首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The physiological and metabolic processes of host plants are manipulated and remodeled by phytopathogenic fungi during infection, revealed obvious signs of biotrophy of the hemibiotrophic pathogen. As we known that effector proteins play key roles in interaction of hemibiotrophic fungi and their host plants. BAS4 (biotrophy-associated secreted protein 4) is an EIHM (extrainvasive hyphal membrane) matrix protein that was highly expressed in infectious hyphae. In order to study whether BAS4 is involved in the transition of rice blast fungus from biotrophic to necrotrophic phase, The susceptible rice cultivar Lijiangxintuanheigu (LTH) that were pre-treated with prokaryotic expression product of BAS4 and then followed with inoculation of the blast strain, more serious blast disease symptom, more biomass such as sporulation and fungal relative growth, and lower expression level of pathogenicity-related genes appeared in lesion of the rice leaves than those of the PBS-pretreated-leaves followed with inoculation of the same blast strain, which demonstrating that BAS4 invitro changed rice defense system to facilitate infection of rice blast strain. And the susceptible rice cultivar (LTH) were inoculated withBAS4-overexpressed blast strain, we also found more serious blast disease symptom and more biomass also appeared in lesion of leaves inoculated with BAS4-overexpressed strain than those of leaves inoculated with the wild-type strain, and expression level of pathogenicity-related genes appeared lower in biotrophic phase and higher in necrotrophic phase of infection, indicating BAS4 maybe in vivo regulate defense system of rice to facilitate transition of biotrophic to necrotrophic phase. Our data demonstrates that BAS4 in vitro and in vivo participates in transition from the biotrophic to the necrotrophic phase of Magnaporthe oryzae.  相似文献   

2.
【目的】鉴定湖南省桃江病圃稻瘟病菌无毒基因型,为合理搭配种植湖南省水稻抗瘟品种和抗病育种提供依据。【方法】在湖南桃江病圃采集水稻品种"丽江新团黑谷"(LTH)稻瘟菌病样,用单孢分离法分离稻瘟病菌单孢并纯化获得单孢菌株,用针刺离体法将菌株接种到以"LTH"为轮回亲本培育而成的24个含单抗瘟基因的水稻5叶期第5叶片上,对供试菌株进行无毒基因鉴定,并应用联合致病性系数和联合抗病性系数分析抗瘟基因组合间的互作。【结果】供试92个稻瘟病单孢菌株含有全部的24个无毒基因,对24个已知含单抗瘟基因的水稻材料表现出不同程度的毒力水平,含水稻抗瘟基因Pi-20对供试菌株抗菌频率最高,达54.35%;通过联合致病性系数和联合抗病性系数分析抗瘟基因组合间的互作,结果表明最佳搭配组合为Pi-20×Pi-k~s(RAC=0.28,PAC=0.23)。【结论】湖南省桃江病圃稻瘟病菌致病力较强,24个抗瘟基因多已感病化,含抗性基因Pi-20与Pi-k、Pi-k~s、Pi-3组合的水稻品种目前可在湖南省推广利用,但需研究引进新的抗瘟基因。  相似文献   

3.
Park JY  Jin J  Lee YW  Kang S  Lee YH 《Plant physiology》2009,149(1):474-486
Magnaporthe oryzae is a hemibiotrophic fungal pathogen that causes rice (Oryza sativa) blast. Although M. oryzae as a whole infects a wide variety of monocotyledonous hosts, no dicotyledonous plant has been reported as a host. We found that two rice pathogenic strains of M. oryzae, KJ201 and 70-15, interacted differentially with 16 ecotypes of Arabidopsis (Arabidopsis thaliana). Strain KJ201 infected all ecotypes with varying degrees of virulence, whereas strain 70-15 caused no symptoms in certain ecotypes. In highly susceptible ecotypes, small chlorotic lesions appeared on infected leaves within 3 d after inoculation and subsequently expanded across the affected leaves. The fungus produced spores in susceptible ecotypes but not in resistant ecotypes. Fungal cultures recovered from necrotic lesions caused the same symptoms in healthy plants, satisfying Koch's postulates. Histochemical analyses showed that infection by the fungus caused an accumulation of reactive oxygen species and eventual cell death. Similar to the infection process in rice, the fungus differentiated to form appressorium and directly penetrated the leaf surface in Arabidopsis. However, the pathogenic mechanism in Arabidopsis appears distinct from that in rice; three fungal genes essential for pathogenicity in rice played only limited roles in causing disease symptoms in Arabidopsis, and the fungus seems to colonize Arabidopsis as a necrotroph through the secretion of phytotoxic compounds, including 9,12-octadecadienoic acid. Expression of PR-1 and PDF1.2 was induced in response to infection by the fungus, suggesting the activation of salicylic acid- and jasmonic acid/ethylene-dependent signaling pathways. However, the roles of these signaling pathways in defense against M. oryzae remain unclear. In combination with the wealth of genetic and genomic resources available for M. oryzae, this newly established pathosystem allows comparison of the molecular and cellular mechanisms underlying pathogenesis and host defense in two well-studied model plants.  相似文献   

