首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
β-Arrestin is a scaffold protein that regulates signal transduction by seven transmembrane-spanning receptors. Among other functions it is also critically required for Wnt/β-catenin signal transduction. In the present study we provide for the first time a mechanistic basis for the β-arrestin function in Wnt/β-catenin signaling. We demonstrate that β-arrestin is required for efficient Wnt3a-induced Lrp6 phosphorylation, a key event in downstream signaling. β-Arrestin regulates Lrp6 phosphorylation via a novel interaction with phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2)-binding protein Amer1/WTX/Fam123b. Amer1 has been shown very recently to bridge Wnt-induced and Dishevelled-associated PtdIns(4,5)P2 production to the phosphorylation of Lrp6. Using fluorescence recovery after photobleaching we show here that β-arrestin is required for the Wnt3a-induced Amer1 membrane dynamics and downstream signaling. Finally, we show that β-arrestin interacts with PtdIns kinases PI4KIIα and PIP5KIβ. Importantly, cells lacking β-arrestin showed higher steady-state levels of the relevant PtdInsP and were unable to increase levels of these PtdInsP in response to Wnt3a. In summary, our data show that β-arrestins regulate Wnt3a-induced Lrp6 phosphorylation by the regulation of the membrane dynamics of Amer1. We propose that β-arrestins via their scaffolding function facilitate Amer1 interaction with PtdIns(4,5)P2, which is produced locally upon Wnt3a stimulation by β-arrestin- and Dishevelled-associated kinases.  相似文献   

3.
Supplemental oxygen inhalation is frequently used to treat severe respiratory failure; however, prolonged exposure to hyperoxia causes hyperoxic acute lung injury (HALI), which induces acute respiratory distress syndrome and leads to high mortality rates. Recent investigations suggest the possible role of NLRP3 inflammasomes, which regulate IL-1β production and lead to inflammatory responses, in the pathophysiology of HALI; however, their role is not fully understood. In this study, we investigated the role of NLRP3 inflammasomes in mice with HALI. Under hyperoxic conditions, NLRP3−/− mice died at a higher rate compared with wild-type and IL-1β−/− mice, and there was no difference in IL-1β production in their lungs. Under hyperoxic conditions, the lungs of NLRP3−/− mice exhibited reduced inflammatory responses, such as inflammatory cell infiltration and cytokine expression, as well as increased and decreased expression of MMP-9 and Bcl-2, respectively. NLRP3−/− mice exhibited diminished expression and activation of Stat3, which regulates MMP-9 and Bcl-2, in addition to increased numbers of apoptotic alveolar epithelial cells. In vitro experiments revealed that alveolar macrophages and neutrophils promoted Stat3 activation in alveolar epithelial cells. Furthermore, NLRP3 deficiency impaired the migration of neutrophils and chemokine expression by macrophages. These findings demonstrate that NLRP3 regulates Stat3 signaling in alveolar epithelial cells by affecting macrophage and neutrophil function independent of IL-1β production and contributes to the pathophysiology of HALI.  相似文献   

4.
Chromatoid bodies (CBs) are spermiogenesis-specific organelles of largely unknown function. CBs harbor various RNA species, RNA-associated proteins and proteins of the tudor domain family like TDRD6, which is required for a proper CB architecture. Proteome analysis of purified CBs revealed components of the nonsense-mediated mRNA decay (NMD) machinery including UPF1. TDRD6 is essential for UPF1 localization to CBs, for UPF1-UPF2 and UPF1-MVH interactions. Upon removal of TDRD6, the association of several mRNAs with UPF1 and UPF2 is disturbed, and the long 3’ UTR-stimulated but not the downstream exon-exon junction triggered pathway of NMD is impaired. Reduced association of the long 3’ UTR mRNAs with UPF1 and UPF2 correlates with increased stability and enhanced translational activity. Thus, we identified TDRD6 within CBs as required for mRNA degradation, specifically the extended 3’ UTR-triggered NMD pathway, and provide evidence for the requirement of NMD in spermiogenesis. This function depends on TDRD6-promoted assembly of mRNA and decay enzymes in CBs.  相似文献   

