共查询到20条相似文献,搜索用时 0 毫秒
1.
Dawen Cai Dyke P. McEwen Jeffery R. Martens Edgar Meyhofer Kristen J. Verhey 《PLoS biology》2009,7(10)
Cells generate diverse microtubule populations by polymerization of a common α/β-tubulin building block. How microtubule associated proteins translate microtubule heterogeneity into specific cellular functions is not clear. We evaluated the ability of kinesin motors involved in vesicle transport to read microtubule heterogeneity by using single molecule imaging in live cells. We show that individual Kinesin-1 motors move preferentially on a subset of microtubules in COS cells, identified as the stable microtubules marked by post-translational modifications. In contrast, individual Kinesin-2 (KIF17) and Kinesin-3 (KIF1A) motors do not select subsets of microtubules. Surprisingly, KIF17 and KIF1A motors that overtake the plus ends of growing microtubules do not fall off but rather track with the growing tip. Selection of microtubule tracks restricts Kinesin-1 transport of VSVG vesicles to stable microtubules in COS cells whereas KIF17 transport of Kv1.5 vesicles is not restricted to specific microtubules in HL-1 myocytes. These results indicate that kinesin families can be distinguished by their ability to recognize microtubule heterogeneity. Furthermore, this property enables kinesin motors to segregate membrane trafficking events between stable and dynamic microtubule populations. 相似文献
2.
3.
Michael A. Welte 《Current biology : CB》2010,20(9):R410-R413
4.
Göker Arpağ Stephen R. Norris S. Iman Mousavi Virupakshi Soppina Kristen J. Verhey William O. Hancock Erkan Tüzel 《Biophysical journal》2019,116(6):1115-1126
Intracellular cargo transport by kinesin family motor proteins is crucial for many cellular processes, particularly vesicle transport in axons and dendrites. In a number of cases, the transport of specific cargo is carried out by two classes of kinesins that move at different speeds and thus compete during transport. Despite advances in single-molecule characterization and modeling approaches, many questions remain regarding the effect of intermotor tension on motor attachment/reattachment rates during cooperative multimotor transport. To understand the motor dynamics underlying multimotor transport, we analyzed the complexes of kinesin-1 and kinesin-3 motors attached through protein scaffolds moving on immobilized microtubules in vitro. To interpret the observed behavior, simulations were carried out using a model that incorporated motor stepping, attachment/detachment rates, and intermotor force generation. In single-molecule experiments, isolated kinesin-3 motors moved twofold faster and had threefold higher landing rates than kinesin-1. When the positively charged loop 12 of kinesin-3 was swapped with that of kinesin-1, the landing rates reversed, indicating that this “K-loop” is a key determinant of the motor reattachment rate. In contrast, swapping loop 12 had negligible effects on motor velocities. Two-motor complexes containing one kinesin-1 and one kinesin-3 moved at different speeds depending on the identity of their loop 12, indicating the importance of the motor reattachment rate on the cotransport speed. Simulations of these loop-swapped motors using experimentally derived motor parameters were able to reproduce the experimental results and identify best fit parameters for the motor reattachment rates for this geometry. Simulation results also supported previous work, suggesting that kinesin-3 microtubule detachment is very sensitive to load. Overall, the simulations demonstrate that the transport behavior of cargo carried by pairs of kinesin-1 and -3 motors are determined by three properties that differ between these two families: the unloaded velocity, the load dependence of detachment, and the motor reattachment rate. 相似文献
5.
