首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Intracellular cargos are transported by molecular motors along actin and microtubules, but how their dynamics depends on the complex structure of the cytoskeletal network remains unclear. In this study, we investigated this longstanding question by measuring simultaneously the rotational and translational dynamics of cargos at microtubule intersections in living cells. We engineered two-faced particles that are fluorescent on one hemisphere and opaque on the other and used their optical anisotropy to report the rotation of cargos. We show that cargos undergo brief episodes of unidirectional and rapid rotation while pausing at microtubule intersections. Probability and amplitude of the cargo rotation depend on the geometry of the intersecting filaments. The cargo rotation is not random motion due to detachment from microtubules, as revealed by statistical analyses of the translational and rotational dynamics. Instead, it is an active rotation driven by motor proteins. Although cargos are known to pause at microtubule intersections, this study reveals a different dimension of dynamics at this seemingly static state and, more importantly, provides direct evidence showing the correlation between cargo rotation and the geometry of underlying microtubule intersections.  相似文献   

2.
How intracellular transport controls the probability that cargos switch at intersections between filaments is not well understood. In one hypothesis some motors on the cargo attach to one filament while others attach to the intersecting filament, and the ensuing tug-of-war determines which filament is chosen. We investigate this hypothesis using 3D computer simulations, and discover that switching at intersections increases with the number of motors on the cargo, but is not strongly dependent on motor number when the filaments touch. Thus, simply controlling the number of active motors on the cargo cannot account for in vivo observations that found reduced switching with increasing motor number, suggesting additional mechanisms of regulation. We use simulations to show that one possible way to regulate switching is by simultaneously adjusting the separation between planes containing the crossing filaments and the total number of active motors on the cargo. Heretofore, the effect of filament-filament separation on switching has been unexplored. We find that the switching probability decreases with increasing filament separation. This effect is particularly strong for cargos with only a modest number of motors. As the filament separation increases past the maximum head-to-head distance of the motor, individual motors walking along a filament will be unable to reach the intersecting filament. Thus, any switching requires that other motors on the cargo attach to the intersecting filament and haul the cargo along it, while motor(s) engaged on the original filament detach. Further, if the filament separation is large enough, the cargo can have difficulty proceeding along the initial filament because the engaged motors can walk underneath the intersecting filament, but the cargo itself cannot fit between the filaments. Thus, the cargo either detaches entirely from the original filament, or must dip to the side of the initial filament and then pass below the crossing filament.  相似文献   

3.
Kinesin and cytoplasmic dynein are microtubule-based motor proteins that actively transport material throughout the cell. Microtubules can intersect at a variety of angles both near the nucleus and at the cell periphery, and the behavior of molecular motors at these intersections has implications for long-range transport efficiency and accuracy. To test motor function at microtubule intersections, crossovers were arranged in vitro using flow to orient successive layers of filaments. Single kinesin and cytoplasmic dynein-dynactin molecules fused with green-fluorescent protein, and artificial bead cargos decorated with multiple motors, were observed while they encountered intersections. Single kinesins tend to cross intersecting microtubules, whereas single dynein-dynactins have a more varied response. For bead cargos, kinesin motion is independent of motor number. Dynein beads with high motor numbers pause, but their actions become more varied as the motor number decreases. These results suggest that regulating the number of active dynein molecules could change a motile cargo into one that is anchored at an intersection, consistent with dynein's proposed transport and tethering functions in the cell.  相似文献   

4.
The number of microtubule motors attached to vesicles, organelles, and other subcellular commodities is widely believed to influence their motile properties. There is also evidence that cells regulate intracellular transport by tuning the number and/or ratio of motor types on cargos. Yet, the number of motors responsible for cargo motion is not easily characterized, and the extent to which motor copy number affects intracellular transport remains controversial. Here, we examined the load-dependent properties of structurally defined motor assemblies composed of two kinesin-1 molecules. We found that a group of kinesins can produce forces and move with velocities beyond the abilities of single kinesin molecules. However, such capabilities are not typically harnessed by the system. Instead, two-kinesin assemblies adopt a range of microtubule-bound configurations while transporting cargos against an applied load. The binding arrangement of motors on their filament dictates how loads are distributed within the two-motor system, which in turn influences motor-microtubule affinities. Most configurations promote microtubule detachment and prevent both kinesins from contributing to force production. These results imply that cargos will tend to be carried by only a fraction of the total number of kinesins that are available for transport at any given time, and provide an alternative explanation for observations that intracellular transport depends weakly on kinesin number in vivo.  相似文献   