5.
1. Treatment of chick embryos with two lathyrogens lowered lysyl oxidase and increased collagen extractability. 2. Subsequent treatment with pyridoxal restored both parameters towards normal, whereas PQQ treatment was less effective. 3. These results suggest the requirement of a pyridoxal derivative for the formation of the enzyme, acting either as cofactor or because its formation requires some pyridoxal-dependent enzyme. The cochromatography of the enzyme with [3H]pyridoxine-derived radioactivity supports the cofactor role. 4. The conclusions of other authors that lysyl oxidase contains PQQ relates to enzymes from other species or to amine oxidases not characterised as lysyl oxidase.  相似文献   

6.
7.
8.
Enterohemorrhagic Escherichia coli and other attaching/effacing bacterial pathogens cause diarrhea in humans. These pathogens use a type III secretion system to inject virulence proteins (effectors) into host cells, some of which inhibit the innate immune system. The enterohemorrhagic E. coli NleH1 effector prevents the nuclear translocation of RPS3 (ribosomal protein S3) to inhibit its participation as a nuclear “specifier” of NF-κB binding to target gene promoters. NleH1 binds to RPS3 and inhibits its phosphorylation on Ser-209 by IκB kinase-β (IKKβ). However, the precise mechanism of this inhibition is unclear. NleH1 possesses a Ser/Thr protein kinase activity that is essential both for its ability to inhibit the RPS3/NF-κB pathway and for full virulence of the attaching/effacing mouse pathogen Citrobacter rodentium. However, neither RPS3 nor IKKβ is a substrate of NleH1 kinase activity. We therefore screened ∼9,000 human proteins to identify NleH1 kinase substrates and identified CRKL (v-Crk sarcoma virus CT10 oncogene-like protein), a substrate of the BCR/ABL kinase. Knockdown of CRKL abundance prevented NleH1 from inhibiting RPS3 nuclear translocation and NF-κB activity. CRKL residues Tyr-198 and Tyr-207 were required for interaction with NleH1. Lys-159, the kinase-active site of NleH1, was necessary for its interaction with CRKL. We also identified CRKL as an IKKβ interaction partner, mediated by CRKL Tyr-198. We propose that the CRKL interaction with IKKβ recruits NleH1 to the IKKβ complex, where NleH1 then inhibits the RPS3/NF-κB pathway.  相似文献   

9.
10.

Background

Early secretory antigenic target-6 (ESAT-6) and culture filtrate protein-10 (CFP-10) are co-secreted proteins of Mycobacterium tuberculosis complex mycobacteria (includes M. bovis, the zoonotic agent of bovine tuberculosis) involved in phagolysosome escape of the bacillus and, potentially, in the efficient induction of granulomas. Upon tuberculosis infection, multi-nucleate giant cells are elicited, likely as a response aimed at containing mycobacteria. In tissue culture models, signal regulatory protein (SIRP)α (also referred to as macrophage fusion receptor or CD172a) is essential for multi-nucleate giant cell formation.

Methodology/Principal Findings

In the present study, ESAT-6/CFP-10 complex and SIRPα interactions were evaluated with samples obtained from calves experimentally infected with M. bovis. Peripheral blood CD172a+ (SIRPα-expressing) cells from M. bovis-infected calves proliferated upon in vitro stimulation with ESAT-6/CFP-10 (either as a fusion protein or a peptide cocktail), but not with cells from animals receiving M. bovis strains lacking ESAT-6/CFP-10 (i.e, M. bovis BCG or M. bovis ΔRD1). Sorted CD172a+ cells from these cultures had a dendritic cell/macrophage morphology, bound fluorescently-tagged rESAT-6:CFP-10, bound and phagocytosed live M. bovis BCG, and co-expressed CD11c, DEC-205, CD44, MHC II, CD80/86 (a subset also co-expressed CD11b or CD8α). Intradermal administration of rESAT-6:CFP-10 into tuberculous calves elicited a delayed type hypersensitive response consisting of CD11c+, CD172a+, and CD3+ cells, including CD172a-expressing multi-nucleated giant cells.