M. Carolina Tuma Andrew Zill Nathalie Le Bot Isabelle Vernos Vladimir Gelfand 《The Journal of cell biology》1998,143(6):1547-1558
Melanophores move pigment organelles (melanosomes) from the cell center to the periphery and vice-versa. These bidirectional movements require cytoplasmic microtubules and microfilaments and depend on the function of microtubule motors and a myosin. Earlier we found that melanosomes purified from Xenopus melanophores contain the plus end microtubule motor kinesin II, indicating that it may be involved in dispersion (Rogers, S.L., I.S. Tint, P.C. Fanapour, and V.I. Gelfand. 1997. Proc. Natl. Acad. Sci. USA. 94: 3720–3725). Here, we generated a dominant-negative construct encoding green fluorescent protein fused to the stalk-tail region of Xenopus kinesin-like protein 3 (Xklp3), the 95-kD motor subunit of Xenopus kinesin II, and introduced it into melanophores. Overexpression of the fusion protein inhibited pigment dispersion but had no effect on aggregation. To control for the specificity of this effect, we studied the kinesin-dependent movement of lysosomes. Neither dispersion of lysosomes in acidic conditions nor their clustering under alkaline conditions was affected by the mutant Xklp3. Furthermore, microinjection of melanophores with SUK4, a function-blocking kinesin antibody, inhibited dispersion of lysosomes but had no effect on melanosome transport. We conclude that melanosome dispersion is powered by kinesin II and not by conventional kinesin. This paper demonstrates that kinesin II moves membrane-bound organelles. 相似文献
6.
7.
8.
Sept D 《Current biology : CB》2007,17(17):R764-R766
The dynamic assembly of microtubules is a key factor in many of their functions in the cell and recent experiments give new insight into this process at the molecular level. 相似文献
9.
THE REGULATORY ROLE OF DIVALENT CATIONS IN HUMAN GRANULOCYTE CHEMOTAXIS : Evidence for an Association between Calcium Exchanges and Microtubule Assembly 总被引:39,自引:11,他引:39
下载免费PDF全文

Optimal human granulocyte chemotaxis has been shown to require both calcium and magnesium. Exposure of granulocytes to three different chemotactic factors (C5a, kallikrein, and dialyzable transfer factor) yielded a rapid calcium release, depressed calcium uptake, and was associated with a shift of calcium out of the cytoplasm and into a granule fraction. Colchicine, sodium azide, and cytochalasin B, in concentrations that inhibited chemotaxis, also inhibited calcium release while low concentrations of cytochalasin B, which enhanced chemotaxis, also enhanced calcium release. Microtubule assembly was visualized both in cells suspended in C5a without a chemotactic gradient and in cells actively migrating through a Micropore filter. The data suggest microtubule assembly is regulated, at least, in part, by the level of cytoplasmic calcium. It is proposed that asymmetric assembly of microtubules may be instrumental in imparting the net vector of motion during chemotaxis. 相似文献
10.
Ervin Y. Eaker James M. Angelastro Daniel L. Purich Charles A. Sninsky 《Journal of neurochemistry》1991,56(6):2087-2093
Previous studies suggest that brain microtubule protein exposed to high glucose levels or isolated from diabetic rats can become glucosylated and that this impairs GTP-induced microtubule polymerization. We set out to extend that investigation to define the mechanistic basis for inhibition of microtubule assembly during diabetes or on incubation at high glucose levels. Rat and bovine brain microtubule protein was purified by cycles of polymerization/depolymerization. When microtubules were incubated for 1 h in either buffer or buffer containing glucose (up to 165 mM), there was no difference in polymerization, a finding contrary to the earlier study. Other rats were injected with vehicle or streptozotocin (90 mg/kg) to induce diabetes as evidenced by serum glucose in excess of 300 mg%, and at 4 weeks, brain microtubule protein was isolated by the polymerization cycling method. Again, there was no difference in the amount or purity of isolated microtubule protein between control or diabetic rats. We also observed no increase in microtubule glucosylation, and GTP-induced polymerization in vitro was indistinguishable for protein derived from brains of normal rats and rats with diabetes as measured by turbidity or electron microscopy. Our results suggest that in vitro incubation with glucose or in vivo elevation of glucose during diabetes fails to impair microtubule polymerization, pointing to other mechanisms for the neuropathy associated with diabetes. 相似文献
11.
12.
13.
