首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel series of N-arylbenzo[d]oxazol-2-amines (4a4m) were synthesized and evaluated for their α-glucosidase inhibitory activity. Compounds 4f4i, 4k and 4m displayed potent inhibitory activity against α-glucosidase with IC50 values in the range of 32.49 ± 0.17–120.24 ± 0.51 μM as compared to the standard drug acarbose. Among all tested compounds, compound 4g having 4-phenoxy substitution at the phenyl ring was found to be the most active inhibitor of α-glucosidase with an IC50 value of 32.49 ± 0.17 μM. Analysis of the kinetics of enzyme inhibition indicated that compound 4g is a noncompetitive inhibitor of α-glucosidase with a Ki value of 31.33 μM. Binding interaction of compound 4g with α-glucosidase was explored by molecular docking simulation.  相似文献   

2.
A series of bisbenzimidazole derivatives starting from o-phenylenediamine and 4-nitro-o-phenylenediamine were prepared with oxalic acid. Most of the reactions were conducted using both the microwave and conventional methods to compare yields and reaction times. The operational simplicity, environmental friendly conditions and high yield in a significantly short reaction time were the major benefits. All substances’ inhibitory activities against α-glucosidase were evaluated. The results may suggest a significant role for the nature of bisbenzimidazole compounds in their inhibitory action against α-glucosidase. They showed different range of α-glucosidase inhibitory potential with IC50 value ranging between 0.44 ± 0.04 and 6.69 ± 0.01 μM when compared to the standard acarbose (IC50, 13.34 ± 1.26 μM). This has described a new class of α-glucosidase inhibitors. Molecular docking studies were done for all compounds to identify important binding modes responsible for inhibition activity of α-glucosidase.  相似文献   

3.
A series of N-substituted amide linked triazolyl β-d-glucopyranoside derivatives (4a-l) were synthesized and their in vitro inhibitory activity against yeast α-glucosidase enzyme [EC.3.2.1.20] was assessed. Compounds 4e (IC50 = 156.06 μM), 4f (IC50 = 147.94 μM), 4k (IC50 = 127.71 μM) and 4l (IC50 = 121.33 μM) were identified as the most potent inhibitors for α-glucosidase as compared to acarbose (IC50 = 130.98 μM) under the same in vitro experimental conditions. Kinetic study showed that both 4e and 4f inhibit the enzyme in a competitive manner with p-nitrophenyl α-d-glucopyranoside as substrate. Molecular docking studies of 4e, 4f, 4k and 4l were also carried out using homology model of α-glucosidase to find out the binding modes responsible for the inhibitory activity. This study revealed that the binding affinity of compounds 4e, 4f, 4k and 4l for α-glucosidase were −8.2, −8.6, −8.3 and −8.5 kcal/mol respectively, compared to that of acarbose (−8.9 kcal/mol). The results suggest that the N-substituted amide linked triazole glycoconjugates can reasonably mimic the substrates for the yeast α-glucosidase.  相似文献   

4.
Oxadiazoles and thiadiazoles 137 were synthesized and evaluated for the first time for their α-glucosidase inhibitory activities. As a result, fifteen of them 1, 4, 5, 7, 8, 13, 17, 23, 25, 30, 32, 33, 35, 36 and 37 were identified as potent inhibitors of the enzyme. Kinetic studies of the most active compounds (oxadiazoles 1, 23 and 25, and thiadiazoles 35 and 37) were carried out to determine their mode of inhibition and dissociation constants Ki. The most potent compound of the oxadiazole series (compound 23) was found to be a non-competitive inhibitor (Ki = 4.36 ± 0.017 μM), while most potent thiadiazole 35 was identified as a competitive inhibitor (Ki = 6.0 ± 0.059 μM). The selectivity and toxicity of these compounds were also studied by evaluating their potential against other enzymes, such as carbonic anhydrase-II and phosphodiesterase-I. Cytotoxicity was evaluated against rat fibroblast 3T3 cell line. Interestingly, these compounds were found to be inactive against other enzymes, exhibiting their selectivity towards α-glucosidase. Inhibition of α-glucosidase is an effective strategy for controlling post-prandial hyperglycemia in diabetic patients. α-Glucosidase inhibitors can also be used as anti-obesity and anti-viral drugs. Our study identifies two novel series of potent α-glucosidase inhibitors for further investigation.  相似文献   

