首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
How to identify influential nodes is a key issue in complex networks. The degree centrality is simple, but is incapable to reflect the global characteristics of networks. Betweenness centrality and closeness centrality do not consider the location of nodes in the networks, and semi-local centrality, leaderRank and pageRank approaches can be only applied in unweighted networks. In this paper, a bio-inspired centrality measure model is proposed, which combines the Physarum centrality with the K-shell index obtained by K-shell decomposition analysis, to identify influential nodes in weighted networks. Then, we use the Susceptible-Infected (SI) model to evaluate the performance. Examples and applications are given to demonstrate the adaptivity and efficiency of the proposed method. In addition, the results are compared with existing methods.  相似文献   

2.
We study intrinsic properties of attractor in Boolean dynamics of complex networks with scale-free topology, comparing with those of the so-called Kauffman's random Boolean networks. We numerically study both frozen and relevant nodes in each attractor in the dynamics of relatively small networks (20?N?200). We investigate numerically robustness of an attractor to a perturbation. An attractor with cycle length of ?c in a network of size N consists of ?c states in the state space of 2N states; each attractor has the arrangement of N nodes, where the cycle of attractor sweeps ?c states. We define a perturbation as a flip of the state on a single node in the attractor state at a given time step. We show that the rate between unfrozen and relevant nodes in the dynamics of a complex network with scale-free topology is larger than that in Kauffman's random Boolean network model. Furthermore, we find that in a complex scale-free network with fluctuation of the in-degree number, attractors are more sensitive to a state flip for a highly connected node (i.e. input-hub node) than to that for a less connected node. By some numerical examples, we show that the number of relevant nodes increases, when an input-hub node is coincident with and/or connected with an output-hub node (i.e. a node with large output-degree) one another.  相似文献   

3.
Statistical properties of the static networks have been extensively studied. However, online social networks are evolving dynamically, understanding the evolving characteristics of the core is one of major concerns in online social networks. In this paper, we empirically investigate the evolving characteristics of the Facebook core. Firstly, we separate the Facebook-link(FL) and Facebook-wall(FW) datasets into 28 snapshots in terms of timestamps. By employing the k-core decomposition method to identify the core of each snapshot, we find that the core sizes of the FL and FW networks approximately contain about 672 and 373 nodes regardless of the exponential growth of the network sizes. Secondly, we analyze evolving topological properties of the core, including the k-core value, assortative coefficient, clustering coefficient and the average shortest path length. Empirical results show that nodes in the core are getting more interconnected in the evolving process. Thirdly, we investigate the life span of nodes belonging to the core. More than 50% nodes stay in the core for more than one year, and 19% nodes always stay in the core from the first snapshot. Finally, we analyze the connections between the core and the whole network, and find that nodes belonging to the core prefer to connect nodes with high k-core values, rather than the high degrees ones. This work could provide new insights into the online social network analysis.  相似文献   

4.
Rücker's walk count (WC) indices are well-known topological indices (TIs) used in Chemoinformatics to quantify the molecular structure of drugs represented by a graph in Quantitative structure–activity/property relationship (QSAR/QSPR) studies. In this work, we introduce for the first time the higher-order (kth order) analogues (WCk) of these indices using Markov chains. In addition, we report new QSPR models for large complex networks of different Bio-Systems useful in Parasitology and Neuroinformatics. The new type of QSPR models can be used for model checking to calculate numerical scores S(Lij) for links Lij (checking or re-evaluation of network connectivity) in large networks of all these fields. The method may be summarized as follows: (i) first, the WCk(j) values are calculated for all jth nodes in a complex network already created; (ii) A linear discriminant analysis (LDA) is used to seek a linear equation that discriminates connected or linked (Lij = 1) pairs of nodes experimentally confirmed from non-linked ones (Lij = 0); (iii) The new model is validated with external series of pairs of nodes; (iv) The equation obtained is used to re-evaluate the connectivity quality of the network, connecting/disconnecting nodes based on the quality scores calculated with the new connectivity function. The linear QSPR models obtained yielded the following results in terms of overall test accuracy for re-construction of complex networks of different Bio-Systems: parasite–host networks (93.14%), NW Spain fasciolosis spreading networks (71.42/70.18%) and CoCoMac Brain Cortex co-activation network (86.40%). Thus, this work can contribute to the computational re-evaluation or model checking of connectivity (collation) in complex systems of any science field.  相似文献   

