首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Oxylipin metabolism represents one of many defence mechanisms employed by plants. It begins with the oxygenation of polyunsaturated fatty acids by lipoxygenases to form fatty acid hydroperoxides that are substrates for several enzymes, including specialized cytochrome P450s known as CYP74s. The targeting of a new CYP74, a 9-hydroperoxide lyase (HPL) from almonds, to the endomembrane system and lipid bodies, both as enzyme activity in almond seeds and as GFP fusions transiently expressed in tobacco protoplasts, is described. Such association of a CYP74 with lipid bodies has not been reported previously. Also described are the properties of a 9-HPL gene, the developmental regulation of its expression, the production and characterization of recombinant 9-HPL in Escherichia coli, and the developmental correlation between gene expression, enzyme activity, and the appearance of volatile C9 aldehydes from HPL action.  相似文献   

2.
3.

Background  

Hydroperoxide lyase (HPL) is a key enzyme in plant oxylipin metabolism that catalyses the cleavage of polyunsaturated fatty acid hydroperoxides produced by the action of lipoxygenase (LOX) to volatile aldehydes and oxo acids. The synthesis of these volatile aldehydes is rapidly induced in plant tissues upon mechanical wounding and insect or pathogen attack. Together with their direct defence role towards different pathogens, these compounds are believed to play an important role in signalling within and between plants, and in the molecular cross-talk between plants and other organisms surrounding them. We have recently described the targeting of a seed 9-HPL to microsomes and putative lipid bodies and were interested to compare the localisation patterns of both a 13-HPL and a 9/13-HPL from Medicago truncatula, which were known to be expressed in leaves and roots, respectively.  相似文献   

4.
An enzyme has been isolated from blue-green algae Oscillatoria sp. which utilizes the product, 13-hydroperoxy-9, 11-octadecadienoic acid (13-HPOD), of lipoxygenase for its substrate. This enzyme, termed hydroperoxide lyase, converts the conjugated diene 13-hydroperoxide of linoleic acid to 13-oxotrideca-9, 11-dienoic acid. The structure of the latter has been determined by ultraviolet spectroscopy and mass spectrometry. 9-HPOD is not a substrate for this enzyme. The hydroperoxide lyase from Oscillatoria sp. has a maximum of activity at pH 6.4 and 30°C. The molecular weight of the enzyme was estimated at 56,000. The enzyme was not inhibited by BW 755C, but was inhibited by molecules containing more than one hydroxyl group. Quercetin was found to be the best inhibitor of the enzyme activity. The purified hydroperoxide lyase from Oscillatoria sp. showed an apparent Km of 7.4 micromolar and a Vmax of 35 nanomoles per minute per milligram of protein for 13-HPOD. An enzymatic pathway for the biogenesis of oxodienoic acid from linoleic acid is proposed. This involves the sequential activity of lipoxygenase and hydroperoxide lyase enzymes.  相似文献   

5.
Enzymes of CYP74 family widespread in higher plants control the metabolism of fatty acid hydroperoxides to numerous bioactive oxylipins. Hydroperoxide lyases (HPLs, synonym: hemiacetal synthases) of CYP74B subfamily belong to the most common CYP74 enzymes. HPLs isomerize the hydroperoxides to the short-lived hemiacetals, which are spontaneously decomposed to aldehydes and aldoacids. All CYP74Bs studied yet except the CYP74B16 (flax divinyl ether synthase, LuDES) possessed the 13-HPL activity. Present work reports the cloning of the expressed CYP74B33 gene of carrot (Daucus carota L.) and studies of catalytic properties of the recombinant CYP74B33 protein. In contrast to all CYP74B proteins studied yet, CYP74B33 behaved differently in few respects. Firstly, the preferred substrates of CYP74B33 are 9-hydroperoxides. Secondly and most importantly, CYP74B33 exhibits the 9-allene oxide synthase (AOS) activity. For example, the 9(S)-hydroperoxide of linoleic acid (9-HPOD) underwent the conversion to α-ketol via the short-lived allene oxide. Uncommonly, the 9-HPOD conversion affords a minority of cis-10-oxo-11-phytoenoic acid, which is also produced by CYP74C but not the CYP74A AOSs. The similar product patterns were observed upon the incubations of CYP74B33 with 9(S)-hydroperoxide of α-linolenic acid. The enzyme possessed a mixed HPL, AOS, and the epoxyalcohol synthase activity toward the 13-hydroperoxides, but the total activity was much lower than toward 9-hydroperoxides. Thus, the obtained results show that CYP74B33 is an unprecedented 9-AOS within the CYP74B subfamily.  相似文献   

