首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Co3O4 is investigated as a light absorber for all‐oxide thin‐film photovoltaic cells because of its nearly ideal optical bandgap of around 1.5 eV. Thin film TiO2/Co3O4 heterojunctions are produced by spray pyrolysis of TiO2 as a window layer, followed by pulsed laser deposition of Co3O4 as a light absorbing layer. The photovoltaic performance is investigated as a function of the Co3O4 deposition temperature and a direct correlation is found. The deposition temperature seems to affect both the crystallinity and the morphology of the absorber, which affects device performance. A maximum power of 22.7 μW cm?2 is obtained at the highest deposition temperature (600 °C) with an open circuit photovoltage of 430 mV and a short circuit photocurrent density of 0.2 mA cm?2. Performing deposition at 600 °C instead of room temperature improves power by an order of magnitude and reduces the tail states (Urbach edge energy). These phenomena can be explained by larger grains that grows at high temperature, as opposed to many nucleation events that occur at lower temperature.  相似文献   

2.
通过研究不同浓度、不同磁场作用下TiO2、掺铁TiO2纳米颗粒对HL60白血病细胞活性的影响,以及在接受光照和不接受光照条件下的细胞活性,探讨基于TiO2、掺铁TiO2纳米颗粒作为光敏剂的光动力疗法(PDT)灭活白血病肿瘤细胞的可行性.实验结果表明,纳米颗粒对细胞具有一定的抑制/毒性作用,纳米浓度越大,抑制/毒性作用越明显;磁场对细胞的毒性/抑制作用跟掺铁的浓度以及磁感应强度有关,掺铁纳米组在强磁场作用下对细胞抑制/毒性作用明显;此外,添加了纳米颗粒的PDT灭杀效率要比不添加纳米颗粒的PDT灭杀效率高.  相似文献   

3.
4.
本文采用共沉淀法制备了L-半胱氨酸(L-Cys)修饰的Fe3O4包裹TiO2(Fe3O4@TiO2/L-Cys)复合纳米粒子。通过透射电子显微镜(TEM),X射线衍射(XRD)和傅立叶变换红外光谱仪(FTIR)对复合纳米粒子进行了表征,并讨论了复合纳米粒子对HL60细胞体外光动力疗法(PDT)灭活的影响。并对其PDT灭活机制进行了初步探索。试验表明,Fe3O4@TiO2/L-Cys复合纳米粒子分散性高,生物相容性好,对细胞的暗毒性更低,并可以有效增强靶向性,提高PDT灭活效率,在410nm波长的光激发下,光照剂量为18J/cm^2的情况下,当TiO2与Fe3O4的比例为1∶3时,整体PDT效率最高。PDT灭活效率可达69.36%。  相似文献   

5.
邢娟  刘军锋  李金莲  闫鹏 《生物磁学》2012,(31):6055-6059,6028
目的:观察磁性四氧化三铁(Fe3O4)纳米粒子对肝癌细胞的体外作用,并研究外加稳恒磁场(SMF)或交变磁场(EMF)对FeID4纳米粒子作用的影响。方法:光镜下观察CBRH-7919细胞对Fe3O4纳米粒子的吞噬作用;MTT法检测Fe304纳米粒子对大鼠肝癌细胞株CBRH-7919的毒性及外加磁场的影响;流式细胞术检测外加磁场作用下Fe3O4纳米粒子对细胞凋亡及线粒体膜电位的影响。结果:光镜下可见CBRH-7919细胞吞噬大量Fe3O4纳米粒子入胞浆,且交变磁场作用下细胞的吞噬量增加。30-100μg/mLFe3O4纳米粒子作用于CBRH-7919细胞未产生细胞毒性,稳恒磁场对其作用无影响,而交变磁场能增加Fe3O4纳米粒子的毒性,使细胞活性降低、凋亡率增加、线粒体膜电位降低。结论:交变磁场能增加CBRH-7919细胞对Fe3O4纳米粒子的吞噬并产生细胞毒性。  相似文献   