5.
The spatial organization of the cell depends upon intracellular trafficking of cargos hauled along microtubules and actin filaments by the molecular motor proteins kinesin, dynein, and myosin. Although much is known about how single motors function, there is significant evidence that cargos in vivo are carried by multiple motors. While some aspects of multiple motor function have received attention, how the cargo itself--and motor organization on the cargo--affects transport has not been considered. To address this, we have developed a three-dimensional Monte Carlo simulation of motors transporting a spherical cargo, subject to thermal fluctuations that produce both rotational and translational diffusion. We found that these fluctuations could exert a load on the motor(s), significantly decreasing the mean travel distance and velocity of large cargos, especially at large viscosities. In addition, the presence of the cargo could dramatically help the motor to bind productively to the microtubule: the relatively slow translational and rotational diffusion of moderately sized cargos gave the motors ample opportunity to bind to a microtubule before the motor/cargo ensemble diffuses out of range of that microtubule. For rapidly diffusing cargos, the probability of their binding to a microtubule was high if there were nearby microtubules that they could easily reach by translational diffusion. Our simulations found that one reason why motors may be approximately 100 nm long is to improve their 'on' rates when attached to comparably sized cargos. Finally, our results suggested that to efficiently regulate the number of active motors, motors should be clustered together rather than spread randomly over the surface of the cargo. While our simulation uses the specific parameters for kinesin, these effects result from generic properties of the motors, cargos, and filaments, so they should apply to other motors as well.  相似文献   

6.
Multiscale trend analysis of microtubule transport in melanophores   总被引:2,自引:1,他引:1       下载免费PDF全文
Microtubule-based transport is critical for trafficking of organelles, organization of endomembranes, and mitosis. The driving force for microtubule-based transport is provided by microtubule motors, which move organelles specifically to the plus or minus ends of the microtubules. Motor proteins of opposite polarities are bound to the surface of the same cargo organelle. Transport of organelles along microtubules is discontinuous and involves transitions between movements to plus or minus ends or pauses. Parameters of the movement, such as velocity and length of runs, provide important information about the activity of microtubule motors, but measurement of these parameters is difficult and requires a sophisticated decomposition of the organelle movement trajectories into directional runs and pauses. The existing algorithms are based on establishing threshold values for the length and duration of runs and thus do not allow to distinguish between slow runs and pauses, making the analysis of the organelle transport incomplete. Here we describe a novel algorithm based on multiscale trend analysis for the decomposition of organelle trajectories into plus- or minus-end runs, and pauses. This algorithm is self-adapted to the characteristic durations and velocities of runs, and allows reliable separation of pauses from runs. We apply the proposed algorithm to compare regulation of microtubule transport in fish and Xenopus melanophores and show that the general mechanisms of regulation are similar in the two pigment cell types.  相似文献   

7.
The MAPs (microtubule-associated proteins) MAP1B and tau are well known for binding to microtubules and stabilizing these structures. An additional role for MAPs has emerged recently where they appear to participate in the regulation of transport of cargos on the microtubules found in axons. In this role, tau has been associated with the regulation of anterograde axonal transport. We now report that MAP1B is associated with the regulation of retrograde axonal transport of mitochondria. This finding potentially provides precise control of axonal transport by MAPs at several levels: controlling the anterograde or retrograde direction of transport depending on the type of MAP involved, controlling the speed of transport and controlling the stability of the microtubule tracks upon which transport occurs.  相似文献   

8.
The bidirectional movement of intracellular cargo is usually described as a tug-of-war among opposite-directed families of molecular motors. While tug-of-war models have enjoyed some success, recent evidence suggests underlying motor interactions are more complex than previously understood. For example, these tug-of-war models fail to predict the counterintuitive phenomenon that inhibiting one family of motors can decrease the functionality of opposite-directed transport. In this paper, we use a stochastic differential equations modeling framework to explore one proposed physical mechanism, called microtubule tethering, that could play a role in this “co-dependence” among antagonistic motors. This hypothesis includes the possibility of a trade-off: weakly bound trailing molecular motors can serve as tethers for cargoes and processing motors, thereby enhancing motor–cargo run lengths along microtubules; however, this introduces a cost of processing at a lower mean velocity. By computing the small- and large-time mean-squared displacement of our theoretical model and comparing our results to experimental observations of dynein and its “helper protein” dynactin, we find some supporting evidence for microtubule tethering interactions. We extrapolate these findings to predict how dynein–dynactin might interact with the opposite-directed kinesin motors and introduce a criterion for when the trade-off is beneficial in simple systems.  相似文献   

