首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Flocculating yeast strains with good fermentation ability are desirable for brewing industry as well as for fuel ethanol production, however, the genetic diversity of the flocculating genes from natural yeast strains is largely unexplored. In this study, FLO1, FLO5, FLO9, FLO10 and FLO11 PCR products were obtained from 16 yeast strains from various sources, and the PCR product amplified from FLO1 of the self-flocculating yeast strain SPSC01 was used for the construction of expression cassette flanked by homologous fragments of the endonuclease gene HO for chromosome integration. A genetically engineered flocculating yeast BHL01 with good fermentation performance was obtained by transforming an industrial strain Saccharomyces cerevisiae 4126 with the expression cassette. The fermentation performances of SPSC01 and BHL01 in flask fermentation were compared using 208 g/L glucose. BHL01 completed the fermentation 8 h earlier than SPSC01, while no significant difference between BHL01 and S. cerevisiae 4126 was observed. In very high gravity repeated batch ethanol fermentation using 255 g/L glucose, BHL01 maintained stable flocculation for at least over 24 batches, while SPSC01 displayed severe deflocculation under the same conditions. The natural reservoir of flocculating genes from yeast strains may represent an unexplored gene source for the construction of new flocculating yeast strains for improved ethanol production.  相似文献   

2.
In this study an industrial Saccharomyces cerevisiae yeast strain capable of fermenting ethanol from pretreated lignocellulosic material was engineered. Genes encoding cellulases (endoglucanase, exoglucanase and β-glucosidase) were integrated into the chromosomal ribosomal DNA and delta regions of a derivative of the K1-V1116 wine yeast strain. The engineered cellulolytic yeast produces ethanol in one step through simultaneous saccharification and fermentation of pretreated biomass without the addition of exogenously produced enzymes. When ethanol fermentation was performed with 10% dry weight of pretreated corn stover, the recombinant strain fermented 63% of the cellulose in 96 h and the ethanol titer reached 2.6% v/v. These results demonstrate that cellulolytic S. cerevisiae strains can be used as a platform for developing an economical advanced biofuel process.  相似文献   

3.
Yeast flocculation is an important trait in the brewing industry as well as in ethanol production, through which biomass can be recovered by cost-effective sedimentation. However, mass transfer limitation may affect yeast growth and ethanol fermentation if the flocculation occurs earlier before fermentation is completed. In this article, a novel type of cell-cell flocculation induced by trehalose-6-phosphate synthase 1 (TPS1) promoter was presented. The linear cassette HO-P(TPS1)-FLO1(SPSC01)-KanMX4-HO was constructed to transform the non-flocculating industrial yeast S. cerevisiae 4126 by chromosome integration to obtain a new flocculating yeast strain, ZLH01, whose flocculation was induced by ethanol produced during fermentation. The experimental results illustrated that flocculation of ZLH01 was triggered by 3% (v/v) ethanol and enhanced as ethanol concentration increased till complete flocculation was achieved at ethanol concentration of 8% (v/v). Real time PCR analysis confirmed that the expression of FLO1(SPSC01) was dependent on ethanol concentration. The growth and ethanol fermentation of ZLH01 were improved significantly, compared with the constitutive flocculating yeast BHL01 engineered with the same FLO gene but directed by the constitutive 3-phosphoglycerate kinase promoter PGK1, particularly under high temperature conditions. These characteristics make the engineered yeast more suitable for ethanol production from industrial substrates under high gravity and temperature conditions. In addition, this strategy offers advantage in inducing differential expression of other genes for metabolic engineering applications of S. cerevisiae.  相似文献   