4.
5.
Supernumerary mini-chromosomes–a unique type of genomic structural variation–have been implicated in the emergence of virulence traits in plant pathogenic fungi. However, the mechanisms that facilitate the emergence and maintenance of mini-chromosomes across fungi remain poorly understood. In the blast fungus Magnaporthe oryzae (Syn. Pyricularia oryzae), mini-chromosomes have been first described in the early 1990s but, until very recently, have been overlooked in genomic studies. Here we investigated structural variation in four isolates of the blast fungus M. oryzae from different grass hosts and analyzed the sequences of mini-chromosomes in the rice, foxtail millet and goosegrass isolates. The mini-chromosomes of these isolates turned out to be highly diverse with distinct sequence composition. They are enriched in repetitive elements and have lower gene density than core-chromosomes. We identified several virulence-related genes in the mini-chromosome of the rice isolate, including the virulence-related polyketide synthase Ace1 and two variants of the effector gene AVR-Pik. Macrosynteny analyses around these loci revealed structural rearrangements, including inter-chromosomal translocations between core- and mini-chromosomes. Our findings provide evidence that mini-chromosomes emerge from structural rearrangements and segmental duplication of core-chromosomes and might contribute to adaptive evolution of the blast fungus.  相似文献   

6.
The interaction between rice, Oryza sativa, and rice blast fungus, Magnaporthe oryzae, is triggered by an interaction between the protein products of the host resistant gene, and the pathogen avirulence gene. This interaction follows the ‘gene-for-gene' concept. The resistant gene has effectively protected rice plants from rice blast infection. However, the resistant genes usually break down several years after the release of the resistant rice varieties because the fungus has evolved to new races. The objective of this study is to investigate the nucleotide sequence variation of the AVR-Pita1 gene that influences the adaption of rice blast fungus to overcome the resistant gene, Pi-ta. Thirty rice blast fungus isolates were collected in 2005 and 2010 from infected rice plants in northern and northeastern Thailand. The nucleotide sequences of AVR-Pita1 were amplified and analyzed. Phylogenetic analysis was conducted using the MEGA 5.0 program. The results showed a high level of nucleotide sequence polymorphisms and the positive genetic selection pressure in Thai rice blast isolates. The details of sequence variation analysis were described in this article. The information from this study can be used for rice blast resistant breeding program in the future.  相似文献   

7.
The rice Oryza sativa selenium-binding protein homologue (OsSBP) gene encodes a homologue of mammalian selenium-binding proteins, and it has been isolated as one of the genes induced by treating a plant with a cerebroside elicitor from rice blast fungus. The possible role of OsSBP in plant defense was evaluated by using a transgenic approach. Plants overexpressing OsSBP showed enhanced resistance to a virulent strain of rice blast fungus as well as to rice bacterial blight. The expression of defense-related genes and the accumulation of phytoalexin after infection by rice blast fungus were accelerated in the OsSBP overexpressors. A higher level of H(2)O(2) accumulation and reduced activity of such scavenging enzymes as ascorbate peroxidase and catalase were seen when the OsSBP-overexpressing plants were treated with the protein phosphatase 1 inhibitor, calyculin A. These results suggest that the upregulation of OsSBP expression conferred enhanced tolerance to different pathogens, possibly by increasing plant sensitivity to endogenous defense responses. Additionally, the OsSBP protein might have a role in modulating the defense mechanism to biotic stress in rice.  相似文献   

