not solely account for cholesterol dependent modifications of Pgp-activity. Therefore, we isolated lipid rafts and examined distinct membrane microdomains. Both depletion and cholesterol enrichment induces a disassembly of lipid rafts. In cholesterol-depleted cell membranes a shift in the Pgp localisation to detergent soluble fractions was observed. Enrichment of membrane cholesterol changed lipid raft distribution but not the localisation of Pgp. From our data we conclude that Pgp-transport capacity depends on accurate lipid raft properties.  相似文献   

12.
The functional consequences of changes in membrane lipid composition that coincide with malignant growth are poorly understood. Sufficient data have been acquired from studies of lipid binding proteins, post-translational modifications of signaling proteins, and biochemical inhibition of lipidogenic pathways to indicate that growth and survival pathways might be substantially re-directed by alterations in the lipid content of membranes. Cholesterol and glycosphingolipids segregate into membrane patches that exhibit a liquid-ordered state in comparison to membrane domains containing relatively lower amounts of these classes of lipids. These "lipid raft" structures, which may vary in size and stability in different cell types, both accumulate and exclude signaling proteins and have been implicated in signal transduction through a number of cancer-relevant pathways. In prostate cancer cells, signaling from epidermal growth factor receptor (EGFR) to the serine-threonine kinase Akt1, as well as from IL-6 to STAT3, have been demonstrated to be influenced by experimental interventions that target cholesterol homeostasis. The recent finding that classical steroid hormone receptors also reside in these microdomains, and thus may function within these structures in a signaling capacity independent of their role as nuclear factors, suggests a novel means of cross-talk between receptor tyrosine kinase-derived and steroidogenic signals. Potential points of intersection between components of the EGFR family of receptor tyrosine kinases and androgen receptor signaling pathways, which may be sensitive to disruptions in cholesterol metabolism, are discussed. Understanding the manner in which these pathways converge within cholesterol-rich membranes may present new avenues for therapeutic intervention in hormone-dependent cancers.  相似文献   

13.
We have studied the relationship between differentiation capacity, plasma membrane composition, and epidermal growth factor (EGF) receptor expression of normal keratinocytes in vitro. The plasma membrane composition of the cells was modulated experimentally by cholesterol depletion, using specific inhibitors of cholesterol synthesis, such as 25-hydroxycholesterol and mevinolin. Exposure of the cells towards these inhibitors resulted in a drastic decrease of cholesterol biosynthesis, as determined from 14C-acetate incorporation into the various lipid fractions. This effect on cholesterol biosynthesis was reflected by changes in plasma membrane composition, as determined by lipid analysis of isolated plasma membrane fractions, these resulting in a decreased cholesterol-phospholipid ratio. The experimental modulation of plasma membrane composition by 25-hydroxycholesterol or mevinolin were accompanied by a decreased cornified envelope formation and by high expression of EGF binding sites. These phenomena were more pronounced in cells induced to differentiate by exposure of cells grown under low Ca2+ to normal Ca2+ concentrations, as compared to cells grown persistently under low Ca2+ concentrations. These results suggest a close correlation between plasma membrane composition, differentiation capacity, and EGF receptor expression.  相似文献   

14.
Lipid rafts serve as platforms for BCR signal transduction. To better define the molecular basis of these membrane microdomains, we used two-dimensional gel electrophoresis and mass spectrometry to characterize lipid raft proteins from mature as well as immature B cell lines. Of 51 specific raft proteins, we identified a total of 18 proteins by peptide mass fingerprinting. Among them, we found vacuolar ATPase subunits alpha-1 and beta-2, vimentin, gamma-actin, mitofilin, and prohibitin. None of these has previously been reported in lipid rafts of B cells. The differential raft association of three proteins, including a novel potential signaling molecule designated swiprosin-1, correlated with the stage-specific sensitivity of B cells to BCR-induced apoptosis. In addition, MHC class II molecules were detected in lipid rafts of mature, but not immature B cells. This intriguing finding points to a role for lipid rafts in regulating Ag presentation during B cell maturation. Finally, a fraction of the BCR in the B cell line CH27 was constitutively present in lipid rafts. Surprisingly, this fraction was neither expressed at the cell surface nor fully O-glycosylated. Thus, we conclude that partitioning the BCR into lipid rafts occurs in the endoplasmic reticulum/cis-Golgi compartment and may represent a control mechanism for surface transport.  相似文献   