5.
In complex networks, it is of great theoretical and practical significance to identify a set of critical spreaders which help to control the spreading process. Some classic methods are proposed to identify multiple spreaders. However, they sometimes have limitations for the networks with community structure because many chosen spreaders may be clustered in a community. In this paper, we suggest a novel method to identify multiple spreaders from communities in a balanced way. The network is first divided into a great many super nodes and then k spreaders are selected from these super nodes. Experimental results on real and synthetic networks with community structure show that our method outperforms the classic methods for degree centrality, k-core and ClusterRank in most cases.  相似文献   

6.
Abstract

Complex network analysis has received increasing interest in recent years, which provides a remarkable tool to describe complex systems of interacting entities, particular for biological systems. In this paper, we propose a methodology for identifying the significant nodes of the networks, including core nodes, bridge nodes and high-influential nodes, based on the idea of community and two new ranking measures, InterRank and IntraRank. The results show the significant nodes form a small number in biological networks, and uncover the relative small number of which has advantage for reducing the dimensions of the network and possibly help to define new biological targets.  相似文献   

7.
Protein networks, describing physical interactions as well as functional associations between proteins, have been unravelled for many organisms in the recent past. Databases such as the STRING provide excellent resources for the analysis of such networks. In this contribution, we revisit the organisation of protein networks, particularly the centrality–lethality hypothesis, which hypothesises that nodes with higher centrality in a network are more likely to produce lethal phenotypes on removal, compared to nodes with lower centrality. We consider the protein networks of a diverse set of 20 organisms, with essentiality information available in the Database of Essential Genes and assess the relationship between centrality measures and lethality. For each of these organisms, we obtained networks of high-confidence interactions from the STRING database, and computed network parameters such as degree, betweenness centrality, closeness centrality and pairwise disconnectivity indices. We observe that the networks considered here are predominantly disassortative. Further, we observe that essential nodes in a network have a significantly higher average degree and betweenness centrality, compared to the network average. Most previous studies have evaluated the centrality–lethality hypothesis for Saccharomyces cerevisiae and Escherichia coli; we here observe that the centrality–lethality hypothesis hold goods for a large number of organisms, with certain limitations. Betweenness centrality may also be a useful measure to identify essential nodes, but measures like closeness centrality and pairwise disconnectivity are not significantly higher for essential nodes.  相似文献   

8.
Recently, the dependence group has been proposed to study the robustness of networks with interdependent nodes. A dependence group means that a failed node in the group can lead to the failures of the whole group. Considering the situation of real networks that one failed node may not always break the functionality of a dependence group, we study a cascading failure model that a dependence group fails only when more than a fraction β of nodes of the group fail. We find that the network becomes more robust with the increasing of the parameter β. However, the type of percolation transition is always first order unless the model reduces to the classical network percolation model, which is independent of the degree distribution of the network. Furthermore, we find that a larger dependence group size does not always make the networks more fragile. We also present exact solutions to the size of the giant component and the critical point, which are in agreement with the simulations well.  相似文献   