4.
The second largest cost in fuel ethanol production is from energy consumption with ethanol distillation and stillage treatment, particularly when stillage is treated by the multi-evaporation process. Therefore, stillage backset is the most economically competitive strategy for reducing discharge and saving energy consumption. In this article, continuous ethanol fermentation was performed by the flocculating yeast under stillage backset conditions. Compared to regular yeast, immobilized yeast within the fermentor through flocculation reduced byproducts formation in the stillage, since heat lysis of yeast during ethanol distillation was prevented, and many side reactions were thus eliminated, making more stillage backset within the fermentation system possible. Although pyruvic acid, succinic acid, citric acid, α-ketoglutaric acid, fumaric acid and glycerol from yeast metabolism, furfural and 5-hydroxymethyl furfural from process operations, and acetic acid and lactic acid from slight contamination were accumulated with the stillage backset, they had no significant impact on yeast growth and ethanol fermentation due to low concentrations accumulated within the fermentation system. However, propionic acid that was generated mainly during hydrolysate sterilization and distillation of the fermentation broth was detected as the major inhibitor, but this byproduct would be significantly reduced under industrial conditions without hydrolysate sterilization, making the stillage backset more reliable for industrial application.  相似文献   

5.
Using the recombinant flocculating Angel yeast F6, long-term repeated batch fermentation for ethanol production was performed and a high volumetric productivity resulted from half cells not washed and the optimum opportunity of residual glucose 20 g l−1 of last medium. The obtained highest productivity was 2.07 g l−1 h−1, which was improved by 75.4% compared with that of 1.18 g l−1 h−1 in the first batch fermentation. The ethanol concentration reached 8.4% corresponding to the yield of 0.46 g g−1. These results will contribute greatly to the industrial production of fuel ethanol using the commercial method with the flocculating yeast.  相似文献   

6.
The conversion of lignocellulose into fermentable sugars is considered a promising alternative for increasing ethanol production. Higher fermentation yield has been achieved through the process of simultaneous saccharification and fermentation (SSF). In this study, a comparison was performed between the yeast species Saccharomyces cerevisiae and Kluyveromyces marxianus for their potential use in SSF process. Three strains of S. cerevisiae were evaluated: two are widely used in the Brazilian ethanol industry (CAT-1 and PE-2), and one has been isolated based on its capacity to grow and ferment at 42 °C (LBM-1). In addition, we used thermotolerant strains of K. marxianus. Two strains were obtained from biological collections, ATCC 8554 and CCT 4086, and one strain was isolated based on its fermentative capacity (UFV-3). SSF experiments revealed that S. cerevisiae industrial strains (CAT-1 and PE-2) have the potential to produce cellulosic ethanol once ethanol had presented yields similar to yields from thermotolerant strains. The industrial strains are more tolerant to ethanol and had already been adapted to industrial conditions. Moreover, the study shows that although the K. marxianus strains have fermentative capacities similar to strains of S. cerevisiae, they have low tolerance to ethanol. This characteristic is an important target for enhancing the performance of this yeast in ethanol production.  相似文献   

7.
《Fungal biology》2022,126(10):658-673
In northwestern Argentina, sugarcane-derived industrial fermentation is being extensively used for bioethanol production, where highly adaptive native strains compete with the baker's yeast Saccharomyces cerevisiae traditionally used as starter culture. Yeast populations of 10 distilleries from Tucumán (Argentina) were genotypic and phenotypic characterized to select well-adapted bioethanol-producing autochthonous strains to be used as starter cultures for the industrial production of bioethanol fuel. From the 192 isolates, 69.8% were identified as S. cerevisiae, 25.5% as non-Saccharomyces, and 4.7% as Saccharomyces sp. wild yeasts. The majority of S. cerevisiae isolates (68.5%) were non-flocculating yeasts, while the flocculating strains were all obtained from the only continuous fermentation process included in the study. Simple Sequence Repeat analysis revealed a high genetic diversity among S. cerevisiae genotypes, where all of them were very different from the original baker's strain used as starter. Among these, 38 strains multi-tolerant to stress by ethanol (8%), temperature (42.5 °C) and pH (2.0) were obtained. No major differences were found among these strains in terms of ethanol production and residual sugars in batch fermentation experiments with cell recycling. However, only 10 autochthonous strains maintained their viability (more than 80%) throughout five consecutive cycles of sugarcane-based fermentations. In summary, 10 autochthonous isolates were found to be superior to baker's yeast used as starter culture (S. cerevisiae Calsa) in terms of optimal technological, physiological and ecological properties. The knowledge generated on the indigenous yeast populations in industrial fermentation processes of bioethanol-producing distilleries allowed the selection of well-adapted bioethanol-producing strains.  相似文献   