6.
Nanolayers of Al2O3 and TiO2 coatings were applied to lithium‐ and manganese‐rich cathode powder Li1.2Ni0.13Mn0.54Co0.13O2 using an atomic layer deposition (ALD) method. The ALD coatings exhibited different surface morphologies; the Al2O3 surface film appeared to be uniform and conformal, while the TiO2 layers appeared as particulates across the material surface. In a Li‐cell, the Al2O3 surface film was stable during repeated charge and discharge, and this improved the cell cycling stability, despite a high surface impedance. The TiO2 layer was found to be more reactive with Li and formed a LixTiO2 interface, which led to a slight increase in cell capacity. However, the repetitive insertion/extraction process for the Li+ ions caused erosion of the surface protective TiO2 film, which led to degradation in cell performance, particularly at high temperature. For cells comprised of the coated Li1.2Ni0.13Mn0.54Co0.13O2 and an anode of meso‐carbon‐micro‐beads (MCMB), the cycling stability introduced by ALD was not enough to overcome the electrochemical instability of MCMB graphite. Therefore, protection of the cathode materials by ALD Al2O3 or TiO2 can address some of the capacity fading issues related to the Li‐rich cathode at room temperature.  相似文献   

7.

Background

Recent studies showed that progenitor cells could differentiate into mature vascular cells. The main physiological factors implicated in cell differentiation are specific growth factors. We hypothesized that simply by varying the oxygen content, progenitor cells can be differentiated either in mature endothelial cells (ECs) or contractile smooth muscle cells (SMCs) while keeping exactly the same culture medium.

Methodology/Principal Findings

Mononuclear cells were isolated by density gradient were cultivated under hypoxic (5% O2) or normoxic (21% O2) environment. Differentiated cells characterization was performed by confocal microscopy examination and flow cytometry analyses. The phenotype stability over a longer time period was also performed. The morphological examination of the confluent obtained cells after several weeks (between 2 and 4 weeks) showed two distinct morphologies: cobblestone shape in normoxia and a spindle like shape in hypoxia. The cell characterization showed that cobblestone cells were positive to ECs markers while spindle like shape cells were positive to contractile SMCs markers. Moreover, after several further amplification (until 3rd passage) in hypoxic or normoxic conditions of the previously differentiated SMC, immunofluorescence studies showed that more than 80% cells continued to express SMCs markers whatever the cell environmental culture conditions with a higher contractile markers expression compared to control (aorta SMCs) signature of phenotype stability.

Conclusion/Significance

We demonstrate in this paper that in vitro culture of peripheral blood mononuclear cells with specific angiogenic growth factors under hypoxic conditions leads to SMCs differentiation into a contractile phenotype, signature of their physiological state. Moreover after amplification, the differentiated SMC did not reverse and keep their contractile phenotype after the 3rd passage performed under hypoxic and normoxic conditions. These aspects are of the highest importance for tissue engineering strategies. These results highlight also the determinant role of the tissue environment in the differentiation process of vascular progenitor cells.  相似文献   

8.
The octahedral complex tetraammine(chloroaquo)cobalt(III) dichloride is shown to be the HCl hydrolysis product of both P1,2-bidentate tetraammine(pyrophosphato)cobalt(III) [Co(NH3)4HP2O7 or CoPP] and bidentate tetraammine(phosphato)cobalt(III) [Co(NH3)4PO4 or CoP]. The complex crystallizes in the orthorhombic space group Pna21 with cell dimensions a = 13.033(2)A, b = 6.710(1)A, and c = 10.318(2)A; the crystal structure was refined to a final disagreement index of 0.033. The average of the four Co-N distances is 1.944 +/- 6A. The Co-Cl distance is 2.257(2)A and the Co-O(W) distance is 1.971(4)A. Both protons of the coordinated water molecule are engaged in strong hydrogen bonds to the two nonbonded chloride counterions with O(W)-Cl distances of 3.087(6)A and 3.123(6)A. Each nonbonded chloride is engaged in seven hydrogen bonding interactions resulting from the high ratio of hydrogen bond donors to acceptors in the CoP structure. Cobalt bisphosphate (CoP2) is the final enzyme hydrolysis product when CoPP is used as substrate in the yeast inorganic pyrophosphatase reaction. The bridge oxygen atom is the site of initial CoPP cleavage both for HCl catalyzed hydrolysis as well as for enzyme catalyzed hydrolysis.  相似文献   