9.
During development, signaling networks control the formation of multicellular patterns. To what extent quantitative fluctuations in these complex networks may affect multicellular phenotype remains unclear. Here, we describe a computational approach to predict and analyze the phenotypic diversity that is accessible to a developmental signaling network. Applying this framework to vulval development in C. elegans, we demonstrate that quantitative changes in the regulatory network can render ~500 multicellular phenotypes. This phenotypic capacity is an order-of-magnitude below the theoretical upper limit for this system but yet is large enough to demonstrate that the system is not restricted to a select few outcomes. Using metrics to gauge the robustness of these phenotypes to parameter perturbations, we identify a select subset of novel phenotypes that are the most promising for experimental validation. In addition, our model calculations provide a layout of these phenotypes in network parameter space. Analyzing this landscape of multicellular phenotypes yielded two significant insights. First, we show that experimentally well-established mutant phenotypes may be rendered using non-canonical network perturbations. Second, we show that the predicted multicellular patterns include not only those observed in C. elegans, but also those occurring exclusively in other species of the Caenorhabditis genus. This result demonstrates that quantitative diversification of a common regulatory network is indeed demonstrably sufficient to generate the phenotypic differences observed across three major species within the Caenorhabditis genus. Using our computational framework, we systematically identify the quantitative changes that may have occurred in the regulatory network during the evolution of these species. Our model predictions show that significant phenotypic diversity may be sampled through quantitative variations in the regulatory network without overhauling the core network architecture. Furthermore, by comparing the predicted landscape of phenotypes to multicellular patterns that have been experimentally observed across multiple species, we systematically trace the quantitative regulatory changes that may have occurred during the evolution of the Caenorhabditis genus.  相似文献   

10.

Background

Network communities help the functional organization and evolution of complex networks. However, the development of a method, which is both fast and accurate, provides modular overlaps and partitions of a heterogeneous network, has proven to be rather difficult.

Methodology/Principal Findings

Here we introduce the novel concept of ModuLand, an integrative method family determining overlapping network modules as hills of an influence function-based, centrality-type community landscape, and including several widely used modularization methods as special cases. As various adaptations of the method family, we developed several algorithms, which provide an efficient analysis of weighted and directed networks, and (1) determine pervasively overlapping modules with high resolution; (2) uncover a detailed hierarchical network structure allowing an efficient, zoom-in analysis of large networks; (3) allow the determination of key network nodes and (4) help to predict network dynamics.

Conclusions/Significance

The concept opens a wide range of possibilities to develop new approaches and applications including network routing, classification, comparison and prediction.  相似文献   

11.
The statistical mechanical approach to complex networks is the dominant paradigm in describing natural and societal complex systems. The study of network properties, and their implications on dynamical processes, mostly focus on locally defined quantities of nodes and edges, such as node degrees, edge weights and –more recently– correlations between neighboring nodes. However, statistical methods quickly become cumbersome when dealing with many-body properties and do not capture the precise mesoscopic structure of complex networks. Here we introduce a novel method, based on persistent homology, to detect particular non-local structures, akin to weighted holes within the link-weight network fabric, which are invisible to existing methods. Their properties divide weighted networks in two broad classes: one is characterized by small hierarchically nested holes, while the second displays larger and longer living inhomogeneities. These classes cannot be reduced to known local or quasilocal network properties, because of the intrinsic non-locality of homological properties, and thus yield a new classification built on high order coordination patterns. Our results show that topology can provide novel insights relevant for many-body interactions in social and spatial networks. Moreover, this new method creates the first bridge between network theory and algebraic topology, which will allow to import the toolset of algebraic methods to complex systems.  相似文献   

12.
A focused theme in systems biology is to uncover design principles of biological networks, that is, how specific network structures yield specific systems properties. For this purpose, we have previously developed a reverse engineering procedure to identify network topologies with high likelihood in generating desired systems properties. Our method searches the continuous parameter space of an assembly of network topologies, without enumerating individual network topologies separately as traditionally done in other reverse engineering procedures. Here we tested this CPSS (continuous parameter space search) method on a previously studied problem: the resettable bistability of an Rb-E2F gene network in regulating the quiescence-to-proliferation transition of mammalian cells. From a simplified Rb-E2F gene network, we identified network topologies responsible for generating resettable bistability. The CPSS-identified topologies are consistent with those reported in the previous study based on individual topology search (ITS), demonstrating the effectiveness of the CPSS approach. Since the CPSS and ITS searches are based on different mathematical formulations and different algorithms, the consistency of the results also helps cross-validate both approaches. A unique advantage of the CPSS approach lies in its applicability to biological networks with large numbers of nodes. To aid the application of the CPSS approach to the study of other biological systems, we have developed a computer package that is available in Information S1.  相似文献   

