首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human purine de novo synthesis pathway contains several multi-functional enzymes, one of which, tri-functional GART, contains three enzymatic activities in a single polypeptide chain. We have solved structures of two domains bearing separate catalytic functions: glycinamide ribonucleotide synthetase and aminoimidazole ribonucleotide synthetase. Structures are compared with those of homologous enzymes from prokaryotes and analyzed in terms of the catalytic mechanism. We also report small angle X-ray scattering models for the full-length protein. These models are consistent with the enzyme forming a dimer through the middle domain. The protein has an approximate seesaw geometry where terminal enzyme units display high mobility owing to flexible linker segments. This resilient seesaw shape may facilitate internal substrate/product transfer or forwarding to other enzymes in the pathway.  相似文献   

2.
The pathogenic protozoa responsible for malaria lack enzymes for the de novo synthesis of purines and rely on purine salvage from the host. In Plasmodium falciparum (Pf), hypoxanthine-guanine-xanthine phosphoribosyltransferase (HGXPRT) converts hypoxanthine to inosine monophosphate and is essential for purine salvage making the enzyme an anti-malarial drug target. We have synthesized a number of simple acyclic aza-C-nucleosides and shown that some are potent inhibitors of Pf HGXPRT while showing excellent selectivity for the Pf versus the human enzyme.  相似文献   

3.
4.
We previously showed that classical 6-substituted pyrrolo[2,3-d]pyrimidine antifolates bind to folate receptor (FR) α and the target purine biosynthetic enzyme glycinamide ribonucleotide formyltransferase (GARFTase) with different cis and trans conformations. In this study, we designed novel analogs of this series with an amide moiety in the bridge region that can adopt both the cis and trans lowest energy conformations. This provides entropic benefit, by restricting the number of side-chain conformations of the unbound ligand to those most likely to promote binding to FRα and the target enzyme required for antitumor activity. NMR of the most active compound 7 showed both cis and trans amide bridge conformations in ~1:1 ratio. The bridge amide group in the best docked poses of 7 in the crystal structures of FRα and GARFTase adopted both cis and trans conformations, with the lowest energy conformations predicted by Maestro and evidenced by NMR within 1 kcal/mol. Compound 7 showed ~3-fold increased inhibition of FRα-expressing cells over its non-restricted parent analog 1 and was selectively internalized by FRα over the reduced folate carrier (RFC), resulting in significant in vitro antitumor activity toward FRα-expressing KB human tumor cells. Antitumor activity of 7 was abolished by treating cells with adenosine but was incompletely protected by 5-aminoimidazole-4-carboxamide (AICA) at higher drug concentrations, suggesting GARFTase and AICA ribonucleotide formyltransferase (AICARFTase) in de novo purine biosynthesis as the likely intracellular targets. GARFTase inhibition by compound 7 was confirmed by an in situ cell-based activity assay. Our results identify a “first-in-class” classical antifolate with a novel amide linkage between the scaffold and the side chain aryl L-glutamate that affords exclusive selectivity for transport via FRα over RFC and antitumor activity resulting from inhibition of GARFTase and likely AICARFTase. Compound 7 offers significant advantages over clinically used inhibitors of this class that are transported by the ubiquitous RFC, resulting in dose-limiting toxicities.  相似文献   