9.
过度氧化应激是诱发许多神经退变病的重要因素。叠氮钠(NaN3)是线粒体有氧呼吸链细胞色素c氧化酶(COX)的特异性抑制剂,过氧化氢(H2O2)释放氧自由基造成氧化损伤,两者都可以用于氧化应激情况下神经元损伤模型的建立。硫氧还蛋白还原酶(thioredoxin reductase,TR)特异性的还原氧化型的硫氧还蛋白(thioredoxin,TRx),调节细胞中氧化还原的平衡。现以不同浓度NaN3或H2O2,处理人神经母细胞瘤细胞(SH-SY5Y细胞),建立损伤模型。通过MTT法、形态学方法检测SH-SY5Y细胞损伤程度。同时,通过Western blot定量法、免疫细胞化学法,检测损伤的SH-SY5Y细胞中TR含量的改变,观察TR在胞内的分布。实验表明,NaN3、H2O2,均以浓度依赖方式损伤SH-SY5Y细胞;TR分布于SH-SY5Y细胞的胞浆,表明TR是一种分泌蛋白,损伤后分布无明显变化。但一定浓度的NaN3作用后3h,胞内TR水平显著降低,即神经系统内呼吸链受损可抑制TR的表达,为神经退变病的防治提供了新的思路。  相似文献   

10.
Titanium dioxide (TiO(2)) nanoparticles (NPs) are massively fabricated and widely used in daily life, and thus potential risk has been posed to human health. However, the mechanism of the interaction between TiO(2) NPs and cells is still unclear. In this study, the interaction of anatase TiO(2) NPs with HaCaT cells is studied in vitro with multi-techniques. The TiO(2) NPs not only insert into cells through endocytic pathway but also penetrate into the cell. The TiO(2) NPs could produce reactive oxygen species (ROS) after dispersion spontaneously. Furthermore, the interaction between TiO(2) NPs and cellular components might also generate ROS. The ROS generation could lead to cellular toxicity if the level of ROS production overwhelms the antioxidant defense. Cytoskeletal components, particularly the microfilaments and microtubules, cause modifications upon exposure to TiO(2) NPs. With all results, the toxicological effects of TiO(2) NPs on HaCaT cell can be simplified into six events.  相似文献   

11.
12.
Human HepG2 cells were exposed to six TiO2 nanomaterials (with dry primary particle sizes ranging from 22 to 214 nm, either 0.3, 3, or 30 μg/mL) for 3 days. Some of these canonical pathways changed by nano‐TiO2 in vitro treatments have been already reported in the literature, such as NRF2‐mediated stress response, fatty acid metabolism, cell cycle and apoptosis, immune response, cholesterol biosynthesis, and glycolysis. But this genomic study also revealed some novel effects such as protein synthesis, protein ubiquitination, hepatic fibrosis, and cancer‐related signaling pathways. More importantly, this genomic analysis of nano‐TiO2 treated HepG2 cells linked some of the in vitro canonical pathways to in vivo adverse outcomes: NRF2‐mediated response pathways to oxidative stress, acute phase response to inflammation, cholesterol biosynthesis to steroid hormones alteration, fatty acid metabolism changes to lipid homeostasis alteration, G2/M cell checkpoint regulation to apoptosis, and hepatic fibrosis/stellate cell activation to liver fibrosis.  相似文献   

13.
In the medium of H2SO4 and in the presence of TiO2+, gold nanoparticles in size of 10 nm exhibited a weak surface plasmon resonance scattering (SPRS) peak at 775 nm. Upon addition of trace H2O2, the yellow complex [TiO(H2O2)]2+ formed that cause the gold nanoparticles aggregations to form bigger gold nanoparticle clusters in size of about 900 nm, and the SPRS intensity at 775 nm (I) enhanced greatly. The enhanced intensity ΔI was linear to the H2O2 concentration in the range of 0.025–48.7 μg/mL, with a detection limit of 0.014 μg/mL H2O2. This SPRS method was applied to determining H2O2 in water samples with satisfactory results.  相似文献   