9.
Bidirectional transport along microtubules is ensured by opposing motor proteins: cytoplasmic dynein that drives cargo to the minus-ends and various kinesins that generally move to the plus-ends of microtubules. Regulation of motor proteins that are simultaneously bound to the same organelle is required to maintain directional transport and prevent pausing of cargo pulled away by motors of opposite polarity. Debates of the recent decade have been focused on two possible mechanisms of such regulation: (i) coordination, which implies that only one type of motors is active at a given time, and (ii) tug-of-war, which assumes that both motors are active at the same time and that direction of transport depends on the outcome of motor's confrontation. The initial idea of coordination has been challenged by observations of simultaneous activity of plus- and minus-end-directed motors applied to the same cargo. Analysis of the available data indicates that coordination and tug-of-war theories rather complement than contradict each other: cargo interacts with two teams of active motors, the resulting direction and the winner team are determined by coordination complexes, but the activity of the loser team is never completely inhibited and remains at some background level. Such persisting activity might enhance the overall efficiency of transport by increasing processivity or helping to overcome the obstacles on microtubule track.  相似文献   

10.
11.
Many cellular components are transported using a combination of the actin- and microtubule-based transport systems. However, how these two systems work together to allow well-regulated transport is not clearly understood. We investigate this question in the Xenopus melanophore model system, where three motors, kinesin II, cytoplasmic dynein, and myosin V, drive aggregation or dispersion of pigment organelles called melanosomes. During dispersion, myosin V functions as a "molecular ratchet" to increase outward transport by selectively terminating dynein-driven minus end runs. We show that there is a continual tug-of-war between the actin and microtubule transport systems, but the microtubule motors kinesin II and dynein are likely coordinated. Finally, we find that the transition from dispersion to aggregation increases dynein-mediated motion, decreases myosin V--mediated motion, and does not change kinesin II--dependent motion. Down-regulation of myosin V contributes to aggregation by impairing its ability to effectively compete with movement along microtubules.  相似文献   

12.
The mechanisms of molecular motor regulation during bidirectional organelle transport are still uncertain. There is, for instance, the unsettled question of whether opposing motor proteins can be engaged in a tug-of-war. Clearly, any non-synchronous activation of the molecular motors of one cargo can principally lead to changes in the cargo's shape and size; the cargo's size and shape parameters would certainly be observables of such changes. We therefore set out to measure position, shape and size parameters of fluorescent mitochondria (during their transport) in dendrites of cultured neurons using a finite-particle tracking algorithm. Our data clearly show transport-related submicroscopic-size changes of mitochondria. The observed displacements of the mitochondrial front and rear ends are consistent with a model in which microtubule plus- and minus-end-directed motor proteins or motors of the same type but moving along anti-parallel microtubules are often out-of-phase and occasionally engaged in a tug-of-war. Mostly the leading and trailing ends of mitochondria undergo similar characteristic movements but with a substantial time delay between the displacements of both ends, a feature reminiscent of an inchworm-like motility mechanism. More generally, we demonstrate that observing the position, shape and size of actively transported finite objects such as mitochondria can yield information on organelle transport that is generally not accessible by tracking the organelles' centroid alone.  相似文献   

13.
Microtubules polymerize from GTP-liganded tubulin dimers, but are essentially made of GDP-liganded tubulin. We investigate the tug-of-war resulting from the fact that GDP-liganded tubulin favors a curved configuration, but is forced to remain in a straight one when part of a microtubule. We point out that near the end of a microtubule, the proximity of the end shifts the balance in this tug-of-war, with some protofilament bending as result. This somewhat relaxes the microtubule lattice near its end, resulting in a structural cap. This structural cap thus is a simple mechanical consequence of two well-established facts: protofilaments made of GDP-liganded tubulin have intrinsic curvature, and microtubules are elastic, made from material that can yield to forces, in casu its own intrinsic forces. We explore possible properties of this structural cap, and demonstrate 1) how it allows both polymerization from GTP-liganded tubulin and rapid depolymerization in its absence; 2) how rescue can occur; 3) how a third, meta-stable intermediate state is possible and can explain some experimental results; and 4) how the tapered tips observed at polymerizing microtubule ends are stabilized during growth, though unable to accommodate a lateral cap. This scenario thus supports the widely accepted GTP-cap model by suggesting a stabilizing mechanism that explains the many aspects of dynamic instability.  相似文献   