5.
In exponentially growing cultures of the extreme halophile Halobacterium halobium and the moderate halophile Haloferax volcanii, growth characteristics including intracellular protein levels, RNA content, and nucleotide pool sizes were analyzed. This is the first report on pool sizes of nucleoside triphosphates, NAD, and PRPP (5-phosphoribosyl-α-1-pyrophosphate) in archaea. The presence of a number of salvage and interconversion enzymes was determined by enzymatic assays. The levels varied significantly between the two organisms. The most significant difference was the absence of GMP reductase activity in H. halobium. The metabolism of exogenous purines was investigated in growing cultures. Both purine bases and nucleosides were readily taken up and were incorporated into nucleic acids. Growth of both organisms was affected by a number of inhibitors of nucleotide synthesis. H. volcanii was more sensitive than H. halobium, and purine base analogs were more toxic than nucleoside analogs. Growth of H. volcanii was inhibited by trimethoprim and sulfathiazole, while these compounds had no effect on the growth of H. halobium. Spontaneous mutants resistant to purine analogs were isolated. The most frequent cause of resistance was a defect in purine phosphoribosyltransferase activity coupled with reduced purine uptake. A single phosphoribosyltransferase seemed to convert guanine as well as hypoxanthine to nucleoside monophosphates, and another phosphoribosyltransferase had specificity towards adenine. The differences in the metabolism of purine bases and nucleosides and the sensitivity to purine analogs between the two halobacteria were reflected in differences in purine enzyme levels. Based on our results, we conclude that purine salvage and interconversion pathways differ just as much between the two archaeal species as among archaea, bacteria, and eukarya.  相似文献   

6.
Deoxyribosyl transferases and functionally related purine nucleoside phosphorylases are used extensively for synthesis of non-natural deoxynucleosides as pharmaceuticals or standards for characterizing and quantitating DNA adducts. Hence exploring the conformational tolerance of the active sites of these enzymes is of considerable practical interest. We have determined the crystal structure at 2.1 Å resolution of Lactobacillus helveticus purine deoxyribosyl transferase (PDT) with the tricyclic purine 8,9-dihydro-9-oxoimidazo[2,1-b]purine (N 2,3-ethenoguanine) at the active site. The active site electron density map was compatible with four orientations, two consistent with sites for deoxyribosylation and two appearing to be unproductive. In accord with the crystal structure, Lactobacillus helveticus PDT glycosylates the 8,9-dihydro-9-oxoimidazo[2,1-b]purine at N7 and N1, with a marked preference for N7. The activity of Lactobacillus helveticus PDT was compared with that of the nucleoside 2′-deoxyribosyltransferase enzymes (DRT Type II) from Lactobacillus leichmannii and Lactobacillus fermentum, which were somewhat more effective in the deoxyribosylation than Lactobacillus helveticus PDT, glycosylating the substrate with product profiles dependent on the pH of the incubation. The purine nucleoside phosphorylase of Escherichia coli, also commonly used in ribosylation of non-natural bases, was an order of magnitude less efficient than the transferase enzymes. Modeling based on published active-site structures as templates suggests that in all cases, an active site Phe is critical in orienting the molecular plane of the purine derivative. Adventitious hydrogen bonding with additional active site residues appears to result in presentation of multiple nucleophilic sites on the periphery of the acceptor base for ribosylation to give a distribution of nucleosides. Chemical glycosylation of O 9-benzylated 8,9-dihydro-9-oxoimidazo[2,1-b]purine also resulted in N7 and N1 ribosylation. Absent from the enzymatic and chemical glycosylations is the natural pattern of N3 ribosylation, verified by comparison of spectroscopic and chromatographic properties with an authentic standard synthesized by an unambiguous route.  相似文献   

7.
Most living organisms can synthesize isosinate from 5-phosphoribosyl 1-pyrophosphate in the de novo purine biosynthesis pathway, which is basically composed of 10 reaction steps. Phosphoribosylglycinamide synthetase (GARS) catalyzes the second step of the pathway. We found that the enzyme shows weak, but significant, sequence similarity to phosphoribosylglycinamide formyltransferase 2 (GART2) and the ATPase domain of phosphoribosylaminoimidazole carboxylase (AIRCA), which catalyze the third and sixth steps of the pathway, respectively. In addition, the three enzymes were similar in amino acid sequence to biotin carboxylase (BC) and carbamoylphosphate synthetase (CPS), which are the members of the GS ADP-forming family. This family has been identified through a tertiary structure comparison and includes glutathione synthetase, d-alanine:d-alanine ligase, BC, succinyl-CoA synthetase β-chain, and phosphoribosylaminoimidazole-succinocarboxamide synthase. Molecular phylogenetic analysis based on a multiple alignment of GARS, GART2, AIRCA, BC, and CPS suggests that GART2 is more closely related to AIRCA than to GARS among the three enzymes from the pathway, though the three enzymes are relatively close to each other within the GS ADP-forming family. Moreover, the analysis showed that archaeal GARS had diverged before the speciation between bacteria and eucarya. Received: 3 June 1998 / Accepted: 8 September 1998  相似文献   