6.
Fatty acid hydroperoxide lyase (HPL), a member of cytochrome P450 (CYP74), produces aldehydes and oxo-acids involved in plant defensive reactions. In monocots, HPL that cleaves 13-hydroperoxides of fatty acids has been reported, but HPL that cleaves 9-hydroperoxides is still unknown. To find this type of HPL, in silico screening of candidate cDNA clones and subsequent functional analyses of recombinant proteins were performed. We found that AK105964 and AK107161 (Genbank accession numbers), cDNAs previously annotated as allene oxide synthase (AOS) in rice, are distinctively grouped from AOS and 13-HPL. Recombinant proteins of these cDNAs produced in Escherichia. coli cleaved both 9- and 13-hydroperoxide of linoleic and linolenic into aldehydes, while having only a trace level of AOS activity and no divinyl ether synthase activity. Hence we designated AK105964 and AK107161 OsHPL1 and OsHPL2 respectively. They are the first CYP74C family cDNAs to be found in monocots.  相似文献   

7.
The CYP74C subfamily of fatty acid hydroperoxide transforming enzymes includes hydroperoxide lyases (HPLs) and allene oxide synthases (AOSs). This work reports a new facet of the putative CYP74C HPLs. Initially, we found that the recombinant CYP74C13_MT (Medicago truncatula) behaved predominantly as the epoxyalcohol synthase (EAS) towards the 9(S)-hydroperoxide of linoleic acid. At the same time, the CYP74C13_MT mostly possessed the HPL activity towards the 13(S)-hydroperoxides of linoleic and α-linolenic acids. To verify whether this dualistic behaviour of CYP74C13_MT is occasional or typical, we also examined five similar putative HPLs (CYP74C). These were CYP74C4_ST (Solanum tuberosum), CYP74C2 (Cucumis melo), CYP74C1_CS and CYP74C31 (both of Cucumis sativus), and CYP74C13_GM (Glycine max). All tested enzymes behaved predominantly as EAS toward 9-hydroperoxide of linoleic acid. Oxiranyl carbinols such as (9S,10S,11S,12Z)-9,10-epoxy-11-hydroxy-12-octadecenoic acids were the major EAS products. Besides, the CYP74C31 possessed an additional minor 9-AOS activity. The mutant forms of CYP74C13_MT, CYP74C1_CS, and CYP74C31 with substitutions at the catalytically essential domains, namely the “hydroperoxide-binding domain” (I-helix), or the SRS-1 domain near the N-terminus, showed strong AOS activity. These HPLs to AOSs conversions were observed for the first time. Until now a large part of CYP74C enzymes has been considered as 9/13-HPLs. Notwithstanding, these results show that all studied putative CYP74C HPLs are in fact the versatile HPL/EASs that can be effortlessly mutated into specific AOSs.  相似文献   