13.
We study the behavior of pathogens on host protein networks for humans and Arabidopsis - noting striking similarities. Specifically, we preform -shell decomposition analysis on these networks - which groups the proteins into various “shells” based on network structure. We observe that shells with a higher average degree are more highly targeted (with a power-law relationship) and that highly targeted nodes lie in shells closer to the inner-core of the network. Additionally, we also note that the inner core of the network is significantly under-targeted. We show that these core proteins may have a role in intra-cellular communication and hypothesize that they are less attacked to ensure survival of the host. This may explain why certain high-degree proteins are not significantly attacked.  相似文献   

14.
Humphries MD  Gurney K 《PloS one》2008,3(4):e0002051

Background

Many technological, biological, social, and information networks fall into the broad class of ‘small-world’ networks: they have tightly interconnected clusters of nodes, and a shortest mean path length that is similar to a matched random graph (same number of nodes and edges). This semi-quantitative definition leads to a categorical distinction (‘small/not-small’) rather than a quantitative, continuous grading of networks, and can lead to uncertainty about a network''s small-world status. Moreover, systems described by small-world networks are often studied using an equivalent canonical network model – the Watts-Strogatz (WS) model. However, the process of establishing an equivalent WS model is imprecise and there is a pressing need to discover ways in which this equivalence may be quantified.

Methodology/Principal Findings

We defined a precise measure of ‘small-world-ness’ S based on the trade off between high local clustering and short path length. A network is now deemed a ‘small-world’ if S>1 - an assertion which may be tested statistically. We then examined the behavior of S on a large data-set of real-world systems. We found that all these systems were linked by a linear relationship between their S values and the network size n. Moreover, we show a method for assigning a unique Watts-Strogatz (WS) model to any real-world network, and show analytically that the WS models associated with our sample of networks also show linearity between S and n. Linearity between S and n is not, however, inevitable, and neither is S maximal for an arbitrary network of given size. Linearity may, however, be explained by a common limiting growth process.

Conclusions/Significance

We have shown how the notion of a small-world network may be quantified. Several key properties of the metric are described and the use of WS canonical models is placed on a more secure footing.  相似文献   

15.
Qian J  Hintze A  Adami C 《PloS one》2011,6(3):e17013

Background

Complex networks can often be decomposed into less complex sub-networks whose structures can give hints about the functional organization of the network as a whole. However, these structural motifs can only tell one part of the functional story because in this analysis each node and edge is treated on an equal footing. In real networks, two motifs that are topologically identical but whose nodes perform very different functions will play very different roles in the network.

Methodology/Principal Findings

Here, we combine structural information derived from the topology of the neuronal network of the nematode C. elegans with information about the biological function of these nodes, thus coloring nodes by function. We discover that particular colorations of motifs are significantly more abundant in the worm brain than expected by chance, and have particular computational functions that emphasize the feed-forward structure of information processing in the network, while evading feedback loops. Interneurons are strongly over-represented among the common motifs, supporting the notion that these motifs process and transduce the information from the sensor neurons towards the muscles. Some of the most common motifs identified in the search for significant colored motifs play a crucial role in the system of neurons controlling the worm''s locomotion.

Conclusions/Significance

The analysis of complex networks in terms of colored motifs combines two independent data sets to generate insight about these networks that cannot be obtained with either data set alone. The method is general and should allow a decomposition of any complex networks into its functional (rather than topological) motifs as long as both wiring and functional information is available.  相似文献   

16.
Consider a large Boolean network with a feed forward structure. Given a probability distribution on the inputs, can one find, possibly small, collections of input nodes that determine the states of most other nodes in the network? To answer this question, a notion that quantifies the determinative power of an input over the states of the nodes in the network is needed. We argue that the mutual information (MI) between a given subset of the inputs X={X1,...,Xn} of some node i and its associated function fi(X) quantifies the determinative power of this set of inputs over node i. We compare the determinative power of a set of inputs to the sensitivity to perturbations to these inputs, and find that, maybe surprisingly, an input that has large sensitivity to perturbations does not necessarily have large determinative power. However, for unate functions, which play an important role in genetic regulatory networks, we find a direct relation between MI and sensitivity to perturbations. As an application of our results, we analyze the large-scale regulatory network of Escherichia coli. We identify the most determinative nodes and show that a small subset of those reduces the overall uncertainty of the network state significantly. Furthermore, the network is found to be tolerant to perturbations of its inputs.  相似文献   