15.
H J Vial  M L Ancelin  J R Philippot  M J Thuet 《Blood cells》1990,16(2-3):531-55; discussion 556-61
The asexual development of Plasmodium within the mature mammalian erythrocyte is associated with intense membrane biogenesis, notably to ensure the increase in the size of the parasite and of the parasitophorous vacuolar membranes PVM. A considerable increase in the content of most lipids except cholesterol [namely, phospholipids PL, neutral lipids, and fatty acids FA] occurs. The PL composition and the constitutive FAs of the parasite differ markedly from the original host cell membrane. Particularly notable is the absence of cholesterol and sphingomyelin SM from the parasite membranes. How can the parasite obtain such a quantity of new lipid molecules in a host cell totally devoid of any lipid biosynthetic activity? Like the normal erythrocyte, the infected cell is unable to synthesize cholesterol or FAs. In contrast, it exhibits an intense biosynthesis of neutral lipids and a bewildering variety of PL biosyntheses. Phosphatidylcholine PC is synthesized by a de novo pathway, and also by methylation of phosphatidylethanolamine PE, which itself originates from de novo biosynthesis or from decarboxylation of phosphatidylserine PS. Hence, interference with this intense and specific PL metabolism could provide the basis for a new malaria chemotherapy. Indeed, compounds that interfere with the entry of the plasmatic precursors (FAs or polar heads) or with their metabolism are lethal to the parasite. Lastly, we focus on the structural modifications of the host cell membrane with respect to lipids, including increased fluidity and enhanced transbilayer mobility of PLs. Possible modifications in the asymmetric distribution of PLs in the host cell membrane are discussed in light of the various methods used and their limits. The capacity of infected cells to take up and metabolize large quantities of exogenous vesicles of PLs accounts for the intense dynamics of lipids in the infected erythrocytes.  相似文献   

16.
A specific neuronal vulnerability to amyloid protein toxicity may account for brain susceptibility to protein misfolding diseases. To investigate this issue, we compared the effects induced by oligomers from salmon calcitonin (sCTOs), a neurotoxic amyloid protein, on cells of different histogenesis: mature and immature primary hippocampal neurons, primary astrocytes, MG63 osteoblasts and NIH-3T3 fibroblasts. In mature neurons, sCTOs increased apoptosis and induced neuritic and synaptic damages similar to those caused by amyloid β oligomers. Immature neurons and the other cell types showed no cytotoxicity. sCTOs caused cytosolic Ca2+ rise in mature, but not in immature neurons and the other cell types. Comparison of plasma membrane lipid composition showed that mature neurons had the highest content in lipid rafts, suggesting a key role for them in neuronal vulnerability to sCTOs. Consistently, depletion in gangliosides protected against sCTO toxicity. We hypothesize that the high content in lipid rafts makes mature neurons especially vulnerable to amyloid proteins, as compared to other cell types; this may help explain why the brain is a target organ for amyloid-related diseases.  相似文献   

17.
The lipid A moiety of bacterial lipopolysaccharide (LPS) elicits several types of responses in murine B lymphocytes. First, lipid A induces the nonproliferative expression of cell surface antigens in more immature cell types. Second, lipid A induces a mitogenic response in more mature B cell types. Lipid A induces the expression of Ia antigens on bone marrow cells from C3H/DiSn but not C3H/HeJ mice. The Ia-inducible cells possess surface immunoglobulin. Agents that elevate intracellular levels of adenosine 3',5'-cyclic monophosphate (cyclic AMP) induce the appearance of Ia antigens on B lymphocytes from both C3H/HeJ and C3H/DiSn mice, suggesting that lipid A exerts its inductive effects by increasing cyclic AMP levels in cells. In contrast to what is observed by using other strains of mice, mature B lymphocytes from C3H/HeJ mice do not support a mitogenic response to lipid A. The subpopulation of B lymphocytes in C3H/HeJ mice that normally respond mitogenically to LPS not only appear to lack an LPS-response mechanism utilized in the mitogenic pathway, but they lack the LPS-response pathway of the immature B cell types. A lipid A-bound protein (LAP) induces both the expression of Ia and a mitogenic response in the different subpopulations of B lymphocytes from C3H/HeJ and C3H/DiSn mice. The genetic defect in C3H/HeJ mice that limits responses to lipid A may be associated with a receptor that is normally expressed on many different cell types.  相似文献   