8.
Some marine algae can form volatile aldehydes such as n-hexanal, hexenals, and nonenals. In higher plants it is well established that these short-chain aldehydes are formed from C18 fatty acids via actions of lipoxygenase and fatty acid hydroperoxide lyase, however, the biosynthetic pathway in marine algae has not been fully established yet. A brown alga, Laminaria angustata, forms relatively higher amounts of C6- and C9-aldehydes. When linoleic acid was added to a homogenate prepared from the fronds of this algae, formation of n-hexanal was observed. When glutathione peroxidase was added to the reaction mixture concomitant with glutathione, the formation of n-hexanal from linoleic acid was inhibited, and oxygenated fatty acids accumulated. By chemical analyses one of the major oxygenated fatty acids was shown to be (S)-13-hydroxy-(Z, E)-9, 11-octadecadienoic acid. Therefore, it is assumed that n-hexanal is formed from linoleic acid via a sequential action of lipoxygenase and fatty acid hydroperoxide lyase (HPL), by an almost similar pathway as the counterpart found in higher plants HPL partially purified from the fronds has a rather strict substrate specificity, and only 13-hydroperoxide of linoleic acid, and 15-hydroperoxide of arachidonic acid are the essentially suitable substrates for the enzyme. By surveying various species of marine algae including Phaeophyta, Rhodophyta and Chlorophyta it was shown that almost all the marine algae have HPL activity. Thus, a wide distribution of the enzyme is expected.  相似文献   

9.
The enzyme activity responsible for volatile C6-aldehyde formation was accompanied by lipoxygenase and hydroperoxide lyase in the green leaves of 28 plant species tested, but the level of each enzyme's activity varied. Lipoxygenase activity rather than hydroperoxide lyase activity appears to affect the overall C6-aldehyde formation. There was a positive correlation (r = 0.712) between hydroperoxide lyase activity and the chlorophyll content of the green leaves; no correlation was found between lipoxygenase activity and chlorophyll content.  相似文献   

10.
The micro-alga Chlorella pyrenoidosa expresses an enzymatic activity that cleaves the 13-hydroperoxide derivatives of linoleic acid [13-hydroperoxy-9(Z),11(E)-octadecadienoic acid, 13-HPOD] and linolenic acid [13-hydroperoxy-9(Z),11(E),15(Z)-octadecatrienoic acid, 13-HPOT] into volatile C(5) and non-volatile C(13) oxo-products. This enzymic activity initially was attributed to a hydroperoxide lyase enzyme; however, subsequent studies showed that this cleavage activity is the result of lipoxygenase activity under anaerobic conditions. Headspace analysis of the volatile products by GC/MS showed the formation of pentane when the substrate was 13-HPOD, whereas a more complex mixture of hydrocarbons was formed when 13-HPOT was the substrate. Analysis of the non-volatile cleavage products from 13-HPOD by liquid chromatography/MS indicated the formation of 13-oxo-9(Z),11(E)-tridecadienoic acid (13-OTA) along with the 13-keto-octadecadienoic acid derivative. When the substrate is 13-HPOT, liquid chromatography/MS analysis indicated the formation of 13-OTA as the major non-volatile product. Aldehyde dehydrogenase (AldDH) oxidizes 13-OTA to an omega-dicarboxylic acid, whereas alcohol dehydrogenase (ADH) reduces 13-OTA to an omega-hydroxy carboxylic acid. AldDH and ADH require the oxidized (NAD(+)) and reduced (NADH) forms of the cofactor NAD, respectively. By combining the action of AldDH and ADH into a continuous cofactor-recycling process, it is possible to simultaneously convert 13-OTA to the corresponding omega-dicarboxylic acid and omega-hydroxy carboxylic acid derivatives.  相似文献   

11.
1. A particulate enzyme fraction and an acetone powder preparation from cucumber fruits cleaved 9- and 13-hydroperoxyoctadecadienoic acids to form volatile aldehydes and oxoacid fragments. 2. From the 9-hydroperoxide, the major volatile fragments were cis-3-nonenal and trans-2-nonenal using particulate enzyme and acetone powder preparations, respectively. 3. Hexanal was the only significant volatile fragment from the 13-hydroperoxide. 4. The particulate enzyme system was equally effective on both 9- and 13-hydroperoxide isomers and was fully active under anaerobic conditions and at pH 6.4. 5. An enzymic pathway for the biogenesis of hexanal, cis-3- and trans-2-nonenal (components of the characteristic flavour volatiles of cucumber) from linoleic acid is proposed. This involves the sequential activity of lipoxygenase, hydroperoxide cleavage and cis-3-: trans-2-enal isomerase enzymes.  相似文献   