Conclusions/Significance

These findings demonstrate the ability of ESAT-6/CFP-10 to specifically expand CD172a+ cells, bind to CD172a+ cells, and induce multi-nucleated giant cells expressing CD172a.  相似文献   

11.
12.
13.
The catalytic subunit of the DNA-dependent protein kinase (DNA-PKcs) plays a major role in the repair of DNA double-strand breaks (DSBs) by nonhomologous end joining (NHEJ). We have previously shown that DNA-PKcs is autophosphorylated in response to ionizing radiation (IR) and that dephosphorylation by a protein phosphatase 2A (PP2A)-like protein phosphatase (PP2A, PP4, or PP6) regulates the protein kinase activity of DNA-PKcs. Here we report that DNA-PKcs interacts with the catalytic subunits of PP6 (PP6c) and PP2A (PP2Ac), as well as with the PP6 regulatory subunits PP6R1, PP6R2, and PP6R3. Consistent with a role in the DNA damage response, silencing of PP6c by small interfering RNA (siRNA) induced sensitivity to IR and delayed release from the G2/M checkpoint. Furthermore, siRNA silencing of either PP6c or PP6R1 led to sustained phosphorylation of histone H2AX on serine 139 (γ-H2AX) after IR. In contrast, silencing of PP6c did not affect the autophosphorylation of DNA-PKcs on serine 2056 or that of the ataxia-telangiectasia mutated (ATM) protein on serine 1981. We propose that a novel function of DNA-PKcs is to recruit PP6 to sites of DNA damage and that PP6 contributes to the dephosphorylation of γ-H2AX, the dissolution of IR-induced foci, and release from the G2/M checkpoint in vivo.DNA double-strand breaks (DSBs) are the most cytotoxic form of DNA damage. In human cells there are two main pathways for the repair of DSBs, namely, nonhomologous end joining (NHEJ) and homologous recombination (HR) (reviewed in reference 26). In the initial phase of NHEJ, DSBs are detected by the Ku70/80 heterodimer, which leads to recruitment of the DNA-dependent protein kinase catalytic subunit (DNA-PKcs) and stimulation of its serine/threonine protein kinase activity. Upon autophosphorylation, DNA-PKcs undergoes a conformational change and dissociates from the DSB (25), providing other DNA repair proteins with access to the damage site (reviewed in reference 33). Another physiological substrate of DNA-PK is a histone H2A variant, H2AX. DNA-PKcs and the related protein kinase ATM (ataxia-telangiectasia mutated) both contribute to DNA damage-induced phosphorylation of H2AX on serine 139 to form γ-H2AX (51), which acts as a recruitment platform for MDC1, 53BP1, and other proteins involved in the DNA damage response and cell cycle checkpoint activation (7, 52).While the effects of phosphorylation on the repair process have been well documented, comparatively little is known about the role of serine/threonine phosphoprotein phosphatases (PPPs) in the DNA damage response. Within the PPP family, the catalytic subunits of PP2A (PP2Ac), PP4 (PP4c), and PP6 (PP6c) are most closely related and form a subgroup referred to as the PP2A-like protein phosphatases (reviewed in reference 40). In vitro, the PP2A-like enzymes display similar sensitivities to small-molecule inhibitors such as okadaic acid and microcystin (27, 45, 53). The specificity of PP2Ac, PP4c, and PP6c function in vivo is derived from a group of regulatory subunits that, with the exception of α4/TAP42 and TIP41, are unique to each enzyme (12, 13, 27, 45, 49). PP2Ac associates with a scaffolding A-α or A-β subunit and additional B-type subunits, while four direct binding partners and several other complex partners unique to PP4c have been characterized (12). The Saccharomyces cerevisiae homologue of PP6c, known as Sit4, interacts with three related proteins: the Sit4-associated proteins SAP155, SAP185, and SAP190, each of which contains a conserved domain known as the SAPs domain (32, 50). The SAPs domain is present in three human orthologues designated PP6R1, PP6R2, and PP6R3, which are therefore considered PP6c regulatory subunits, and each has been shown to bind independently to PP6c (48). More recently, three ankyrin repeat-containing proteins (ARS-A, ARS-B, and ARS-C) were identified as PP6R1 binding partners. One of these, ARS-A, has been shown to dock all three SAPs domain proteins (50), suggesting that, like PP2Ac, PP6c forms stable heterotrimers in vivo and that together these subunits define PP6 function.We have previously shown that inhibition of PP2A-like protein phosphatase activity by okadaic acid increases the phosphorylation status of DNA-PKcs and decreases its protein kinase activity (20), thus implicating PP2A-like phosphatases in the regulation of DNA-PK activity in vivo. More recently, both PP4 and PP2A have been shown to play roles in the DNA damage response by dephosphorylating γ-H2AX (14, 15, 28, 42). However, the potential role of PP6 in γ-H2AX dephosphorylation has not been addressed.Here we show that DNA-PKcs interacts with PP2Ac and PP6c, as well as with the PP6c regulatory subunits, PP6R1, PP6R2, and PP6R3. Depletion of PP6c by small interfering RNA (siRNA) induces sensitivity to ionizing radiation (IR) and delayed release from the G2/M checkpoint. Furthermore, siRNA silencing of either PP6c or PP6R1 leads to sustained phosphorylation of γ-H2AX after DNA damage. Together, our studies reveal that a novel and previously unrecognized function of DNA-PKcs may be to recruit PP6 to sites of DNA damage and that PP6 regulates the phosphorylation status of γ-H2AX, the dissolution of IR-induced foci, and release from the G2/M checkpoint.  相似文献   

