首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Arsenic (III) methyltransferase (AS3MT) is a cysteine (Cys)-rich enzyme that catalyzes the biomethylation of arsenic. To investigate how these crucial Cys residues promote catalysis, we used matrix-assisted laser desorption ionization-time of flight-mass spectrometry (MALDI-TOF-MS) to analyze Cys residues in recombinant human arsenic (III) methyltransferase (hAS3MT). We detected two disulfide bonds, Cys250-Cys32 and Cys368-Cys369, in hAS3MT. The Cys250-Cys32 disulfide bond was reduced by glutathione (GSH) or other disulfide bond reductants before the enzymatic methylation of arsenite (iAs3+). In addition to exposing residues around the active sites, cleavage of the Cys250-Cys32 pair modulated the conformation of hAS3MT. This adjustment may stabilize the binding of S-Adenosyl-L-methionine (AdoMet) and favor iAs3+ binding to hAS3MT. Additionally, we observed the intermediate of Cys250-S-adenosylhomocysteine (AdoHcy), suggesting that Cys250 is involved in the transmethylation. In recovery experiments, we confirmed that trivalent arsenicals were substrates for hAS3MT, methylation of arsenic occurred on the enzyme, and an intramolecular disulfide bond might be formed after iAs3+ was methylated to dimethylarsinous acid (DMA3+). In this work, we clarified both the functional roles of GSH and the crucial Cys residues in iAs3+ methylation catalyzed by hAS3MT.  相似文献   

2.
In the human body, arsenic is metabolized by methylation. Understanding this process is important and provides insight into the relationship between arsenic and its related diseases. We used the rapid equilibrium kinetic model to study the reaction sequence of arsenite methylation. The results suggest that the mechanism for arsenite methylation is a completely ordered mechanism that is also of general interest in reaction systems with different reductants, such as tris(2-carboxyethyl)phosphine, cysteine, and glutathione. In the reaction, cysteine residues of recombinant human arsenic (+3 oxidation state) methyltransferase (hAS3MT) coordinate with arsenicals and involve the methyl transfer step. S-Adenosyl-l-methionine (AdoMet) is the first-order reactant, which modulates the conformation of hAS3MT to a best matched state by hydrophobic interaction. As the second-order reactant, reductant reduces the disulfide bond, most likely between Cys-250 and another cysteine residue of hAS3MT, and exposes the active site cysteine residues for binding trivalent inorganic arsenic (iAs3+) to give monomethylarsonic dicysteine (MADC3+). In addition, the reaction can be extended to further methylate MADC3+ to dimethylarsinic cysteine (DAMC3+). In the methylation reaction, the β-pleated sheet content of hAS3MT is increased, and the hydrophobicity of the microenvironment around the active sites is decreased. Similarly, we confirm that both the high β-pleated sheet content of hAS3MT and the high dissociation ability of the enzyme-AdoMet-reductant improve the yield of dimethylated arsenicals.  相似文献   

3.
Enzymatic methylation of arsenic is a detoxification process in microorganisms but in humans may activate the metalloid to more carcinogenic species. We describe the first structure of an As(III) S-adenosylmethionine methyltransferase by X-ray crystallography that reveals a novel As(III) binding domain. The structure of the methyltransferase from the thermophilic eukaryotic alga Cyanidioschyzon merolae reveals the relationship between the arsenic and S-adenosylmethionine binding sites to a final resolution of ~1.6 ?. As(III) binding causes little change in conformation, but binding of SAM reorients helix α4 and a loop (residues 49-80) toward the As(III) binding domain, positioning the methyl group for transfer to the metalloid. There is no evidence of a reductase domain. These results are consistent with previous suggestions that arsenic remains trivalent during the catalytic cycle. A homology model of human As(III) S-adenosylmethionine methyltransferase with the location of known polymorphisms was constructed. The structure provides insights into the mechanism of substrate binding and catalysis.  相似文献   

4.
Accumulation of arsenic has potential health risks through consumption of food. Here, we inserted the arsenite [As(III)] S-adenosylmethionine methyltransferase (ArsM) gene into the chromosome of Pseudomonas putida KT2440. Recombinant bacteria methylate inorganic arsenic into less toxic organoarsenicals. This has the potential for bioremediation of environmental arsenic and reducing arsenic contamination in food.  相似文献   

5.
Brazil is one of the main producers of palm oil (Ellaus guineeusis). It is a low-cost product that has some interesting industrial qualities, such as its use as the raw material for the production of glycerin and soap as well as its use in the preparation of food. Some renewable sources and agroindustrial wastes have been used extensively in research on the production of biosurfactants of the Pseudomonas strains. However, to our knowledge, no studies have been published on the use of palm oil as a substrate for the synthesis of biosurfactants by Pseudomonas alcaligenes. This paper describes the production and characterization of biosurfactants synthesized by a strain of P. alcaligenes PCL previously isolated from soil that was contaminated with crude-oil. Furthermore, the paper presents the optimization of the production of biological surface-active compounds by applying experimental design tools and their capacity to emulsify hydrocarbons.  相似文献   