8.
This research focuses on galactolipid depletion in blast fungus‐infected rice leaves. Two major galactolipids, monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG), from rice leaves were isolated and purified. The chemical structure of MGDG was identified as 1,2‐dilinolenyl‐3‐O‐β‐d ‐galactopyranosyl‐sn‐glycerol, and that of DGDG as 1,2‐dilinolenyl‐3‐O‐[α‐d ‐galactopyranosyl‐(1→6)‐O‐β‐d ‐galactopyranosyl]‐sn‐glycerol. Both the MGDG and DGDG content in the incompatible blast fungus race‐infected leaves decreased more than those in the compatible blast fungus race‐infected leaves during the infection process. Active oxygen species had the ability to peroxygenate and de‐esterify MGDG or DGDG in vitro, suggesting that active oxygen species play an important role in galactolipid depletion during the process of rice blast fungus invasion. Other possible functions of rice galactolipids during disease resistance are also discussed.  相似文献   

9.
Biotrophic invasive hyphae (IH) of the blast fungus Magnaporthe oryzae secrete effectors to alter host defenses and cellular processes as they successively invade living rice (Oryza sativa) cells. However, few blast effectors have been identified. Indeed, understanding fungal and rice genes contributing to biotrophic invasion has been difficult because so few plant cells have encountered IH at the earliest infection stages. We developed a robust procedure for isolating infected-rice sheath RNAs in which ∼20% of the RNA originated from IH in first-invaded cells. We analyzed these IH RNAs relative to control mycelial RNAs using M. oryzae oligoarrays. With a 10-fold differential expression threshold, we identified known effector PWL2 and 58 candidate effectors. Four of these candidates were confirmed to be fungal biotrophy-associated secreted (BAS) proteins. Fluorescently labeled BAS proteins were secreted into rice cells in distinct patterns in compatible, but not in incompatible, interactions. BAS1 and BAS2 proteins preferentially accumulated in biotrophic interfacial complexes along with known avirulence effectors, BAS3 showed additional localization near cell wall crossing points, and BAS4 uniformly outlined growing IH. Analysis of the same infected-tissue RNAs with rice oligoarrays identified putative effector-induced rice susceptibility genes, which are highly enriched for sensor-transduction components rather than typically identified defense response genes.  相似文献   

10.
Aldehyde dehydrogenase (ALDH) superfamily is a group of enzymes metabolizing endogenous and exogenous aldehydes. Using differential display RT-PCR and cDNA library screening, a full-length aldehyde dehydrogenase cDNA (ALDH7B7) was isolated from rice leaves infected by incompatible race of blast fungus Magnaporthe grisea. The deduced amino acid sequence consists of 509 amino acid residues and shares 74∼81% identity with those of ALDH7Bs from other plants. ALDH7B7 expression was induced by blast fungus infection, ultraviolet, mechanical wound in rice leaves and was not detected in untreated rice organs. This gene has also been found to be inducible after exogenous phytohormones application, such as salicylic acid, methyl ester of jasmonic acid and abscisic acid. The function of ALDH7B7 in the interaction process between blast fungus and rice is discussed.  相似文献   

11.
He M  Kershaw MJ  Soanes DM  Xia Y  Talbot NJ 《PloS one》2012,7(3):e33270

Background

The rice blast fungus Magnaporthe oryzae elaborates a specialized infection structure called an appressorium to breach the rice leaf surface and gain access to plant tissue. Appressorium development is controlled by cell cycle progression, and a single round of nuclear division occurs prior to appressorium formation. Mitosis is always followed by programmed cell death of the spore from which the appressorium develops. Nuclear degeneration in the spore is known to be essential for plant infection, but the precise mechanism by which it occurs is not known.

Methodology/Principal Findings

In yeast, nuclear breakdown requires a specific form of autophagy, known as piecemeal microautophagy of the nucleus (PMN), and we therefore investigated whether this process occurs in the rice blast fungus. Here, we report that M. oryzae possesses two conserved components of a putative PMN pathway, MoVac8 and MoTsc13, but that both are dispensable for nuclear breakdown during plant infection. MoVAC8 encodes a vacuolar membrane protein and MoTSC13 a peri-nuclear and peripheral ER protein.