12.
Fatty acid hydroperoxide lyase (HPOL), an enzyme of the octadecanoid pathway that forms carbon-6 aldehydes such as n-hexanal or (Z)-3-hexenal, was cloned from Arabidopsis thaliana as a full-length cDNA. The HPOL activity obtained by expressing the cDNA in Escherichia coli formed n-hexanal from linoleic acid 13-hydroperoxide, whereas linoleic acid 9-hydroperoxide was not a substrate for the enzyme. The HPOL mRNA is expressed at low level in leaves; however, its accumulation can be found in the inflorescence. Wounding or methyl jasmonate treatments increase the mRNA level in leaves. These results indicate that the HPOL gene is up-regulated in leaves in response to wounding and that the enzyme may be an active component of the octadecanoid defense response.  相似文献   

13.
The genome of the fungal plant pathogen Fusarium graminearum harbors six catalases, one of which has the sequence characteristics of a fatty acid peroxide-metabolizing catalase. We cloned and expressed this hemoprotein (designated as Fg-cat) along with its immediate neighbor, a 13S-lipoxygenase (cf. Brodhun et al., PloS One, e64919, 2013) that we considered might supply a fatty acid hydroperoxide substrate. Indeed, Fg-cat reacts abruptly with the 13S-hydroperoxide of linoleic acid (13S-HPODE) with an initial rate of 700–1300 s 1. By comparison there was no reaction with 9R- or 9S-HPODEs and extremely weak reaction with 13R-HPODE (~ 0.5% of the rate with 13S-HPODE). Although we considered Fg-cat as a candidate for the allene oxide synthase of the jasmonate pathway in fungi, the main product formed from 13S-HPODE was identified by UV, MS, and NMR as 9-oxo-10E-12,13-cis-epoxy-octadecenoic acid (with no traces of AOS activity). The corresponding analog is formed from the 13S-hydroperoxide of α-linolenic acid along with novel diepoxy-ketones and two C13 aldehyde derivatives, the reaction mechanisms of which are proposed. In a peroxidase assay monitoring the oxidation of ABTS, Fg-cat exhibited robust activity (kcat 550 s 1) using the 13S-hydroperoxy-C18 fatty acids as the oxidizing co-substrate. There was no detectable peroxidase activity using the corresponding 9S-hydroperoxides, nor with t-butyl hydroperoxide, and very weak activity with H2O2 or cumene hydroperoxide at micromolar concentrations of Fg-cat. Fg-cat and the associated lipoxygenase gene are present together in fungal genera Fusarium, Metarhizium and Fonsecaea and appear to constitute a partnership for oxidations in fungal metabolism or defense.  相似文献   

14.
Homogenization of Phaseolus vulgaris leaves at acid pH results in the evolution of hexanal, cis-3- and trans-2-hexenal. With cell-free extracts of leaves, linoleic and linolenic acids are enzymically converted to their hydroperoxides (predominantly the 13-hydroperoxide isomers) and to hexanal or hexenal respectively. Activity was highest in young, dark-green leaves and was stimulated by Triton X-100. Oleic acid is not a substrate for these reactions. Both 9- and 13-hydroperoxides were cleaved to carbonyl fragments and are proposed as intermediates in the formation of volatile aldehydes and non-volatile ω-oxoacids in P. vulgaris leaves. Properties of the enzyme systems are described.  相似文献   

15.
In this work, we expressed an Arabidopsis thaliana-coded protein (AKR4C9) in transgenic barley to study its enzymatic activity and to enhance the reactive aldehyde neutralizing capacity (part of the oxidative stress tolerance) of transgenic plants. Total leaf protein was extracted from transgenic plants expressing either C or N-terminally His-tagged aldo–keto reductase (AKR) enzyme and purified by affinity chromatography. The Arabidopsis-coded enzyme showed moderate activity against the synthetic reactive aldehyde, glutaraldehyde, and low but detectable enzyme activity against fructose with a low Michaelis–Menten constant (Km value). Activity of the C and the N-terminally His-tagged AKRs were found to be in the same range. Glutaraldehyde was also tested in vivo by spraying onto the leaves of the plants. The reactive aldehyde tolerance of both wild type and transgenic plants, as well as the general physiological effects of this reactive aldehyde treatment were evaluated. The growth rate was found to decrease in all (both wild type and transgenic) plants. The high AKR-expressing transgenic plants showed a lower respiratory rate, and they also showed higher fresh weight, higher chlorophyll content and photosynthetic activity, indicating a higher reactive aldehyde tolerance. Cadmium (Cd) treatment was also performed to validate this result. Cd caused strong lipid peroxidation; however, the Arabidopsis enzyme lowered the reactive aldehyde content as expected. This is the first report in which kinetic parameters of the fructose reduction by the stress inducible plant AKR enzyme are presented. Furthermore, data on the effects of a reactive aldehyde treatment on intact plants are also provided.  相似文献   