5.
A series of new malonamide derivatives were synthesized by Michael addition reaction of N1,N3-di(pyridin-2-yl)malonamide into α,β-unsaturated ketones mediated by DBU in DCM at ambient temperature. The inhibitory potential of these compounds in vitro, against α-glucosidase enzyme was evaluated. Result showed that most of malonamide derivatives were identified as a potent inhibitors of α-glucosidase enzyme. Among all the compounds, 4K (IC50 = 11.7 ± 0.5 μM) was found out as the most active one compared to standard drug acarbose (IC50 = 840 ± 1.73 μM). Further cytotoxicity of 4a4m were also evaluated against a number of cancer and normal cell lines and interesting results were obtained.  相似文献   

6.
Recent efforts to develop cure for chronic diabetic complications have led to the discovery of potent inhibitors against aldose reductase (AKR1B1, EC 1.1.1.21) whose role in diabetes is well-evident. In the present work, two new natural products were isolated from the ariel part of Ocimum basilicum; 7-(3-hydroxypropyl)-3-methyl-8-β-O-d-glucoside-2H-chromen-2-one (1) and E-4-(6′-hydroxyhex-3′-en-1-yl)phenyl propionate (2) and confirmed their structures with different spectroscopic techniques including NMR spectroscopy etc. The isolated compounds (1, 2) were evaluated for in vitro inhibitory activity against aldose reductase (AKR1B1) and aldehyde reductase (AKR1A1). The natural product (1) showed better inhibitory activity for AKR1B1 with IC50 value of 2.095 ± 0.77 µM compare to standard sorbinil (IC50 = 3.14 ± 0.02 µM). Moreover, the compound (1) also showed multifolds higher activity (IC50 = 0.783 ± 0.07 µM) against AKR1A1 as compared to standard valproic acid (IC50 = 57.4 ± 0.89 µM). However, the natural product (2) showed slightly lower activity for AKR1B1 (IC50 = 4.324 ± 1.25 µM). Moreover, the molecular docking studies of the potent inhibitors were also performed to identify the putative binding modes within the active site of aldose/aldehyde reductases.  相似文献   

7.
Thiourea derivatives having benzimidazole 117 have been synthesized, characterized by 1H NMR, 13C NMR and EI-MS and evaluated for α-glucosidase inhibition. Identification of potential α-glucosidase inhibitors were done by in vitro screening of 17 thiourea bearing benzimidazole derivatives using Baker’s yeast α-glucosidase enzyme. Compounds 117 exhibited a varying degree of α-glucosidase inhibitory activity with IC50 values between 35.83 ± 0.66 and 297.99 ± 1.20 μM which are more better than the standard acarbose (IC50 = 774.5 ± 1.94 μM). Compound 10 and 14 showed significant inhibitory effects with IC50 value 50.57 ± 0.81 and 35.83 ± 0.66 μM, respectively better than the rest of the series. Structure activity relationships were established. Molecular docking studies were performed to understand the binding interaction of the compounds.  相似文献   

8.
9.
A series of thiazole derivatives 121 were prepared, characterized by EI-MS and 1H NMR and evaluated for α-glucosidase inhibitory potential. All twenty one derivatives showed good α-glucosidase inhibitory activity with IC50 value ranging between 18.23 ± 0.03 and 424.41 ± 0.94 μM when compared with the standard acarbose (IC50, 38.25 ± 0.12 μM). Compound (8) (IC50, 18.23 ± 0.03 μM) and compound (7) (IC50 = 36.75 ± 0.05 μM) exhibited outstanding inhibitory potential much better than the standard acarbose (IC50, 38.25 ± 0.12 μM). All other analogs also showed good to moderate enzyme inhibition. Molecular docking studies were carried out in order to find the binding affinity of thiazole derivatives with enzyme. Studies showed these thiazole analogs as a new class of α-glucosidase inhibitors.  相似文献   

10.
Synthesis, structure, and evaluation of in vitro α-glucosidase enzyme inhibition of a new class of diethylammonium salts of aryl substituted thiobarbituric acid is described. This protocol is straight, environmentally benign and efficient, involving Aldol-Michael addition reaction in one pot fashion. The 3D chemical structures of the synthesized compounds were assigned based on spectroscopic methods and X-ray single crystal diffraction analyses. All synthesized compounds 3a-3n were evaluated for their in vitro α-glucosidase enzyme inhibitory activity, whereas acarbose was used as the standard drug (IC50 = 840 ± 1.73 µM). All tested compounds were found to possess varying degree of α-glucosidase enzyme inhibition activity with (IC50 = 19.46 ± 1.84–415.8 ± 4.0 µM). Compound 3i (IC50 = 19.4 ± 1.84 µM) exhibited the highest activity. To the best of knowledge this is the first report of the in vitro α-glucosidase enzyme inhibition by the diethylamonium salts of aryl substituted thiobarbituric acid. Furthermore, molecular docking studies of selected compounds were also performed to see interactions between active compounds and binding sites.  相似文献   