Conclusions/Significance

We show that MoVAC8 is necessary for caffeine resistance, but dispensable for pathogenicity of M. oryzae, while MoTSC13 is involved in cell wall stress responses and is an important virulence determinant. By functional analysis of ΔMoatg1 and ΔMoatg4 mutants, we demonstrate that infection-associated nuclear degeneration in M. oryzae instead occurs by non-selective macroautophagy, which is necessary for rice blast disease.  相似文献   

12.
Kim ST  Kim SG  Hwang DH  Kang SY  Kim HJ  Lee BH  Lee JJ  Kang KY 《Proteomics》2004,4(11):3569-3578
Proteomic approaches using two-dimensional gel electrophoresis (2-DE) were adopted to identify proteins from rice leaf that are differentially expressed in response to the rice blast fungus, Magnaporthe grisea. Microscopic observation of inoculated leaf with M. grisea revealed that callose deposition and hypersensitive response was clearly visible in incompatible interactions but excessive invading hypha with branches were evident in compatible interactions. Proteins were extracted from leaves 24, 48, and 72 hours after rice blast fungus inoculation. Eight proteins resolved on the 2-DE gels were induced or increased in the inoculated leaf. Matrix-assisted laser desorption/ionization-time of flight analysis of these differentially displayed proteins showed them to be two receptor-like protein kinases (RLK), two beta-1.3-glucanases (Glu1, Glu2), thaumatin-like protein (TLP), peroxidase (POX 22.3), probenazole-inducible protein (PBZ1), and rice pathogenesis-related 10 (OsPR-10). Of these proteins, RLK, TLP, PBZ, and OsPR-10 proteins were induced more in the incompatible interactions than in compatible ones. A phytohormone, jasmonic acid also induced all eight proteins in leaves. To confirm whether the expression profile is equal to the 2-DE data, seven cDNA clones were used as probes in Northern hybridization experiments using total RNA from leaf tissues inoculated with incompatible and compatible rice blast fungal races. The genes encoding POX22.3, Glu1, Glu2, TLP, OsRLK, PBZ1, and OsPR-10 were activated in inoculated leaves, with TLP, OsRLK, PBZ1, and OsPR-10 being expressed earlier and more in incompatible than in compatible interactions. These results suggest that early and high induction of these genes may provide host plants with leading edges to defend themselves. The localization of two rice PR-10 proteins, PBZ1 and OsPR-10, was further examined by immunohistochemical analysis. PBZ1 accumulated highly in mesophyll cells under the attachment site of the appressorium. In contrast, OsPR-10 expression was mainly localized to vascular tissue.  相似文献   

13.
14.
H. Yuan  X. Ming  L. Wang  P. Hu  C. An  Z. Chen 《Plant cell reports》2002,20(10):992-998
. The gene encoding mature trichosanthin, a type I ribosome-inactivating protein isolated from the tuber of Trichosanthes kirilowii Maximowicz, was transformed into calli of rice (Oryza sativa L.) by bombardment. Transgenic rice plants were obtained and confirmed by Southern and Western blot analysis. When transgenic rice plants expressing trichosanthin were inoculated with the spores of Pyricularia oryzae, a major rice fungus blast pathogen, the lesions on leaves were much less severe, and the seedling survival rate and whole plant weight were higher than those of control plants with the gus gene. The presented data demonstrate a novel, potential role of trichosanthin in antifungal protection in transgenic plants.  相似文献   

15.
16.
During plant-pathogen interactions, the plant may mount several types of defense responses to either block the pathogen completely or ameliorate the amount of disease. Such responses include release of reactive oxygen species (ROS) to attack the pathogen, as well as formation of cell wall appositions (CWAs) to physically block pathogen penetration. A successful pathogen will likely have its own ROS detoxification mechanisms to cope with this inhospitable environment. Here, we report one such candidate mechanism in the rice blast fungus, Magnaporthe oryzae, governed by a gene we refer to as MoHYR1. This gene (MGG_07460) encodes a glutathione peroxidase (GSHPx) domain, and its homologue in yeast was reported to specifically detoxify phospholipid peroxides. To characterize this gene in M. oryzae, we generated a deletion mutantΔhyr1 which showed growth inhibition with increased amounts of hydrogen peroxide (H2O2). Moreover, we observed that the fungal mutants had a decreased ability to tolerate ROS generated by a susceptible plant, including ROS found associated with CWAs. Ultimately, this resulted in significantly smaller lesion sizes on both barley and rice. In order to determine how this gene interacts with other (ROS) scavenging-related genes in M. oryzae, we compared expression levels of ten genes in mutant versus wild type with and without H2O2. Our results indicated that the HYR1 gene was important for allowing the fungus to tolerate H2O2 in vitro and in planta and that this ability was directly related to fungal virulence.  相似文献   