Anil Amaratunga †Susan E. Leeman ‡Kenneth S. Kosik § Richard E. Fine 《Journal of neurochemistry》1995,64(5):2374-2376
Abstract: We have previously demonstrated that the in vivo vitreal injection of an antisense oligonucleotide directed to the kinesin heavy chain inhibits retinal kinesin synthesis by 82% and concomitantly inhibits rapid transport of total protein into the optic nerve by 70%. These results establish a major role for kinesin in rapid axonal transport in vivo. Recently, the cloning of a family of kinesin-like molecules from the mammalian brain has been reported, and some of these proteins are also expressed in neurons. To assign a specific function to the kinesin heavy chain we inhibited the kinesin synthesis with an antisense kinesin oligonucleotide and assessed the axonal transport into the optic nerve of representative proteins from each of three vesicle classes that contain rapidly transported proteins. Marker proteins used were substance P for peptide-containing synaptic vesicles, the amyloid precursor protein for plasma membrane precursor vesicles, and several integral synaptic vesicle proteins. Our results indicate that the major anterograde motor protein for all three vesicle classes utilizes kinesin heavy chain, although we discuss alternative explanations. 相似文献
14.
Although the dynamic self-assembly behavior of microtubule ends has been well characterized at the spatial resolution of light microscopy (~200 nm), the single-molecule events that lead to these dynamics are less clear. Recently, a number of in vitro studies used novel approaches combining laser tweezers, microfabricated chambers, and high-resolution tracking of microtubule-bound beads to characterize mechanochemical aspects of MT dynamics at nanometer scale resolution. In addition, computational modeling is providing a framework for integrating these experimental results into physically plausible models of molecular scale microtubule dynamics. These nanoscale studies are providing new fundamental insights about microtubule assembly, and will be important for advancing our understanding of how microtubule dynamic instability is regulated in vivo via microtubule-associated proteins, therapeutic agents, and mechanical forces. 相似文献
15.
A diverse group of proteins known as +TIPs specifically recognize the growing plus ends of microtubules in cells. Two recent papers on one such protein, CLIP-170, provide new insights into the cellular functions of +TIPs as well as the mechanism by which they track microtubule ends. 相似文献
16.
Kinesin and cytoplasmic dynein are microtubule-based motor proteins that actively transport material throughout the cell. Microtubules can intersect at a variety of angles both near the nucleus and at the cell periphery, and the behavior of molecular motors at these intersections has implications for long-range transport efficiency and accuracy. To test motor function at microtubule intersections, crossovers were arranged in vitro using flow to orient successive layers of filaments. Single kinesin and cytoplasmic dynein-dynactin molecules fused with green-fluorescent protein, and artificial bead cargos decorated with multiple motors, were observed while they encountered intersections. Single kinesins tend to cross intersecting microtubules, whereas single dynein-dynactins have a more varied response. For bead cargos, kinesin motion is independent of motor number. Dynein beads with high motor numbers pause, but their actions become more varied as the motor number decreases. These results suggest that regulating the number of active dynein molecules could change a motile cargo into one that is anchored at an intersection, consistent with dynein's proposed transport and tethering functions in the cell. 相似文献
17.
Souvik Chakraborty Perunthottathu K. Umasankar G. Michael Preston Puneet Khandelwal Gerard Apodaca Simon C. Watkins Linton M. Traub 《The Journal of biological chemistry》2014,289(25):17497-17514
The AP-2 clathrin adaptor complex oversees endocytic cargo selection in two parallel but independent manners. First, by physically engaging peptide-based endocytic sorting signals, a subset of clathrin-dependent transmembrane cargo is directly collected into assembling buds. Synchronously, by interacting with an assortment of clathrin-associated sorting proteins (CLASPs) that independently select different integral membrane cargo for inclusion within the incipient bud, AP-2 handles additional cargo capture indirectly. The distal platform subdomain of the AP-2 β2 subunit appendage is a privileged CLASP-binding surface that recognizes a cognate, short α-helical interaction motif. This signal, found in the CLASPs β-arrestin and the autosomal recessive hypercholesterolemia (ARH) protein, docks into an elongated groove on the β2 appendage platform. Tyr-888 is a critical constituent of this spatially confined β2 appendage contact interface and is phosphorylated in numerous high-throughput proteomic studies. We find that a phosphomimetic Y888E substitution does not interfere with incorporation of expressed β2-YFP subunit into AP-2 or alter AP-2 deposition at surface clathrin-coated structures. The Y888E mutation does not affect interactions involving the sandwich subdomain of the β2 appendage, indicating that the mutated appendage is folded and operational. However, the Y888E, but not Y888F, switch selectively uncouples interactions with ARH and β-arrestin. Phyogenetic conservation of Tyr-888 suggests that this residue can reversibly control occupancy of the β2 platform-binding site and, hence, cargo sorting. 相似文献
18.