14.
On and Around Microtubules: An Overview   总被引:1,自引:0,他引:1  
Microtubules are hollow tubes some 25 nm in diameter participating in the eukaryotic cytoskeleton. They are built from αβ-tubulin heterodimers that associate to form protofilaments running lengthwise along the microtubule wall with the β-tubulin subunit facing the microtubule plus end conferring a structural polarity. The α- and β-tubulins are highly conserved. A third member of the tubulin family, γ-tubulin, plays a role in microtubule nucleation and assembly. Other members of the tubulin family appear to be involved in microtubule nucleation. Microtubule assembly is accompanied by hydrolysis of GTP associated with β-tubulin so that microtubules consist principally of ‘GDP-tubulin’ stabilized at the plus end by a short ‘cap’. An important property of microtubules is dynamic instability characterized by growth randomly interrupted by pauses and shrinkage. Many proteins interact with microtubules within the cell and are involved in essential functions such as microtubule growth, stabilization, destabilization, and interactions with chromosomes during cell division. The motor proteins kinesin and dynein use microtubules as pathways for transport and are also involved in cell division. Crystallography and electron microscopy are providing a structural basis for understanding the interactions of microtubules with antimitotic drugs, with motor proteins and with plus end tracking proteins.  相似文献   

15.
《Biophysical journal》2020,118(1):243-253
Kinesin motors and their associated microtubule tracks are essential for long-distance transport of cellular cargos. Intracellular activity and proper recruitment of kinesins is regulated by biochemical signaling, cargo adaptors, microtubule-associated proteins, and mechanical forces. In this study, we found that the effect of opposing forces on the kinesin-microtubule attachment duration depends strongly on experimental assay geometry. Using optical tweezers and the conventional single-bead assay, we show that detachment of kinesin from the microtubule is likely accelerated by forces vertical to the long axis of the microtubule due to contact of the single bead with the underlying microtubule. We used the three-bead assay to minimize the vertical force component and found that when the opposing forces are mainly parallel to the microtubule, the median value of attachment durations between kinesin and microtubules can be up to 10-fold longer than observed using the single-bead assay. Using the three-bead assay, we also found that not all microtubule protofilaments are equivalent interacting substrates for kinesin and that the median value of attachment durations of kinesin varies by more than 10-fold, depending on the relative angular position of the forces along the circumference of the microtubule. Thus, depending on the geometry of forces across the microtubule, kinesin can switch from a fast detaching motor (median attachment duration <0.2 s) to a persistent motor that sustains attachment (median attachment duration >3 s) at high forces (5 pN). Our data show that the load-bearing capacity of the kinesin motor is highly variable and can be dramatically affected by off-axis forces and forces across the microtubule lattice, which has implications for a range of cellular activities, including cell division and organelle transport.  相似文献   

16.
Microtubules have a persistence length of the order of millimeters in vitro, but inside cells they bend over length scales of microns. It has been proposed that polymerization forces bend microtubules in the vicinity of the cell boundary or other obstacles, yet bends develop even when microtubules are polymerizing freely, unaffected by obstacles and cell boundaries. How these bends are formed remains unclear. By tracking the motions of microtubules marked by photobleaching, we found that in LLC-PK1 epithelial cells local bends develop primarily by plus-end directed transport of portions of the microtubule contour towards stationary locations (termed pinning points) along the length of the microtubule. The pinning points were transient in nature, and their eventual release allowed the bends to relax. The directionality of the transport as well as the overall incidence of local bends decreased when dynein was inhibited, while myosin inhibition had no observable effect. This suggests that dynein generates a tangential force that bends microtubules against stationary pinning points. Simulations of microtubule motion and polymerization accounting for filament mechanics and dynein forces predict the development of bends of size and shape similar to those observed in cells. Furthermore, simulations show that dynein-generated bends at a pinning point near the plus end can cause a persistent rotation of the tip consistent with the observation that bend formation near the tip can change the direction of microtubule growth. Collectively, these results suggest a simple physical mechanism for the bending of growing microtubules by dynein forces accumulating at pinning points.  相似文献   