18.
CD39 (ecto-nucleoside triphosphate diphosphohydrolase-1; E-NTPDase1) is a plasma membrane ecto-enzyme that regulates purinergic receptor signaling by controlling the levels of extracellular nucleotides. In blood vessels this enzyme exhibits a thromboregulatory role through the control of platelet aggregation. CD39 is localized in caveolae, which are plasma membrane invaginations with distinct lipid composition, similar to dynamic lipid microdomains, called rafts. Cholesterol is enriched together with sphingolipids in both rafts and caveolae, as well as in other specialized domains of the membrane, and plays a key role in their function. Here, we examine the potential role of cholesterol-enriched domains in CD39 function. Using polarized Madin-Darby canine kidney (MDCK) cells and caveolin-1 gene-disrupted mice, we show that caveolae are not essential either for the enzymatic activity of CD39 or for its targeting to plasma membrane. On the other hand, flotation experiments using detergent-free or detergent-based approaches indicate that CD39 associates, at least in part, with distinct lipid assemblies. In the apical membrane of MDCK cells, which lacks caveolae, CD39 is localized in microvilli, which are also cholesterol and raft-dependent membrane domains. Interfering with cholesterol levels using drugs that either deplete or sequester membrane cholesterol results in a strong inhibition of the enzymatic and anti-platelet activity of CD39. The effects of cholesterol depletion are completely reversed by replenishment of membranes with pure cholesterol, but not by cholestenone. These data suggest a functional link between the localization of CD39 in cholesterol-rich domains of the membrane and its role in thromboregulation.  相似文献   

19.
During the maturation process reticulocytes lose their intracellular organelles and undergo changes in membrane lipid composition and ion transport properties. While several reports indicate differences in the levels of magnesium, sodium and calcium in reticulocytes and erythrocytes, controversy remains concerning the actual magnitude and direction of ionic alterations during reticulocyte maturation. One problem with all of these studies is that the techniques used are invasive and are limited to measuring only the total cell ion content. We have used 31P, 23Na and 19F nuclear magnetic resonance (NMR) spectroscopy to compare the intracellular free ion and phosphometabolite levels in guinea pig reticulocytes and mature red blood cells. In contrast to a sharply decreased concentration of ATP in erythrocytes in comparison to reticulocytes, the intracellular free magnesium, measured using 31P-NMR, was increased by about 65% upon maturation (150 mumol/l cell water in reticulocytes in comparison to 250 mumol/l cell water in erythrocytes). Sizeable but opposite changes in intracellular sodium (5.5 mumol/ml cells in reticulocytes vs. 8.5 mumol/ml cells in erythrocytes) and intracellular free calcium (99 nM vs. 31 nM in reticulocytes and mature red cells, respectively) were also observed, suggesting that alterations in the kinetics of membrane ion transport systems, accompanying changes in phospholipid and cholesterol content, occur during the process of red cell maturation. However, in contrast to dog red blood cells, there was no evidence for the presence of a Na+/Ca2+ exchanger in guinea pig reticulocytes or erythrocytes.  相似文献   

20.
Mature and immature B cells differ in their responses to antigen receptor crosslinking. Whereas mature B cells enter cell cycle in response to such stimulation, immature B cells exhibit proliferative unresponsiveness and undergo induced tolerance following surface immunoglobulin (sIg) engagement. Previous studies evaluating antigen receptor-mediated negative signaling have utilized intact goat anti-immunoglobulin (anti-Ig) antibodies as polyclonal ligands based upon observations that the Fc portion of these reagents does not interact with and mediate negative signaling through the FcR on mature B cells. Thus, the negative effects of goat anti-Ig on immature B cells have been attributed solely to signals mediated via their antigen receptors. In the studies reported here we show that the activation unresponsiveness inherent to immature B cells is FcR independent. However, we also show that immature B cells are sensitive to FcR-mediated inhibition and that these effects can be mediated by intact goat antibodies at concentrations that promote positive activation signals in mature B cells. Our results demonstrate that inhibition of immature B cell LPS responses by anti-Ig antibodies, used in previous studies as an in vitro model for B cell tolerance induction, is an FcR-mediated phenomenon. We show that developmentally associated anti-Ig-mediated inhibition of LPS requires the use of intact antibodies, and that this inhibition can be blocked by the anti-FcR monoclonal antibody 2.4G2. Flow cytometric analysis of FcR-positive B cells indicates that both mature and immature B cells express equivalent levels of FcR gamma. Therefore, the sensitivity of immature, but not mature, cells to intact goat anti-mu antibodies suggests that either FcRs or their associated inhibitory pathways change during B cell development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号