16.
Saffron, the desiccated stigmas of Crocussativus, is highly appreciated for its peculiar colour, flavour and aroma. Several studies have been conducted with the spice, but little is known about the evolution of volatile and non-volatile compounds generated during the development of the stigma. In this study, we have followed these compounds, with special attention to those of isoprenoid origin (carotenoids and monoterpenes), which are responsible for the organoleptic properties of saffron. The main compounds that accumulated throughout stigma development in C.sativus were crocetin, its glucoside derivatives and picrocrocin, all of which increased as stigmas reached a fully developed stage. The volatile composition of C.sativus stigmas changed notably as stigmas developed with each developmental stage being characterized by a different volatile combination. In red stigmas, β-cyclocitral, the 7,8 cleavage product of β-carotene, was highly produced, suggesting the implication of both β-carotene and zeaxanthin in crocetin formation. As stigmas matured, hydroxy-β-ionone and β-ionone were produced while safranal, the most typical aroma compound of the processed spice, was only detected at low levels. However, a safranal-related compound 2,2,2-trimethyl-2-cyclohexene-1,4-dione (4-oxoisophorone) increased rapidly at the anthesis stage and also in senescent stigmas. Monoterpenes were mainly emitted at the time of anthesis and the emission patterns followed the expression patterns of two putative terpene synthases CsTS1 and CsTS2. Fatty acid derivates, which predominated at the earlier developmental stages, were observed at low levels in later stages.  相似文献   

17.
The sequence encoding the CYP5164A3 of the brown alga Ectocarpus siliculosus (Stramenopiles, SAR) was heterologously expressed in E. coli cells. The resulting recombinant CYP74 clan-related protein CYP5164A3 possessed a selective activity towards the α-linolenic acid 13(S)-hydroperoxide (13-HPOTE) and eicosapentaenoic acid 15(S)-hydroperoxide (15-HPEPE). The major products were the heterobicyclic oxylipins. For instance, the 13-HPOTE was converted into plasmodiophorols A, B, and C formed at about 14:3:2 ratio. Plasmodiophorols A-C have been recently described as the products of enzyme hydroperoxide bicyclase CYP50918A1 of cercozoan Plasmodiophora brassicae (Rhizaria, SAR). Furthermore, an unknown compound 1 was detected. Purified product 1 (Me) was identified as a novel substituted 3-propenyl-6-oxabicyclo[3.1.0]hexane based on its MS and NMR spectral data. Conversion of 15-HPEPE by CYP5164A3 resulted in products 7 and 8, analogous to plasmodiophorols A and B. This work uncovered the CYP5164A3 as the first hydroperoxide bicyclase in brown algae. Apparently, this enzyme plays a crucial role in the biosynthesis of heterobicyclic oxylipins like hybridalactone, ecklonilactones, and related natural products, widespread in brown algae.  相似文献   