8.
9.
Yeast flocculation is an important property for the brewing industry as well as for ethanol fermentation to facilitate biomass recovery by sedimentation from the fermentation broth, which is cost-effective. In this study, a new flocculating gene FLO10 (spsc) of 4,221 bp homologous to FLO10 was identified in the industrial flocculating yeast SPSC01. Sequence analysis indicated that the N- and C-terminus of the deduced protein of this new FLO gene are 99 % identical to that of FLO10, but more intragenic repeats are included. The study on the function of FLO10 (spsc) by its integrative expression in the non-flocculating industrial yeast indicated severe inhibition in the flocculation of the transformant by mannose and maltose, moderate inhibition by sucrose and glucose and no inhibition by xylose and galactose, and thus the NewFlo type was established. Meanwhile, the flocculation of the transformant was stable when the temperature was below 50 °C and the pH was in the range of 4.0-6.0. Furthermore, the medium containing 250 g/l glucose was completely fermented within 48 h by the transformant, with about 110 g/l ethanol and 5.5 g(DCW)/l biomass produced, and no significant difference in ethanol fermentation performance was observed compared to its wide-type strain. Therefore, the FLO gene and corresponding transformation strategy provide a platform for engineering yeast strains with the flocculation phenotype to facilitate biomass recovery.  相似文献   

10.
Bacterial contamination during industrial yeast fermentation has serious economic consequences for fuel ethanol producers. In addition to deviating carbon away from ethanol formation, bacterial cells and their metabolites often have a detrimental effect on yeast fermentative performance. The bacterial contaminants are commonly lactic acid bacteria (LAB), comprising both homo- and heterofermentative strains. We have studied the effects of these two different types of bacteria upon yeast fermentative performance, particularly in connection with sugarcane-based fuel ethanol fermentation process. Homofermentative Lactobacillus plantarum was found to be more detrimental to an industrial yeast strain (Saccharomyces cerevisiae CAT-1), when compared with heterofermentative Lactobacillus fermentum, in terms of reduced yeast viability and ethanol formation, presumably due to the higher titres of lactic acid in the growth medium. These effects were only noticed when bacteria and yeast were inoculated in equal cell numbers. However, when simulating industrial fuel ethanol conditions, as conducted in Brazil where high yeast cell densities and short fermentation time prevail, the heterofermentative strain was more deleterious than the homofermentative type, causing lower ethanol yield and out competing yeast cells during cell recycle. Yeast overproduction of glycerol was noticed only in the presence of the heterofermentative bacterium. Since the heterofermentative bacterium was shown to be more deleterious to yeast cells than the homofermentative strain, we believe our findings could stimulate the search for more strain-specific antimicrobial agents to treat bacterial contaminations during industrial ethanol fermentation.  相似文献   

11.
12.
ABSTRACT: BACKGROUND: Very high gravity (VHG) fermentation using medium in excess of 250 g/L sugars for more than 15 % (v) ethanol can save energy consumption, not only for ethanol distillation, but also for distillage treatment; however, stuck fermentation with prolonged fermentation time and more sugars unfermented is the biggest challenge. Controlling redox potential (ORP) during VHG fermentation benefits biomass accumulation and improvement of yeast cell viability that is affected by osmotic pressure and ethanol inhibition, enhancing ethanol productivity and yield, the most important techno-economic aspect of fuel ethanol production. RESULTS: Batch fermentation was performed under different ORP conditions using the flocculating yeast and media containing glucose of 201 [PLUS-MINUS SIGN] 3.1, 252 [PLUS-MINUS SIGN] 2.9 and 298 [PLUS-MINUS SIGN] 3.8 g/L. Compared with ethanol fermentation by non-flocculating yeast, different ORP profiles were observed with the flocculating yeast due to the morphological change associated with the flocculation of yeast cells. When ORP was controlled at [MINUS SIGN]100 mV, ethanol fermentation with the high gravity (HG) media containing glucose of 201 [PLUS-MINUS SIGN] 3.1 and 252 [PLUS-MINUS SIGN] 2.9 g/L was completed at 32 and 56 h, respectively, producing 93.0 [PLUS-MINUS SIGN] 1.3 and 120.0 [PLUS-MINUS SIGN] 1.8 g/L ethanol, correspondingly. In contrast, there were 24.0 [PLUS-MINUS SIGN] 0.4 and 17.0 [PLUS-MINUS SIGN] 0.3 g/L glucose remained unfermented without ORP control. As high as 131.0 [PLUS-MINUS SIGN] 1.8 g/L ethanol was produced at 72 h when ORP was controlled at [MINUS SIGN]150 mV for the VHG fermentation with medium containing 298 [PLUS-MINUS SIGN] 3.8 g/L glucose, since yeast cell viability was improved more significantly. CONCLUSIONS: No lag phase was observed during ethanol fermentation with the flocculating yeast, and the implementation of ORP control improved ethanol productivity and yield. When ORP was controlled at [MINUS SIGN]150 mV, more reducing power was available for yeast cells to survive, which in turn improved their viability and VHG ethanol fermentation performance. On the other hand, controlling ORP at [MINUS SIGN]100 mV stimulated yeast growth and enhanced ethanol production under the HG conditions. Moreover, the ORP profile detected during ethanol fermentation with the flocculating yeast was less fluctuated, indicating that yeast flocculation could attenuate the ORP fluctuation observed during ethanol fermentation with non-flocculating yeast.  相似文献   