8.
Biocatalyzed synthesis of nucleoside analogues was carried out using two thermostable nucleoside phosphorylases from the hyperthermophilic aerobic crenarchaeon Aeropyrum pernix K1. The synthesis of the 2,6-diaminopurine nucleoside and 5-methyluridine was used as a reaction model to test the process. Both the purine nucleoside phosphorylase (apPNP) and uridine phosphorylase (apUP) were functionally expressed in Escherichia coli. The recombinant enzymes were characterized after purification, and both enzymes showed high thermostability and broad substrate specificity. Both enzymes retained 100 % of their activity after 60 min at high temperature, and the optimum temperature for the enzymes was 90–100 °C. The nucleoside phosphorylases obtained from A. pernix are valuable industrial biocatalysts for high-temperature reactions that produce nucleoside drugs in high yields.  相似文献   

9.
Cyclin-dependent kinases (CDKs) belong to a class of enzymes that control the ability of a cell to enter into and proceed through the cell division cycle. Using purine as a scaffold, we have synthesized a number of nanomolar inhibitors of CDK-2/cyclin E. In this report, the synthesis of a series of piperidine-substituted purine analogs will be presented, as well as some of their in vitro and in vivo biological effects.  相似文献   

10.
Glycinamide ribonucleotide formyltransferase (GART) has been established as a pivotal enzyme in de novo purine synthesis, and mediates cellular apoptosis in many diseases. We aimed to investigate the role of GART in the pathogenesis of Crohn’s disease (CD). In our study, we demonstrated for the first time that GART expression is up-regulated in patients with active CD and in 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced acute colitis model. Moreover, the inhibition of GART induced cellular apoptosis and suppressed the migration of IECs through the activation of the MEKK3-MKK3-p38 mitogen-activated protein kinase (MAPK) pathway, following with the dys-regulation of p53 and p53 up-regulated modulator of apoptosis (PUMA). Taken together, GART plays a critical role in the protection of cellular apoptosis and migration of intestinal epithelial cells to maintain the integrity of the epithelial barrier, thus providing a new potential approach in designing a novel therapy for CD.  相似文献   

11.
Enzymes of ureide synthesis in pea and soybean   总被引:7,自引:3,他引:4       下载免费PDF全文
Soybean (Glycine max) and pea (Pisum sativum) differ in the transport of fixed nitrogen from nodules to shoots. The dominant nitrogen transport compounds for soybean are ureides, while amides dominate in pea. A possible enzymic basis for this difference was examined.

The level of enzymes involved in the formation of the ureides allantoin and allantoic acid from inosine 5′-monophosphate (IMP) was compared in different tissues of pea and soybean. Two enzymes, 5′-nucleotidase and uricase, from soybean nodules were found to be 50- and 25-fold higher, respectively, than the level found in pea nodules. Other purine catabolizing enzymes (purine nucleosidase, xanthine dehydrogenase, and allantoinase) were found to be at the same level in the two species. From comparison of enzyme activities in nodules with those from roots, stems, and leaves, two enzymes were found to be nodule specific, namely uricase and xanthine dehydrogenase. The level of enzymes found in the bacteroids indicated no significant contribution of Rhizobium japonicum purine catabolism in the overall formation of ureides in the soybean nodule. The presence in the nodules of purine nucleosidase and ribokinase activities makes a recirculation of the ribose moiety possible. In concert with phosphoribosylpyrophosphate synthetase, ribose becomes available for a new round of purine de novo synthesis, and thereby ureide formation.