17.
Effects of tenuazonic acid (TA) on rice leaf segments and on their interaction with compatible races of the blast fungus (Magnaporthe grisea, former name is Pyricularia oryzae) were studied. TA induced small brown necrotic spots on leaves Application of TA (1 or 5 mM) to leaves in mixtures with M. grisea spores induced a local disease resistance, which reduced the frequency of compatible lesions. TA was not fungitoxic but, in contact with the leaf, increased the capability of leaf diffusates to inhibit germination of M. grisea spores. In the infected leaves, the diffusate fungitoxicity was higher than in the healthy ones. Antioxidant enzymes, superoxide dismutase and catalase, and scavengers of hydroxyl radical, mannitol and formate, strongly inhibited the TA-induced diffusate fungitoxicity. It is suggested that the disease resistance induced by TA is mediated, at least partially, by generation of reactive oxygen species by rice leaves, which inhibit the development of the fungus directly or indirectly.  相似文献   

18.
The 1.6 and 1.8 kbp dsRNAs have been found in the rice blast fungus, Magnaporthe grisea strain MG01. These dsRNA molecules are located in cytoplasm of the fungal cells and maintained stably during vegetative growth. Three crosses between dsRNA free and dsRNA containing strains including a parental cross, sib-mating and back cross were made to follow the inheritance of dsRNAs during sexual reproduction. Approximately 10% of ascospore progenies (11 out of 105) contained dsRNAs from all three crosses. These data indicate that dsRNAs of M. grisea are inherited at a low frequency and not in a Mendelian fashion.  相似文献   

19.
The splicing factor Cwf15 is an essential component of the Prp19-associated component of the spliceosome and regulates intron splicing in several model species, including yeasts and human cells. However, the roles of Cwf15 remain unexplored in plant pathogenic fungi. Here, we report that MoCWF15 in the rice blast fungus Magnaporthe oryzae is non-essential to viability and important to fungal virulence, growth and conidiation. MoCwf15 contains a putative nuclear localization signal (NLS) and is localized into the nucleus. The NLS sequence but not the predicted phosphorylation site or two sumoylation sites was essential for the biological functions of MoCwf15. Importantly, MoCwf15 physically interacted with the Prp19-associated splicing factors MoCwf4, MoSsa1 and MoCyp1, and negatively regulated protein accumulations of MoCyp1 and MoCwf4. Furthermore, with the deletion of MoCWF15, aberrant intron splicing occurred in near 400 genes, 20 of which were important to the fungal development and virulence. Taken together, MoCWF15 regulates fungal growth and infection-related development by modulating the intron splicing efficiency of a subset of genes in the rice blast fungus.  相似文献   

20.
Glutamate homeostasis plays a vital role in central nitrogen metabolism and coordinates several key metabolic functions. However, its function in fungal pathogenesis and development has not been investigated in detail. In this study, we identified and characterized a glutamate synthase gene MoGLT1 in the rice blast fungus Magnaporthe oryzae that was important to glutamate homeostasis. MoGLT1 was constitutively expressed, but showed the highest expression level in appressoria. Deletion of MoGLT1 resulted in a significant reduction in conidiation and virulence. The ΔMoglt1 mutants were defective in appressorial penetration and the differentiation and spread of invasive hyphae in penetrated plant cells. The addition of exogenous glutamic acid partially rescued the defects of the ΔMoglt1 mutants in conidiation and plant infection. Assays for MoAtg8 expression and localization showed that the ΔMoglt1 mutants were defective in autophagy. The ΔMoglt1 mutants were delayed in the mobilization of glycogens and lipid bodies from conidia to developing appressoria. Taken together, our results show that glutamate synthase MoGlt1‐mediated glutamate homeostasis is important for pathogenesis and development in the rice blast fungus, possibly via the regulation of autophagy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号