13.
Direct ethanol production from raw starch was performed continuously using a combination of a reversibly soluble-autoprecipitating amylase (D-AS) in which Dabiase K-27 was immobilized covalently on an enteric coating polymer (hydroxypropyl methylcellulose acetate succinate, AS) as a carrier, and a flocculating yeast. Continuous production was carried out using a reactor equipped with a mixing vessel and a separation vessel. D-AS and the yeast were separated continuously from the product solution by self-sedimentation in the separation vessel and they were utilized repeatedly. In the continuous saccharification of raw starch by D-AS alone, the glucose productivity was about 3.6 g/l/h at a dilution rate (D) of 0.1 h−1. In the continuous ethanol production from raw starch by a combination of D-AS and flocculating yeast cells, high ethanol productivity up to 2.0 g/l/h was achieved at D=0.1 h−1. Although the enzymatic activity of D-AS is inactivated due to insolubilization of the enzyme by the accumulation of NaCl produced in controlling the pH in the reactor, it is possible to recover the D-AS enzymatic activity by removing the NaCl. This continuous fermentation system suggests a potential for effective ethanol production from raw starch, and it may be widely applicable in heterogeneous culture systems using solid substrates other than raw starch.  相似文献   

14.
A major hurdle in the production of bioethanol with second-generation feedstocks is the high cost of the enzymes for saccharification of the lignocellulosic biomass into fermentable sugars. Simultaneous saccharification and fermentation with Saccharomyces cerevisiae yeast that secretes a range of lignocellulolytic enzymes might address this problem, ideally leading to consolidated bioprocessing. However, it has been unclear how many enzymes can be secreted simultaneously and what the consequences would be on the C6 and C5 sugar fermentation performance and robustness of the second-generation yeast strain. We have successfully expressed seven secreted lignocellulolytic enzymes, namely endoglucanase, β-glucosidase, cellobiohydrolase I and II, xylanase, β-xylosidase and acetylxylan esterase, in a single second-generation industrial S. cerevisiae strain, reaching 94.5 FPU/g CDW and enabling direct conversion of lignocellulosic substrates into ethanol without preceding enzyme treatment. Neither glucose nor the engineered xylose fermentation were significantly affected by the heterologous enzyme secretion. This strain can therefore serve as a promising industrial platform strain for development of yeast cell factories that can significantly reduce the enzyme cost for saccharification of lignocellulosic feedstocks.  相似文献   