17.
Controlling complex network is an essential problem in network science and engineering. Recent advances indicate that the controllability of complex network is dependent on the network''s topology. Liu and Barabási, et.al speculated that the degree distribution was one of the most important factors affecting controllability for arbitrary complex directed network with random link weights. In this paper, we analysed the effect of degree distribution to the controllability for the deterministic networks with unweighted and undirected. We introduce a class of deterministic networks with identical degree sequence, called (x,y)-flower. We analysed controllability of the two deterministic networks ((1, 3)-flower and (2, 2)-flower) by exact controllability theory in detail and give accurate results of the minimum number of driver nodes for the two networks. In simulation, we compare the controllability of (x,y)-flower networks. Our results show that the family of (x,y)-flower networks have the same degree sequence, but their controllability is totally different. So the degree distribution itself is not sufficient to characterize the controllability of deterministic networks with unweighted and undirected.  相似文献   

18.
19.
Wang J  Liu B  Li M  Pan Y 《BMC genomics》2010,11(Z2):S10

Background

Identification of protein complexes in large interaction networks is crucial to understand principles of cellular organization and predict protein functions, which is one of the most important issues in the post-genomic era. Each protein might be subordinate multiple protein complexes in the real protein-protein interaction networks. Identifying overlapping protein complexes from protein-protein interaction networks is a considerable research topic.

Result

As an effective algorithm in identifying overlapping module structures, clique percolation method (CPM) has a wide range of application in social networks and biological networks. However, the recognition accuracy of algorithm CPM is lowly. Furthermore, algorithm CPM is unfit to identifying protein complexes with meso-scale when it applied in protein-protein interaction networks. In this paper, we propose a new topological model by extending the definition of k-clique community of algorithm CPM and introduced distance restriction, and develop a novel algorithm called CP-DR based on the new topological model for identifying protein complexes. In this new algorithm, the protein complex size is restricted by distance constraint to conquer the shortcomings of algorithm CPM. The algorithm CP-DR is applied to the protein interaction network of Sacchromyces cerevisiae and identifies many well known complexes.

Conclusion

The proposed algorithm CP-DR based on clique percolation and distance restriction makes it possible to identify dense subgraphs in protein interaction networks, a large number of which correspond to known protein complexes. Compared to algorithm CPM, algorithm CP-DR has more outstanding performance.
  相似文献   

20.
The formation of the complex network architecture of neural systems is subject to multiple structural and functional constraints. Two obvious but apparently contradictory constraints are low wiring cost and high processing efficiency, characterized by short overall wiring length and a small average number of processing steps, respectively. Growing evidence shows that neural networks are results from a trade-off between physical cost and functional value of the topology. However, the relationship between these competing constraints and complex topology is not well understood quantitatively. We explored this relationship systematically by reconstructing two known neural networks, Macaque cortical connectivity and C. elegans neuronal connections, from combinatory optimization of wiring cost and processing efficiency constraints, using a control parameter , and comparing the reconstructed networks to the real networks. We found that in both neural systems, the reconstructed networks derived from the two constraints can reveal some important relations between the spatial layout of nodes and the topological connectivity, and match several properties of the real networks. The reconstructed and real networks had a similar modular organization in a broad range of , resulting from spatial clustering of network nodes. Hubs emerged due to the competition of the two constraints, and their positions were close to, and partly coincided, with the real hubs in a range of values. The degree of nodes was correlated with the density of nodes in their spatial neighborhood in both reconstructed and real networks. Generally, the rebuilt network matched a significant portion of real links, especially short-distant ones. These findings provide clear evidence to support the hypothesis of trade-off between multiple constraints on brain networks. The two constraints of wiring cost and processing efficiency, however, cannot explain all salient features in the real networks. The discrepancy suggests that there are further relevant factors that are not yet captured here.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号