14.
We analyze the characteristics of protein–protein interfaces using the largest datasets available from the Protein Data Bank (PDB). We start with a comparison of interfaces with protein cores and non-interface surfaces. The results show that interfaces differ from protein cores and non-interface surfaces in residue composition, sequence entropy, and secondary structure. Since interfaces, protein cores, and non-interface surfaces have different solvent accessibilities, it is important to investigate whether the observed differences are due to the differences in solvent accessibility or differences in functionality. We separate out the effect of solvent accessibility by comparing interfaces with a set of residues having the same solvent accessibility as the interfaces. This strategy reveals residue distribution propensities that are not observable by comparing interfaces with protein cores and non-interface surfaces. Our conclusions are that there are larger numbers of hydrophobic residues, particularly aromatic residues, in interfaces, and the interactions apparently favored in interfaces include the opposite charge pairs and hydrophobic pairs. Surprisingly, Pro-Trp pairs are over represented in interfaces, presumably because of favorable geometries. The analysis is repeated using three datasets having different constraints on sequence similarity and structure quality. Consistent results are obtained across these datasets. We have also investigated separately the characteristics of heteromeric interfaces and homomeric interfaces.  相似文献   

15.
Protein-protein interactions are important in providing compartmentalization and specificity in cellular signal transduction. Many studies have hallmarked the well designed compartmentalization of the cAMP-dependent protein kinase (PKA) through its anchoring proteins. Much less data are available on the compartmentalization of its closest homolog, cGMP-dependent protein kinase (PKG), via its own PKG anchoring proteins (GKAPs). For the enrichment, screening, and discovery of (novel) PKA anchoring proteins, a plethora of methodologies is available, including our previously described chemical proteomics approach based on immobilized cAMP or cGMP. Although this method was demonstrated to be effective, each immobilized cyclic nucleotide did not discriminate in the enrichment for either PKA or PKG and their secondary interactors. Hence, with PKG signaling components being less abundant in most tissues, it turned out to be challenging to enrich and identify GKAPs. Here we extend this cAMP-based chemical proteomics approach using competitive concentrations of free cyclic nucleotides to isolate each kinase and its secondary interactors. Using this approach, we identified Huntingtin-associated protein 1 (HAP1) as a putative novel GKAP. Through sequence alignment with known GKAPs and secondary structure prediction analysis, we defined a small sequence domain mediating the interaction with PKG Iβ but not PKG Iα. In vitro binding studies and site-directed mutagenesis further confirmed the specificity and affinity of HAP1 binding to the PKG Iβ N terminus. These data fully support that HAP1 is a GKAP, anchoring specifically to the cGMP-dependent protein kinase isoform Iβ, and provide further evidence that also PKG spatiotemporal signaling is largely controlled by anchoring proteins.  相似文献   