6.
Fluoranthene degradation in Pseudomonas alcaligenes PA-10   总被引:2,自引:0,他引:2  
Gordon L  Dobson AD 《Biodegradation》2001,12(6):393-400
Pseudomonas alcaligenes strain PA-10 degrades thefour-ring polycyclic aromatic hydrocarbon fluoranthene, co-metabolically. HPLC analysisof the growth medium identified four intermediates, 9-fluorenone-1-carboxylicacid; 9-hydroxy-1-fluorene carboxylic acid; 9-fluorenone and 9-fluorenol, formedduring fluoranthene degradation. Pre-exposure of PA-10 to 9-fluorenone-1-carboxylic acidand 9-hydroxy-1-fluorene-carboxylic acid resulted inincreases in fluoranthene removal, while pre-exposure to9-fluorenone and 9-fluorenol resulted in a decrease influoranthene degradation. The rate of indole transformation was similarly affected by pre-exposureto these metabolic intermediates, indicating a link between fluoranthenedegradation and indigo formation in this strain.  相似文献   

7.
Abstract Genetic transfer of both auxotrophic and catabolic markers was detected in filter matings of mutant strains of Pseudomonas alcaligenes NCIB 9867. Bidirectional transfer of auxotrophic markers was demonstrated in most of the crosses. Strains could either act as donors or recipients. Polarized transfer of auxotrophic markers was observed in some crosses. There was low co-inheritance of both 2,5X+ catabolic marker and auxotrophic markers. No evidence could be presented indicating the involvement of the indigenous 33-kb plasmid in the genetic transfer process. Partial sensitivity to DNase was observed in some of the crosses. Maximum frequency of recombinant formation obtained with mating cultures from stationary growth phase suggested an influence of physiological states on genetic transfer. As transfer did not appear to be due to classical transformation or to be plasmid-mediated, the likely mechanism could involve the release of DNA upon intimate cell-to-cell contact. The gene transfer system may be useful for linkage analysis of closely linked genes.  相似文献   

8.
真核生物的DNA甲基转移酶与DNA甲基化   总被引:1,自引:0,他引:1  
真核生物的DNA甲基化就是在DNA的CpG二核苷酸胞嘧啶的第 5位碳原子上加上甲基 ,催化这一过程的是DNA甲基转移酶 (Dnmt)。DNA的甲基化修饰参与基因表达调控、胚胎发育、细胞分化、基因组印迹、X染色体灭活和细胞记忆等诸多重要生物学过程[1,2 ] 。在不同组织或同一类型细胞的不同发育阶段 ,基因组DNA上各CpG位点甲基化状态的差异即构成基因组的DNA甲基化谱。根据催化反应类型。可以将DNA甲基转移酶分为三类 :第一类将腺嘌呤转化成N6 甲基腺嘌呤 ;第二类将胞嘧啶转化成N4 甲基胞嘧啶 ;第三类将胞嘧啶转化成…  相似文献   

9.
Abstract A microorganism capable of degrading homophthalic acid as a sole source was isolated from garden soil. The strain was identified as Pseudomonas alcaligenes . The organism degraded homphthalate by a pathway which involved phenylactate and p -hydroxyphenylacetate as intermediates. The intermediates have been identified by physico-chemical methods. A tentative pathway for the degradation of homophthalate is proposed based on isolation of intermediates, oxygen uptake studies and presence of enzymes involved in the degradation.  相似文献   

10.
Procedures used in most clinical laboratories do not clearly distinguish betweenPseudomonas alcaligenes andPseudomonas testosteroni. In an examination of 75 features of 31 strains, we found that only microscopic morphology definitively distinguished these two species.Pseudomonas alcalgenes is phenotypically heterogeneous;P. testosteroni is relatively homogeneous. Several additional features will distinguish most strains ofP. alcaligenes.  相似文献   

11.
The amphoteric surfactant N-oleoyl-N-methyltaurine, which is in use in skin-care products, was utilized by aerobic bacteria as the sole source of carbon or of nitrogen in enrichment cultures. One isolate, which was identified as Pseudomonas alcaligenes, grew with the xenobiotic compound as the sole source of carbon and energy. The sulfonate moiety, N-methyltaurine, was excreted quantitatively during growth, while the fatty acid was dissimilated. The initial degradative reaction was shown to be hydrolytic and inducible. This amidase reaction could be demonstrated with crude cell extracts. The excreted N-methyltaurine could be utilized by other bacteria in cocultures. Complete degradation of similar natural compounds in bacterial communities seems likely.  相似文献   