17.
Li T 《Journal of biomechanics》2008,41(8):1722-1729
As the most rigid cytoskeletal filaments, microtubules bear compressive forces in living cells, balancing the tensile forces within the cytoskeleton to maintain the cell shape. It is often observed that, in living cells, microtubules under compression severely buckle into short wavelengths. By contrast, when compressed, isolated microtubules in vitro buckle into single long-wavelength arcs. The critical buckling force of the microtubules in vitro is two orders of magnitude lower than that of the microtubules in living cells. To explain this discrepancy, we describe a mechanics model of microtubule buckling in living cells. The model investigates the effect of the surrounding filament network and the cytosol on the microtubule buckling. The results show that, while the buckling wavelength is set by the interplay between the microtubules and the elastic surrounding filament network, the buckling growth rate is set by the viscous cytosol. By considering the nonlinear deformation of the buckled microtubule, the buckling amplitude can be determined at the kinetically constrained equilibrium. The model quantitatively correlates the microtubule bending rigidity, the surrounding filament network elasticity, and the cytosol viscosity with the buckling wavelength, the buckling growth rate, and the buckling amplitude of the microtubules. Such results shed light on designing a unified experimental protocol to measure various critical mechanical properties of subcellular structures in living cells.  相似文献   

18.
In mitosis, kinetochores are initially captured by the lateral sides of single microtubules and are subsequently transported toward spindle poles. Mechanisms for kinetochore transport are not yet known. We present two mechanisms involved in microtubule-dependent poleward kinetochore transport in Saccharomyces cerevisiae. First, kinetochores slide along the microtubule lateral surface, which is mainly and probably exclusively driven by Kar3, a kinesin-14 family member that localizes at kinetochores. Second, kinetochores are tethered at the microtubule distal ends and pulled poleward as microtubules shrink (end-on pulling). Kinetochore sliding is often converted to end-on pulling, enabling more processive transport, but the opposite conversion is rare. The establishment of end-on pulling is partly hindered by Kar3, and its progression requires the Dam1 complex. We suggest that the Dam1 complexes, which probably encircle a single microtubule, can convert microtubule depolymerization into the poleward kinetochore-pulling force. Thus, microtubule-dependent poleward kinetochore transport is ensured by at least two distinct mechanisms.  相似文献   

19.
Formin family actin nucleators are potential coordinators of the actin and microtubule cytoskeletons, as they can both nucleate actin filaments and bind microtubules in vitro. To gain a more detailed mechanistic understanding of formin-microtubule interactions and formin-mediated actin-microtubule cross-talk, we studied microtubule binding by Cappuccino (Capu), a formin involved in regulating actin and microtubule organization during Drosophila oogenesis. We found that two distinct domains within Capu, FH2 and tail, work together to promote high-affinity microtubule binding. The tail domain appears to bind microtubules through nonspecific charge-based interactions. In contrast, distinct residues within the FH2 domain are important for microtubule binding. We also report the first visualization of a formin polymerizing actin filaments in the presence of microtubules. Interestingly, microtubules are potent inhibitors of the actin nucleation activity of Capu but appear to have little effect on Capu once it is bound to the barbed end of an elongating filament. Because Capu does not simultaneously bind microtubules and assemble actin filaments in vitro, its actin assembly and microtubule binding activities likely require spatial and/or temporal regulation within the Drosophila oocyte.  相似文献   

20.
Centrosomes serve as microtubule-organizing centers. However, centrosome function depends on microtubule organization and protein transport because the formation, positioning and maintenance of centrosomes require microtubule-dependent retrograde transport. Linker proteins that associate with the motor protein dynein, organelles and microtubules facilitate loading of cargos for retrograde transport and thus contribute to the composition and placement of the centrosome and other juxtanuclear protein complexes. Members of the hook family of proteins may function as adaptors to link various organelle cargos to dynein for transport and have also been implicated directly in centrosome positioning. Here, we show that mammalian hook2, a previously uncharacterized member of the hook family, localizes to the centrosome through all phases of the cell cycle, the C-terminal domain of hook2 directly binds to centriolin/CEP110, the expression of the C-terminal domain of centriolin/CEP110 alters the distribution of endogenous hook2 and mislocalized wild-type or mutant hook2 proteins perturb endogenous centrosomal and pericentrosomal proteins in cultured mammalian cells. In addition, interference with hook2 function results in the loss of the radial organization of microtubules and a defect in regrowth of microtubules following their nocodazole-induced depolymerization. Thus, we propose that hook2 contributes to the establishment and maintenance of centrosomal structure and function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号