16.
Identifying interaction sites in proteins provides important clues to the function of a protein and is becoming increasingly relevant in topics such as systems biology and drug discovery. Although there are numerous papers on the prediction of interaction sites using information derived from structure, there are only a few case reports on the prediction of interaction residues based solely on protein sequence. Here, a sliding window approach is combined with the Random Forests method to predict protein interaction sites using (i) a combination of sequence- and structure-derived parameters and (ii) sequence information alone. For sequence-based prediction we achieved a precision of 84% with a 26% recall and an F-measure of 40%. When combined with structural information, the prediction performance increases to a precision of 76% and a recall of 38% with an F-measure of 51%. We also present an attempt to rationalize the sliding window size and demonstrate that a nine-residue window is the most suitable for predictor construction. Finally, we demonstrate the applicability of our prediction methods by modeling the Ras–Raf complex using predicted interaction sites as target binding interfaces. Our results suggest that it is possible to predict protein interaction sites with quite a high accuracy using only sequence information.  相似文献   

17.

Background

Toll-like receptors (TLRs) play a pivotal role in the defense against invading pathogens by detecting pathogen-associated molecular patterns (PAMPs). TLR4 recognizes lipopolysaccharides (LPS) in the cell walls of Gram-negative bacteria, resulting in the induction and secretion of proinflammatory cytokines such as TNF-α and IL-6. The WW domain containing E3 ubiquitin protein ligase 1 (WWP1) regulates a variety of cellular biological processes. Here, we investigated whether WWP1 acts as an E3 ubiquitin ligase in TLR-mediated inflammation.

Methodology/Results

Knocking down WWP1 enhanced the TNF-α and IL-6 production induced by LPS, and over-expression of WWP1 inhibited the TNF-α and IL-6 production induced by LPS, but not by TNF-α. WWP1 also inhibited the IκB-α, NF-κB, and MAPK activation stimulated by LPS. Additionally, WWP1 could degrade TRAF6, but not IRAK1, in the proteasome pathway, and knocking down WWP1 reduced the LPS-induced K48-linked, but not K63-linked, polyubiquitination of endogenous TRAF6.

Conclusions/Significance

We identified WWP1 as an important negative regulator of TLR4-mediated TNF-α and IL-6 production. We also showed that WWP1 functions as an E3 ligase when cells are stimulated with LPS by binding to TRAF6 and promoting K48-linked polyubiquitination. This results in the proteasomal degradation of TRAF6.  相似文献   

18.
《Journal of molecular biology》2019,431(17):3157-3178
A long-standing goal in biology is the complete annotation of function and structure on all protein–protein interactions, a large fraction of which is mediated by intrinsically disordered protein regions (IDRs). However, knowledge derived from experimental structures of such protein complexes is disproportionately small due, in part, to challenges in studying interactions of IDRs. Here, we introduce IDRBind, a computational method that by combining gradient boosted trees and conditional random field models predicts binding sites of IDRs with performance approaching state-of-the-art globular interface predictions, making it suitable for proteome-wide applications. Although designed and trained with a focus on molecular recognition features, which are long interaction-mediating-elements in IDRs, IDRBind also predicts the binding sites of short peptides more accurately than existing specialized predictors. Consistent with IDRBind's specificity, a comparison of protein interface categories uncovered uniform trends in multiple physicochemical properties, positioning molecular recognition feature interfaces between peptide and globular interfaces.  相似文献   