12.
Fensulfothion (O,O-diethyl O-[4-(methylsulfinyl)phenyl]phosphorothioate), an organophosphorus pesticide used to control the golden nematode Heterodera rostochiensis, is used as a source of carbon by microorganisms isolated from soils treated with the pesticide. Two of the microbial isolates, Pseudomonas alcaligenes C1 and Alcaligenes sp. strain NC3, used more than 80% of the pesticide in 120 h in culture when supplemented as a source of carbon. P. alcaligenes C1, which showed maximal growth on fensulfothion, degraded the compound to p-methylsulfinyl phenol and diethyl phosphorothioic acid. The phenolic metabolite could be identified by conventional spectral analysis, whereas the spectral patterns of the phosphorus-containing metabolite suggested that the compound was complexed with some cellular molecules. However, utilization of the phosphoric acid ester and ethanol by P. alcaligenes C1 suggested that the microbe attacks fensulfothion by an initial hydrolysis of the compound and subsequent utilization of the phosphoric acid ester. The pathway of degradation of fensulfothion by P. alcaligenes is of great value in the detoxification of the pesticide residues and also in the environmentally stable phosphoric acid esters.  相似文献   

13.
Protein arginine methyltransferase (PRMT) 8 is unique among the PRMTs, as it has a highly restricted tissue expression pattern and an N terminus that contains two automethylation sites and a myristoylation site. PRMTs catalyze the transfer of a methyl group from S-adenosylmethionine (AdoMet) to a peptidylarginine on a protein substrate. Currently, the physiological roles, regulation, and cellular substrates of PRMT8 are poorly understood. However, a thorough understanding of PRMT8 kinetics should provide insights into each of these areas, thereby enhancing our understanding of this unique enzyme. In this study, we determined how automethylation regulates the enzymatic activity of PRMT8. We found that preventing automethylation with lysine mutations (preserving the positive charge of the residue) increased the turnover rate and decreased the Km of AdoMet but did not affect the Km of the protein substrate. In contrast, mimicking automethylation with phenylalanine (i.e. mimicking the increased hydrophobicity) decreased the turnover rate. The inhibitory effect of the PRMT8 N terminus could be transferred to PRMT1 by creating a chimeric protein containing the N terminus of PRMT8 fused to PRMT1. Thus, automethylation of the N terminus likely regulates PRMT8 activity by decreasing the affinity of the enzyme for AdoMet.  相似文献   

14.
《Journal of molecular biology》2019,431(17):3139-3145
Recently, it has been discovered that different DNA-(cytosine C5)-methyltransferases including DNMT3A generate low levels of 3mC [Rosic et al. (2018), Nat. Genet., 50, 452–459]. This reaction resulted in the co-evolution of DNMTs and ALKB2 DNA repair enzymes, but its mechanism remained elusive. Here, we investigated the catalytic mechanism of DNMT3A for cytosine N3 methylation. We generated several DNMT3A variants with mutated catalytic residues and measured their activities in 5mC and 3mC generation by liquid chromatography linked to tandem mass spectrometry. Our data suggest that the methylation of N3 instead of C5 is caused by an inverted binding of the flipped cytosine target base into the active-site pocket of the DNA methyltransferase, which is partially compatible with the arrangement of catalytic amino acid residues. Given that all DNA-(cytosine C5)-methyltransferases have a common catalytic mechanism, it is likely that other enzymes of this class generate 3mC following the same mechanism.  相似文献   

15.
Lipid A fractions from Pseudomonas aeruginosa and Pseudomonas alcaligenes have similar compositions and structural features. By means of hydrazinolysis of the parent lipopolysaccharides and partial hydrolysis of the deacylation products, it was established that both lipids are derived from the β-(1→6)-linked disaccharide of glucosamine. Phosphorylated derivatives of the disaccharide from Ps. aeruginosa were also characterized. The lipids differ mainly in the absence of hexadecanoic acid and 2-hydroxydodecanoic acid from the lipid from Ps. alcaligenes. Evidence that in Ps. aeruginosa these acids are ester-linked to residues of 3-hydroxyalkanoic acids (including 3-hydroxydecanoic acid) was obtained. Heterogeneity of lipid A fractions was indicated by t.l.c., and by gel filtration of de-O-acylation products from mild alkaline methanolysis of the lipids.  相似文献   