11.
A new and efficient solvent free synthesis of 2,4,5-trisubstituted imidazoles (3a3j) was achieved by N-acetyl glycine (NAG) catalyzed three components condensation of aldehydes, benzil and ammonium acetate. Our synthetic methodology accommodated a range of various substituted alkyl and aryl aldehydes. Evaluation of α-glucosidase inhibitory activity of these imidazole derivatives revealed that most of them presented good α-glucosidase inhibition at low micro-molar concentrations. Among the synthesized compounds, compound 3c, bearing the ortho-hydroxy phenyl substituent at position 2 displayed the highest inhibitory activity with an IC50 value 74.32 ± 0.59 μM. In silico molecular docking for all compounds and computational studies of the most active compound 3c were also performed.  相似文献   

12.
3,3-Di(indolyl)indolin-2-ones 4a-4n were synthesized and evaluated for their in vitro α-glucosidase inhibitory activity. These newly synthesized compounds showed moderate to potent α-glucosidase inhibitory activity with IC50 range from 5.98 ± 0.11 to 145.95 ± 0.46 μM, when compared to the standard drug acarbose. Among this series of 3,3-di(indolyl)indolin-2-ones, compound 4j (5.98 ± 0.11 μM) having a 2-fluorobenzyl group on the indole ring was found to be the most active compound. Molecular docking studies showed that compound 4j have high binding affinities with the active site of α-glucosidase enzyme through hydrogen bonds, arene-cation, π-π stacking and hydrophobic interactions. This study showed these 3,3-di(indolyl)indolin-2-ones as a new class of α-glucosidase inhibitors.  相似文献   

13.
This paper presents the efficient high yield synthesis of novel pyridine 2,4,6-tricarbohydrazide derivatives (4a4i) along with their α-glucosidase, acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibition activities. The enzymes inhibition results showed the potential of synthesized compounds in controlling both type-II diabetes mellitus and Alzheimer’s disease. In vitro biological investigations revealed that most of compounds were more active against yeast α-glucosidase than the reference compound acarbose (IC50 38.25 ± 0.12 μM). Among the tested series the compound 4c bearing 4-flouro benzyl group was noted to be the most active (IC50 25.6 ± 0.2 μM) against α-glucosidase, and it displayed weak inhibition activities against AChE and BChE. Compound 4a exhibited the most desired results against all three enzymes, as it was significantly active against all the three enzymes; α-glucosidase (IC50 32.2 ± 0.3 μM), AChE (IC50 50.2 ± 0.8 μM) and BChE (IC50 43.8 ± 0.8 μM). Due to the most favorable activity of 4a against the tested enzymes, for molecular modeling studies this compound was selected to investigate its pattern of interaction with α-glucosidase and AChE targets.  相似文献   

14.
《Process Biochemistry》2014,49(10):1601-1605
The high concentration of total phenolic compounds (TPC) in Psidium guajava leaf extracts (GvEx) is correlated to its anti-hyperglycemic activity. In this study, we established the optimum ultrasound extraction conditions for maximizing TPC yield. The response surface methodology (RSM) was employed for empirical model building. The maximum value of TPC (26.12%) was obtained at solvent to solid ratio (v/w) of 12.1, extraction temperature of 59.8 °C, and extraction time of 5.1 min. The anti-hyperglycemic activity of GvEx was compared to the commonly used diabetic drug acarbose. The IC50 of GvEx for α-amylase and α-glucosidase inhibition was 50.5 μg/mL and 34.6 μg/mL, respectively. However, the IC50 of acarbose for α-amylase and α-glucosidase inhibition was 95.3 μg/mL and 1075.2 μg/mL, respectively. In conclusion, GvEx obtained under optimum extraction conditions had higher anti-hyperglycemic activity than acarbose. In addition, the recommended extraction procedures for GvEx save time and are environmentally friendly.  相似文献   

15.
A series of N-substituted 1-aminomethyl-β-d-glucopyranoside derivatives was prepared. These novel synthetic compounds were assessed in vitro for inhibitory activity against yeast α-glucosidase and both rat intestinal α-glucosidases maltase and sucrase. Most of the compounds displayed α-glucosidase inhibitory activity, with IC50 values covering the wide range from 2.3 μM to 2.0 mM. Compounds 19a (IC50 = 2.3 μM) and 19b (IC50 = 5.6 μM) were identified as the most potent inhibitors for yeast α-glucosidase, while compounds 16 (IC50 = 7.7 and 15.6 μM) and 19e (IC50 = 5.1 and 10.4 μM) were the strongest inhibitors of rat intestinal maltase and sucrase. Analysis of the kinetics of enzyme inhibition indicated that 19e inhibited maltase and sucrase in a competitive manner. The results suggest that the aminomethyl-β-d-glucopyranoside moiety can mimic the substrates of α-glucosidase in the enzyme catalytic site, leading to competitive enzyme inhibition. Moreover, the nature of the N-substituent has considerable influence on inhibitory potency.  相似文献   