The Orchids of Krakatau: Evidence for a Mode of Transport 总被引:1,自引:0,他引:1
Orchid embryos occupy only a very small percentage of the spaceinside their testae. The remaining (i.e. majority of) spaceis occupied by air. As a result, orchid seeds can float in theair for long periods. This characteristic enabled them to reachKrakatau and be among the first plants to grow on it after theexplosion in 1883. air space, birds, dispersal, embryos, floatation in air, Indonesia, Java, orchids, seeds, Sunda Straits, Sumatra, Krakatau 相似文献
19.
Background
Temporal visual processing is strongly deteriorated in patients with schizophrenia. For example, the interval required between a visual stimulus and a subsequent mask has to be much longer in schizophrenic patients than in healthy controls. We investigated whether this deficit in temporal resolution is accompanied by prolonged visual persistence and/or deficient temporal precision (temporal asynchrony perception).Methodology/Principal Findings
We investigated visual persistence in three experiments. In the first, measuring temporal processing by so-called backward masking, prolonged visible persistence is supposed to decrease performance. In the second experiment, requiring temporal integration, prolonged persistence is supposed to improve performance. In the third experiment, we investigated asynchrony detection, as another measure of temporal resolution. Eighteen patients with schizophrenia and 15 healthy controls participated. Asynchrony detection was intact in the patients. However, patients'' performance was inferior compared to healthy controls in the first two experiments. Hence, temporal processing in schizophrenic patients is indeed significantly impaired but this impairment is not caused by prolonged temporal integration.Conclusions/Significance
Our results argue against a generally prolonged visual persistence in patients with schizophrenia. Together with the preserved ability of patients, to detect temporal asynchronies in permanently presented stimuli, the results indicate a more specific deficit in temporal processing of schizophrenic patients. 相似文献20.
Pedersen PL 《Journal of bioenergetics and biomembranes》2005,37(6):349-357
Today we know there are four different types of ATPases that operate within biological membranes with the purpose of moving
many different types of ions or molecules across these membranes. Some of these ions or molecules are transported into cells,
some out of cells, and some in or out of organelles within cells. These ATPases span the biological world from bacteria to
eukaryotic cells and have become most simply and commonly known as “transport ATPases.” The price that each cell type pays
for transport work is counted in molecules of hydrolyzed ATP, a metabolic currency that is itself regenerated by a transport
ATPase working in reverse, i.e., the ATP synthase. Four major classes of transport ATPases, the P, V, F, and ABC types are
now known. In addition to being involved in many different types of biological/physiological processes, mutations in these
proteins also account for a large number of diseases. The purpose of this introductory article to a mini-review series on
transport ATPases is to provide the reader with a very brief and focused look at this important area of research that has
an interesting history and bears significance to cell physiology, biochemistry, immunology, nanotechnology, and medicine,
including drug discovery. The latter involves potential applications to a whole host of diseases ranging from cancer to those
that affect bones (osteoporosis), ears (hearing), eyes (macromolecular degeneration), the heart (hypercholesterolemia/cardiac
arrest,), immune system (immune deficiency disease), kidney (nephrotoxicity), lungs (cystic fibrosis), pancreas (diabetes
and cystic fibrosis), skin (Darier disease), and stomach (ulcers). 相似文献