16.
Zhao B  Yeo CC  Lee CC  Geng A  Chew FT  Poh CL 《Proteomics》2004,4(7):2028-2036
Pseudomonas alcaligenes NCIB 9867 (P25X wild-type) is capable of degrading aromatic hydrocarbons via the gentisate pathway. Biochemical characterization of P25X mutants indicated that it has isofunctional enzymes for the mono- and dioxygenase-catalyzed reactions. One set of the enzymes is constitutive whereas the other is strictly inducible. To date, only the gene encoding the constitutively-expressed gentisate dioxygenase had been cloned and characterized. A mutant strain of P25X, designated G56, which had the constitutive copy of the gentisate 1,2-dioxygenase gene interrupted by a streptomycin/spectinomycin resistance gene cassette, was found to express gentisate dioxygenase, but only when the cells were induced by gentisate. The proteome profiles of P. alcaligenes P25X and mutant G56 cells grown in the presence and absence of gentisate were compared after two-dimensional polyacrylamide gel electrophoresis. Eight distinctive protein spots (designated M1-M8) which were observed only in induced cells of strain G56 but absent in noninduced cells were further analyzed by matrix-assisted laser desorption/ionization-time of flight, quadrupole-TOF and N-terminal sequencing. Of the 15 proteins (including seven up-regulated) examined, 13 showed sequence similarities to proteins with assigned functions in other microorganisms. The identification of protein M5 which showed high homology to a gentisate dioxygenase from Ralstonia sp. U2 indicated the putative function of this protein being consistent with the inducible gentisate 1,2-dioxygenase in P. alcaligenes. In addition, the induction of stress proteins and other adaptation phenomena were also observed.  相似文献   

17.
【目的】克隆产碱假单胞菌的脂肪酶基因,实现其在大肠杆菌中异源表达并进行酶学性质研究。【方法】通过基因文库构建和PCR,获得脂肪酶基因,并以pET30a(+)为表达载体、E.coli BL21(DE3)为宿主菌,在大肠杆菌中进行异源表达,表达产物经HisTrapTM亲和层析柱纯化后进行酶学性质研究。【结果】从产碱假单胞菌中克隆得到一个脂肪酶基因,大小为1 575 bp(GenBank登录号为JN674069)。该酶分子量为55 kD,最适底物为p-NPO,最适反应温度和pH分别为35°C、pH 9.0。重组酶经1 mmol/L的Cu2+处理30 min可使酶活提高至156%。在最适反应条件下重组酶的比活力为275 U/mg,Km和Vmax分别为80μmol/L和290 mmol/(min.g protein)。【结论】产碱假单胞菌脂肪酶基因的克隆与表达不仅积累了脂肪酶基因的资源,并为其在手性拆分中的应用奠定基础。  相似文献   

18.
DNA methylation at cytosine residues in CpG sites by DNA methyltransferases (MTases) is associated with various cell processes. Eukaryotic MTase Dnmt3a is the key enzyme that establishes the de novo methylation pattern. A new in vitro assay for DNA methylation by murine MTase Dnmt3a was developed using methyl-dependent restriction endonucleases (MD-REs), which specifically cleave methylated DNA. The Dnmt3a catalytic domain (Dnmt3a-CD) was used together with KroI and PcsI MD-REs. The assay consists in consecutive methylation and cleavage of fluorescently labeled DNA substrates, then the reaction products are visualized in polyacrylamide gel to determine the DNA methylation efficiency. Each MD-RE was tested with various substrates, including partly methylated ones. PcsI was identified as an optimal MDRE. PcsI recognizes two methylated CpG sites located 7 bp apart, the distance roughly corresponding to the distance between the active centers of the Dnmt3a-CD tetramer. An optimal substrate was designed to contain two methylated cytosine residues and two target cytosines in the orientation suitable for methylation by Dnmt3a-CD. The assay is reliable, simple, and inexpensive and, unlike conventional methods, does not require radioactive compounds. The assay may be used to assess the effectiveness of Dnmt3a inhibitors as potential therapeutic agents and to investigate the features of the Dnmt3a-CD function.  相似文献   

19.
Fensulfothion (O,O-diethyl O-[4-(methylsulfinyl)phenyl]phosphorothioate), an organophosphorus pesticide used to control the golden nematode Heterodera rostochiensis, is used as a source of carbon by microorganisms isolated from soils treated with the pesticide. Two of the microbial isolates, Pseudomonas alcaligenes C1 and Alcaligenes sp. strain NC3, used more than 80% of the pesticide in 120 h in culture when supplemented as a source of carbon. P. alcaligenes C1, which showed maximal growth on fensulfothion, degraded the compound to p-methylsulfinyl phenol and diethyl phosphorothioic acid. The phenolic metabolite could be identified by conventional spectral analysis, whereas the spectral patterns of the phosphorus-containing metabolite suggested that the compound was complexed with some cellular molecules. However, utilization of the phosphoric acid ester and ethanol by P. alcaligenes C1 suggested that the microbe attacks fensulfothion by an initial hydrolysis of the compound and subsequent utilization of the phosphoric acid ester. The pathway of degradation of fensulfothion by P. alcaligenes is of great value in the detoxification of the pesticide residues and also in the environmentally stable phosphoric acid esters.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号