16.
《Process Biochemistry》2007,42(11):1530-1536
The transglycosylation activity of a novel α-glucosidase from the basidiomycetous yeast Xanthophyllomyces dendrorhous (formerly Phaffia rhodozyma) was studied using maltose as glucosyl donor. The enzyme synthesized oligosaccharides with α-(1  2), α-(1  4) and α-(1  6) bonds. Using 200 g/l maltose, the yield of oligosaccharides was 53.8 g/l, with prebiotic oligosaccharides containing at least one α-(1  6) linkage (panose, 6-O-α-glucosyl-maltotriose and 6-O-α-isomaltosyl-maltose) being the major products (47.1 g/l). The transglycosylatying yield was 3.6 times higher than the observed with the α-glucosidase from Saccharomyces cerevisiae (53.8 vs. 14.7 g/l). Moreover, when increasing the maltose concentration up to 525 g/l, the maximum production of tri- and tetrasaccharides reached 167.1 g/l, without altering the percentage of oligosaccharides in the mixture. Compared with other microbial α-glucosidases in which the main transglycosylation product is a disaccharide, the enzyme from X. dendrorhous yields a final product enriched in trisaccharides and tetrasaccharides.  相似文献   

17.
18.
Inhibition of α-glucosidase enzyme activity is a reliable approach towards controlling post-prandial hyperglycemia associated risk factors. During the current study, a series of dihydropyrano[2,3-c] pyrazoles (135) were synthesized and evaluated for their α-glucosidase inhibitory activity. Compounds 1, 4, 22, 30, and 33 were found to be the potent inhibitors of the yeast α-glucosidase enzyme. Mechanistic studies on most potent compounds reveled that 1, 4, and 30 were non-competitive inhibitors (Ki = 9.75 ± 0.07, 46 ± 0.0001, and 69.16 ± 0.01 μM, respectively), compound 22 is a competitive inhibitor (Ki = 190 ± 0.016 μM), while 33 was an uncompetitive inhibitor (Ki = 45 ± 0.0014 μM) of the enzyme. Finally, the cytotoxicity of potent compounds (i.e. compounds 1, 4, 22, 30, and 33) was also evaluated against mouse fibroblast 3T3 cell line assay, and no toxicity was observed. This study identifies non-cytotoxic novel inhibitors of α-glucosidase enzyme for further investigation as anti-diabetic agents.  相似文献   

19.
A series of 6-chloro-3-oxindole derivatives 125 were synthesized in high yields by the reaction of 6-chlorooxindole with different aromatic aldehydes in the presence of piperidine. All the synthesized compounds were isolated with E configuration. The structures were confirmed using spectroscopic techniques, including 1H NMR and EIMS. These compounds showed varying degree of yeast α-glucosidase inhibition and seven were found as potent inhibitors of the enzyme. Compounds 2, 3, 4, 5, 6, 23, and 25 exhibited IC50 values 2.71 ± 0.007, 11.41 ± 0.005, 37.93 ± 0.002, 15.19 ± 0.004, 24.71 ± 0.007, 17.33 ± 0.001, and 14.2 ± 0.002 μM, respectively, as compared to standard acarbose (IC50, 38.25 ± 0.12 μM). Docking studies helped to find interactions between the enzyme and the active compounds. As a result of this study, oxindoles have been discovered as a new class of α-glucosidase inhibitors which have not been reported earlier.  相似文献   

20.
Benzimidazole analogs 127 were synthesized, characterized by EI-MS and 1H NMR and their α-glucosidase inhibitory activities were found out experimentally. Compound 25, 19, 10 and 20 have best inhibitory activities with IC50 values 5.30 ± 0.10, 16.10 ± 0.10, 25.36 ± 0.14 and 29.75 ± 0.19 respectively against α-glucosidase. Compound 6 and 12 has no inhibitory activity against α-glucosidase enzyme among the series. Further studies showed that the compounds are not showing any cytotoxicity effect. The docking studies of the compounds as well as the experimental activities of the compounds correlated well. From the molecular docking studies, it was observed that the top ranked conformation of all the compounds fit well in the active site of the homology model of α-glucosidase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号