14.
Fe_3O_4磁性纳米粒子由于其良好的磁学性能,被广泛应用到了化学、生物、物理、环境保护等各个领域。尤其是在生物医学领域中的应用越来越受到研究者的关注。由于其所具有的优秀的超顺磁性性质,Fe_3O_4磁性纳米粒子可以作为造影剂,增强核磁共振成像的对比度和成像效果;也可以结合到纳米载药系统内用于药物的靶向输送;也可以包埋到蛋白内部用于蛋白的磁性分离;也可以用于基因治疗,提高靶细胞的转染效率;由于其在近红外光的作用下具有很好的光热转换效果,使温度升高,展现出的良好热疗效果,Fe_3O_4磁性纳米粒子又可以用于癌细胞的热疗。本文针对其在该领域中作为药物的靶向传递,蛋白的磁分离,核磁共振成像,热疗,以及基因治疗的载体等方面的研究应用进行了系统性的总结,阐述了Fe_3O_4磁性纳米粒子在生物医学领域中各种应用进展和优势。  相似文献   

15.
Antifungal drug ketoconazole causes severe drug-drug interactions by influencing gene expression and catalytic activity of major drug-metabolizing enzyme cytochrome P450 CYP3A4. Ketoconazole is administered in the form of racemic mixture of two cis-enantiomers, i.e. (+)-ketoconazole and (−)-ketoconazole. Many enantiopure drugs were introduced to human pharmacotherapy in last two decades. In the current paper, we have examined the effects of ketoconazole cis-enantiomers on the expression of CYP3A4 in human hepatocytes and HepG2 cells and on catalytic activity of CYP3A4 in human liver microsomes. We show that both ketoconazole enantiomers induce CYP3A4 mRNA and protein in human hepatocytes and HepG2 cells. Gene reporter assays revealed partial agonist activity of ketoconazole enantiomers towards pregnane X receptor PXR. Catalytic activity of CYP3A4/5 towards two prototypic substrates of CYP3A enzymes, testosterone and midazolam, was determined in presence of both (+)-ketoconazole and (−)-ketoconazole in human liver microsomes. Overall, both ketoconazole cis-enantiomers induced CYP3A4 in human cells and inhibited CYP3A4 in human liver microsomes. While interaction of ketoconazole with PXR and induction of CYP3A4 did not display enantiospecific pattern, inhibition of CYP3A4 catalytic activity by ketoconazole differed for ketoconazole cis-enantiomers ((+)-ketoconazole IC50 1.69 µM, Ki 0.92 µM for testosterone, IC50 1.46 µM, Ki 2.52 µM for midazolam; (−)-ketoconazole IC50 0.90 µM, Ki 0.17 µM for testosterone, IC50 1.04 µM, Ki 1.51 µM for midazolam).  相似文献   

16.
Mu H  Chen Y  Xiao N 《Bioresource technology》2011,102(22):10305-10311
The effect of metal oxide nanoparticles (nano-TiO2, nano-Al2O3, nano-SiO2 and nano-ZnO) on anaerobic digestion was investigated by fermentation experiments using waste activated sludge as the substrates. Nano-TiO2, nano-Al2O3 and nano-SiO2 in doses up to 150 milligram per gram total suspended solids (mg/g-TSS) showed no inhibitory effect, whereas nano-ZnO showed inhibitory effect with its dosages increased. The methane generation was the same as that in the control when in the presence of 6 mg/g-TSS of nano-ZnO, however, which decreased respectively to 77.2% and 18.9% of the control at 30 and 150 mg/g-TSS. The released Zn2+ from nano-ZnO was an important reason for its inhibitory effect on methane generation. It was found that higher dosages of nano-ZnO inhibited the steps of sludge hydrolysis, acidification and methanation. Also, the activities of protease, acetate kinase (AK) and coenzyme F420 were inhibited by higher dosages of nano-ZnO during WAS anaerobic digestion.  相似文献   