19.
Multiple Ca2+ release and entry mechanisms and potential cytoskeletal targets have been implicated in vascular endothelial barrier dysfunction; however, the immediate downstream effectors of Ca2+ signals in the regulation of endothelial permeability still remain unclear. In the present study, we evaluated the contribution of multifunctional Ca2+/calmodulin-dependent protein kinase II (CaMKII) as a mediator of thrombin-stimulated increases in human umbilical vein endothelial cell (HUVEC) monolayer permeability. For the first time, we identified the CaMKIIδ6 isoform as the predominant CaMKII isoform expressed in endothelium. As little as 2.5 nm thrombin maximally increased CaMKIIδ6 activation assessed by Thr287 autophosphorylation. Electroporation of siRNA targeting endogenous CaMKIIδ (siCaMKIIδ) suppressed expression of the kinase by >80% and significantly inhibited 2.5 nm thrombin-induced increases in monolayer permeability assessed by electrical cell-substrate impedance sensing (ECIS). siCaMKIIδ inhibited 2.5 nm thrombin-induced activation of RhoA, but had no effect on thrombin-induced ERK1/2 activation. Although Rho kinase inhibition strongly suppressed thrombin-induced HUVEC hyperpermeability, inhibiting ERK1/2 activation had no effect. In contrast to previous reports, these results indicate that thrombin-induced ERK1/2 activation in endothelial cells is not mediated by CaMKII and is not involved in endothelial barrier hyperpermeability. Instead, CaMKIIδ6 mediates thrombin-induced HUVEC barrier dysfunction through RhoA/Rho kinase as downstream intermediates. Moreover, the relative contribution of the CaMKIIδ6/RhoA pathway(s) diminished with increasing thrombin stimulation, indicating recruitment of alternative signaling pathways mediating endothelial barrier dysfunction, dependent upon thrombin concentration.  相似文献   

20.
By proteomic analysis, we found that 14-3-3ζ was one of the proteins co-immunoprecipitated with human κ-opioid receptor (hKOPR) from extracts of solubilized Neuro2A cells stably expressing FLAG-hKOPR (N2A-FLAG-hKOPR cells). 14-3-3 proteins are a family of conserved regulatory molecules in eukaryotic cells, where they participate in signal transduction, metabolism, and membrane protein transport. 14-3-3ζ co-localized with the hKOPR in N2A cells. The hKOPR C-tail interacted with 14-3-3ζ in rat brain extracts and bound directly to purified 14-3-3ζ as demonstrated by pulldown techniques. 14-3-3ζ siRNA decreased expression of the hKOPR in N2A-FLAG-hKOPR cells and cultured primary cortical neurons of E19 rats by ∼25% as determined by immunoblotting, ligand binding, and flow cytometry. The effect of 14-3-3ζ siRNA was reversed by overexpression of 14-3-3ζ. Expression of the 14-3-3 scavenger protein pGpLI-R18 also decreased hKOPR expression. 14-3-3ζ siRNA did not change expressions of the hDOPR and rMOPR in N2A cells. Pulse-chase study showed that 14-3-3ζ siRNA decreased the amount of mature hKOPR but did not change the rate of maturation or stability of hKOPR protein. Mutations of R354A/S358A in the putative 14-3-3 interaction motif 354RQSTS358 in the hKOPR C-tail reduced interaction of the hKOPR with 14-3-3ζ and abolished the effect of 14-3-3ζ knockdown on hKOPR expression. Mutation of the endoplasmic reticulum retention motif 359RVR adjacent to the 14-3-3 interaction motif in the hKOPR C-tail decreased interaction of coatomer protein I (COPI) with the hKOPR and abolished 14-3-3ζ-mediated regulation of hKOPR expression. 14-3-3ζ knockdown increased association of COPI with the hKOPR. These results suggest that 14-3-3ζ promotes expression of the hKOPR by inhibiting COPI and RVR motif-mediated endoplasmic reticulum localization machinery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号