  相似文献   

12.
In plants, the ureide pathway is a metabolic route that converts the ring nitrogen atoms of purine into ammonia via sequential enzymatic reactions, playing an important role in nitrogen recovery. In the final step of the pathway, (S)-ureidoglycolate amidohydrolase (UAH) catalyzes the conversion of (S)-ureidoglycolate into glyoxylate and releases two molecules of ammonia as by-products. UAH is homologous in structure and sequence with allantoate amidohydrolase (AAH), an upstream enzyme in the pathway with a similar function as that of an amidase but with a different substrate. Both enzymes exhibit strict substrate specificity and catalyze reactions in a concerted manner, resulting in purine degradation. Here, we report three crystal structures of Arabidopsis thaliana UAH (bound with substrate, reaction intermediate, and product) and a structure of Escherichia coli AAH complexed with allantoate. Structural analyses of UAH revealed a distinct binding mode for each ligand in a bimetal reaction center with the active site in a closed conformation. The ligand directly participates in the coordination shell of two metal ions and is stabilized by the surrounding residues. In contrast, AAH, which exhibits a substrate-binding site similar to that of UAH, requires a larger active site due to the additional ureido group in allantoate. Structural analyses and mutagenesis revealed that both enzymes undergo an open-to-closed conformational transition in response to ligand binding and that the active-site size and the interaction environment in UAH and AAH are determinants of the substrate specificities of these two structurally homologous enzymes.  相似文献   

13.
Glycinamide ribonucleotide transformylase (GART; 10-formyltetrahydrofolate:5'-phosphoribosylglycinamide formyltransferase, EC 2.1.2.2), an essential enzyme in de novo purine biosynthesis, has been a chemotherapeutic target for several decades. The three-dimensional structure of the GART domain from the human trifunctional enzyme has been solved by X-ray crystallography. Models of the apoenzyme, and a ternary complex with the 10-formyl-5,8-dideazafolate cosubstrate and a glycinamide ribonucleotide analogue, hydroxyacetamide ribonucleotide [alpha,beta-N-(hydroxyacetyl)-d-ribofuranosylamine], are reported to 2.2 and 2.07 A, respectively. The model of the apoenzyme represents the first structure of GART, from any source, with a completely unoccupied substrate and cosubstrate site, while the ternary complex is the first structure of the human GART domain that is bound at both the substrate and cosubstrate sites. A comparison of the two models therefore reveals subtle structural differences that reflect substrate and cosubstrate binding effects and implies roles for the invariant residues Gly 133, Gly 146, and His 137. Preactivation of the DDF formyl group appears to be key for catalysis, and structural flexibility of the active end of the substrate may facilitate nucleophilic attack. A change in pH, rather than folate binding, correlates with movement of the folate binding loop, whereas the phosphate binding loop position does not vary with pH. The electrostatic surface potentials of the human GART domain and Escherichia coli enzyme explain differences in the binding affinity of polyglutamylated folates, and these differences have implications to future chemotherapeutic agent design.  相似文献   