18.
Fatty acid hydroperoxide lyase (HPL) is a membrane associated P450 enzyme that cleaves fatty acid hydroperoxides into aldehydes and omega-oxo fatty acids. One of the major products of this reaction is (3Z)-hexenal. It is a constituent of many fresh smelling fruit aromas. For its biotechnological production and because of the lack of structural data on the HPL enzyme family, we investigated the mechanistic reasons for the substrate specificity of HPL by using various structural analogues of HPL substrates. To approach this 13-HPL from Arabidopsis thaliana was cloned and expressed in E. coli utilising a His-Tag expression vector. The fusion protein was purified by affinity chromatography from the E. coli membrane fractions and its pH optimum was detected to be pH 7.2. Then, HPL activity against the respective (9S)- and (13S)-hydroperoxides derived either from linoleic, alpha-linolenic or gamma-linolenic acid, respectively, as well as that against the corresponding methyl esters was analysed. Highest enzyme activity was observed with the (13S)-hydroperoxide of alpha-linolenic acid (13alpha-HPOT) followed by that with its methyl ester. Most interestingly, when the hydroperoxy isomers of gamma-linolenic acid were tested as substrates, 9gamma-HPOT and not 13gamma-HPOT was found to be a better substrate of the enzyme. Taken together from these studies on the substrate specificity it is concluded that At13HPL may not recognise the absolute position of the hydroperoxy group within the substrate, but shows highest activities against substrates with a (1Z4S,5E,7Z)-4-hydroperoxy-1,5,7-triene motif. Thus, At13HPL may not only be used for the production of C6-derived volatiles, but depending on the substrate may be further used for the production of Cg-derived volatiles as well.  相似文献   

19.
Enzymes of CYP74 family play the central role in the biosynthesis of physiologically important oxylipins in land plants. Although a broad diversity of oxylipins is known in the algae, no CYP74s or related enzymes have been detected in brown algae yet. Cloning of the first CYP74-related gene CYP5164B1 of brown alga Ectocarpus siliculosus is reported in present work. The recombinant protein was incubated with several fatty acid hydroperoxides. Linoleic acid 9-hydroperoxide (9-HPOD) was the preferred substrate, while linoleate 13-hydroperoxide (13-HPOD) was less efficient. α-Linolenic acid 9- and 13-hydroperoxides, as well as eicosapentaenoic acid 15-hydroperoxide were inefficient substrates. Both 9-HPOD and 13-HPOD were converted into epoxyalcohols. For instance, 9-HPOD was turned primarily into (9S,10S,11S,12Z)-9,10-epoxy-11-hydroxy-12-octadecenoic acid. Both epoxide and hydroxyl oxygen atoms of the epoxyalcohol were incorporated mostly from [18O2]9-HPOD. Thus, the enzyme exhibits the activity of epoxyalcohol synthase (EsEAS). The results show that the EsEAS isomerizes the hydroperoxides into epoxyalcohols via epoxyallylic radical, a common intermediate of different CYP74s and related enzymes. EsEAS can be considered as an archaic prototype of CYP74 family enzymes.  相似文献   

20.

Background and Aims

Hourglass cells (HGCs) are prominent cells in the soybean seed coat, and have potential use as ‘phytofactories’ to produce specific proteins of interest. Previous studies have shown that HGCs initiate differentiation at about 9 d post-anthesis (dpa), assuming their characteristic morphology by 18 dpa. This study aims to document the structural changes in HGCs during this critical period, and to relate these changes to the concurrent development of a specific soybean peroxidase (SBP) encoded by the Ep gene.

Methods

Pods were collected from plants at specific growth stages. Fresh material was processed for analysis of Ep peroxidase activity. Tissues were processed for scanning and transmission electron microscopy, as well as extracted for western blotting. A null variety lacking expression of Ep peroxidase was grown as a control.

Key Results and Conclusions

At 9 dpa, HGCs are typical undifferentiated plant cells, but from 12–18 dpa they undergo rapid changes in their internal and external structure. By 18 dpa, they have assumed the characteristic hourglass shape with thick cell walls, intercellular air spaces and large central vacuoles. By 45 dpa, all organelles in HGCs have been degraded. Additional observations indicate that plasmodesmata connect all cell types. SBP activity and SBP protein are detectable in the HGC before they are fully differentiated (approx. 18 dpa). In very early stages, SBP activity appears localized in a vacuole as previously predicted. These results increase our understanding of the structure and development of the HGC and will be valuable for future studies aimed at protein targeting to components of the HGC endomembrane systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号