15.
Towards industrial pentose-fermenting yeast strains   总被引:15,自引:0,他引:15  
Production of bioethanol from forest and agricultural products requires a fermenting organism that converts all types of sugars in the raw material to ethanol in high yield and with a high rate. This review summarizes recent research aiming at developing industrial strains of Saccharomyces cerevisiae with the ability to ferment all lignocellulose-derived sugars. The properties required from the industrial yeast strains are discussed in relation to four benchmarks: (1) process water economy, (2) inhibitor tolerance, (3) ethanol yield, and (4) specific ethanol productivity. Of particular importance is the tolerance of the fermenting organism to fermentation inhibitors formed during fractionation/pretreatment and hydrolysis of the raw material, which necessitates the use of robust industrial strain background. While numerous metabolic engineering strategies have been developed in laboratory yeast strains, only a few approaches have been realized in industrial strains. The fermentation performance of the existing industrial pentose-fermenting S. cerevisiae strains in lignocellulose hydrolysate is reviewed. Ethanol yields of more than 0.4 g ethanol/g sugar have been achieved with several xylose-fermenting industrial strains such as TMB 3400, TMB 3006, and 424A(LNF-ST), carrying the heterologous xylose utilization pathway consisting of xylose reductase and xylitol dehydrogenase, which demonstrates the potential of pentose fermentation in improving lignocellulosic ethanol production.  相似文献   

16.
17.
An understanding of the genetic basis underlying the phenotypic variations of yeast strains would guide the breeding of this useful microorganism. Here, comparative functional genomics (CFG) of two bioethanol Saccharomyces cerevisiae strains (YJS329 and ZK2) with different stress tolerances and ethanol fermentation performances were performed. Our analysis indicated that different patterns of gene expression in the central carbon metabolism, antioxidative factors, and membrane compositions of these two strains are the main contributors to their various traits. Some of the differently expressed genes were directly caused by the genomic structural variations between YJS329 and ZK2. Moreover, CFG of these two strains also led to novel insights into the mechanism of stress tolerance in yeast. For example, it was found that more oleic acid in the plasma membrane contributes to the acetic acid tolerance of yeast. Based on the genetic information particular to each strain, strategies to improve their adaptability and ethanol fermentation performances were designed and confirmed. Thus, CFG could not only help reveal basis of phenotypic diversities but also guide the genetic breeding of industrial microorganisms.  相似文献   

18.
19.
The ability of Saccharomyces cerevisiae to efficiently produce high levels of ethanol through glycolysis has been the focus of much scientific and industrial activity. Despite the accumulated knowledge regarding glycolysis, the modification of flux through this pathway to modify ethanol yields has proved difficult. Here, we report on the systematic screening of 66 strains with deletion mutations of genes encoding enzymes involved in central carbohydrate metabolism for altered ethanol yields. Five of these strains showing the most prominent changes in carbon flux were selected for further investigation. The genes were representative of trehalose biosynthesis (TPS1, encoding trehalose-6-phosphate synthase), central glycolysis (TDH3, encoding glyceraldehyde-3-phosphate dehydrogenase), the oxidative pentose phosphate pathway (ZWF1, encoding glucose-6-phosphate dehydrogenase), and the tricarboxylic acid (TCA) cycle (ACO1 and ACO2, encoding aconitase isoforms 1 and 2). Two strains exhibited lower ethanol yields than the wild type (tps1Δ and tdh3Δ), while the remaining three showed higher ethanol yields. To validate these findings in an industrial yeast strain, the TPS1 gene was selected as a good candidate for genetic modification to alter flux to ethanol during alcoholic fermentation in wine. Using low-strength promoters active at different stages of fermentation, the expression of the TPS1 gene was slightly upregulated, resulting in a decrease in ethanol production and an increase in trehalose biosynthesis during fermentation. Thus, the mutant screening approach was successful in terms of identifying target genes for genetic modification in commercial yeast strains with the aim of producing lower-ethanol wines.  相似文献   

20.
Abstract: Continuous fermentation by a highly flocculant strain of the yeast Saccharomyces cerevisiae was carried out in a tower fluidized-bed bioreactor. The synthetic and molasses media with a total sugar concentration of 17% (w/v) were used for fermentation. Different dilution rates were tested. Stable cell densities of 50 kg m-3(dry weight) were maintained for all dilution rates. The ethanol productivity was increasing linearly with dilution rates up to 15—20 kg m-3 h-1. Aeration of the culture stabilized flocculating activity and viability of yeast and also permitted long-term operation of the bioreactor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号