17.
Limited information is available on the potential risk of degradation products of metal-on-metal bearings in joint arthroplasty. The aim of this study was to investigate the cytotoxicity and genotoxicity of orthopedic-related cobalt nanoparticles on human T cells in vitro. T cells were collected using magnetic CD3 microbeads and exposed to different concentrations of cobalt nanoparticles and cobalt chloride. Cytotoxicity was evaluated by methyl thiazolyl tetrazolium and lactate dehydrogenase release assay. Cobalt nanoparticles dissolution in culture medium was determined by inductively coupled plasma-mass spectrometry. To study the probable mechanism of cobalt nanoparticles effects on T cells, superoxide dismutase, catalase, and glutathione peroxidase level was measured. Cobalt nanoparticles and cobalt ions could inhibit cell viability and enhance lactate dehydrogenase release in a concentration- and time-dependent manner (P < 0.05). The levels of cobalt ion released from cobalt nanoparticles in the culture medium were less than 40% and increased with cobalt nanoparticles concentration. Cobalt nanoparticles could induce primary DNA damage in a concentration-dependent manner, and the DNA damage caused by cobalt nanoparticles was heavier than that caused by cobalt ions. Cobalt nanoparticles exposure could significantly decrease superoxide dismutase, catalase, and glutathione peroxidase activities at subtoxic concentrations (6 μM, <CC50). These findings suggested that cobalt nanoparticles could generate potential risks to the T cells of patients suffer from metal-on-metal total hip arthroplasty, and the inhibition of antioxidant capacity may play important role in cobalt nanoparticles effects on T cells.  相似文献   

18.
以冬小麦为实验材料 ,研究了三种不同浓度的Co(C6H9N3 O2 ) 2 Cl2 对冬小麦种子萌发和苗期生长的影响。结果表明 :不同浓度的Co(C6H9N3 O2 ) 2 Cl2 均具有生物活性 ,它们对小麦的发芽势、生长势、发芽率、种子萌发过程中淀粉酶活力、根系发育以及生物量均有明显的生理作用。  相似文献   

19.
三种金属氧化物纳米颗粒的水生态毒性   总被引:8,自引:0,他引:8  
朱小山  朱琳  田胜艳  郎宇鹏  李燕 《生态学报》2008,28(8):3507-3516
参考国际经济合作与发展组织(OECD)化学品生态毒性测试标准方法,以绿藻(Scenedesmus oblignus)和大型蚤(Daphnia magna)为受试生物,研究了3种金属氧化物纳米颗粒(纳米氧化锌nZnO、纳米二氧化钛nTiO2、纳米氧化铝nAl2O3)水悬浮液的水生生态毒性.结果发现,不同的纳米颗粒具有不同的毒性:nZnO、nTiO2和nAl2O3对斜生栅藻生长的 96 h半效应浓度(EC50)值分别为1.049、15.262、>1000 mg · L-1,而对大型蚤活动抑制的 48 h EC50 值则分别为0.622、35.306 mg · L-1和114.357 mg · L-1.据此可得到3 种金属氧化物纳米颗粒水悬浮液的毒性大小顺序为:nZnO >nTiO2 > nAl2O3.此外,不同的生物对金属氧化物纳米颗粒的敏感性也不同,除nTiO2以外,大型蚤对另外2种纳米颗粒的敏感性强于斜生栅藻.实验结果表明,人工纳米材料的生态毒性和环境效应不容忽视,应重视并深入研究此类纳米材料的毒性作用机制和影响因子,以便能对其进行更好的风险管理.  相似文献   

20.
The microbial induced calcite precipitation (MICP) has been explored using well-known urease producer bacterium Sporosarcina pasteurii for many applications including soil stabilization. Urease enzyme hydrolyzes urea and in the presence of calcium chloride causes calcium carbonate precipitation between sand particles increasing sand stiffness and strength. In this study, the liquefied soil samples from Anzali coast were positioned inside injection columns by standard positioning technique. The columns were treated by injecting S. pasteurii suspension and cementation solution (CaCl2 and urea). The effect of different conditions consisting of number of injections, injection intervals, flow rate, and ratio of injection solution on unconfined compression strength (USC) of sands formed inside the columns were evaluated. The results indicated that soil strength was increased when ratio of reactant solutions and injection time were elevated. Moreover, the maximum Ca-precipitation in MICP reaction in liquid medium was obtained while Fe3O4/starch concentration and time of addition of nanoparticle to culture medium were 10.8?mg/L and 1.4?h, respectively. The USC results showed that the columns injected by bacterial suspension treated by Fe3O4/starch under optimized conditions improved the soil strength up to 1200?kPa in comparison to the control column as 220?kPa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号