14.
Human African Trypanosomiasis (HAT), also known as sleeping sickness, is a Neglected Tropical Disease endemic to 36 African countries, with approximately 70 million people currently at risk for infection. Current therapeutics are suboptimal due to toxicity, adverse side effects, and emerging resistance. Thus, both effective and affordable treatments are urgently needed. The causative agent of HAT is the protozoan Trypanosoma brucei ssp. Annotation of its genome confirms previous observations that T. brucei is a purine auxotroph. Incapable of de novo purine synthesis, these protozoan parasites rely on purine phosphoribosyltransferases to salvage purines from their hosts for the synthesis of purine monophosphates. Complete and accurate genome annotations in combination with the identification and characterization of the catalytic activity of purine salvage enzymes enables the development of target-specific therapies in addition to providing a deeper understanding of purine metabolism in T. brucei. In trypanosomes, purine phosphoribosyltransferases represent promising drug targets due to their essential and central role in purine salvage. Enzymes involved in adenine and adenosine salvage, such as adenine phosphoribosyltransferases (APRTs, EC 2.4.2.7), are of particular interest for their potential role in the activation of adenine and adenosine-based pro-drugs. Analysis of the T. brucei genome shows two putative aprt genes: APRT1 (Tb927.7.1780) and APRT2 (Tb927.7.1790). Here we report studies of the catalytic activity of each putative APRT, revealing that of the two T. brucei putative APRTs, only APRT1 is kinetically active, thereby signifying a genomic misannotation of Tb927.7.1790 (putative APRT2). Reliable genome annotation is necessary to establish potential drug targets and identify enzymes involved in adenine and adenosine-based pro-drug activation.  相似文献   

15.
We report here for the first time that the GART domain of the human trifunctional enzyme possessing GARS, AIRS, and GART activities can be expressed independently inEscherichia coli at high levels as a stable protein with enzymatic characteristics comparable to those of native trifunctional protein. Human trifunctional enzyme is involved inde novo purine biosynthesis, and has long been recognized as a target for antineoplastic intervention. The GART domain was expressed inE. coli under the control of bacteriophage T7 promotor and isolated by a three-step chromatographic procedure. Two residues, Asp 951 and His 915, were shown to be catalytically crucial by site-directed mutagenesis and subsequent characterization of purified mutant proteins. The active monofunctional GART protein produced inE. coli can serve as a valuable substitute of trifunctional enzyme for structural and functional studies which have been until now hindered because of insufficient quantity, instability, and size of the trifunctional GART protein.  相似文献   

16.
In eukaryotes, folate metabolism is compartmentalized between the cytoplasm and organelles. The folate pathways of mitochondria are adapted to serve the metabolism of the organism. In yeast, mitochondria support cytoplasmic purine synthesis through the generation of formate. This pathway is important but not essential for survival, consistent with the flexibility of yeast metabolism. In plants, the mitochondrial pathways support photorespiration by generating serine from glycine. This pathway is essential under photosynthetic conditions and the enzyme expression varies with photosynthetic activity. In mammals, the expression of the mitochondrial enzymes varies in tissues and during development. In embryos, mitochondria supply formate and glycine for purine synthesis, a process essential for survival; in adult tissues, flux through mitochondria can favor serine production. The differences in the folate pathways of mitochondria depending on species, tissues and developmental stages, profoundly alter the nature of their metabolic contribution.  相似文献   

17.
18.
Fractionation of cell organelles of nitrogen-fixing nodules of cowpea (Vigna unguiculata L. Walp) by discontinuous and continuous sucrose density centrifugation indicated that starch-containing plastids possessed the complete pathway for purine nucleotide synthesis together with significant activities of some other enzymes associated with the provision of substrates in purine synthesis; triosephosphate isomerase (EC 5.3.1.1), NADH-glutamate synthase (EC 2.6.1.53), aspartate aminotransferase (EC 2.6.1.1), phosphoglycerate oxidoreductase (EC 1.1.1.95), and methylene tetrahydrofolate oxidoreductase (EC 1.5.1.5). Enzymes of purine oxidation, xanthine oxidoreductase (EC 1.2.3.2), and urate oxidase (EC 1.7.3.3) were recovered in the soluble fraction; glutamine synthetase (EC 6.3.1.2) occurred in bacteroids and in the cytosol. Intact, infected (bacteroid-containing) and uninfected cells were prepared by enzymatic maceration of the central zone of the nodule and partially separated by centrifugation on discontinuous sucrose gradients. Glutamine synthetase was largely restricted to infected cells whereas plastid enzymes, de novo purine synthesis, and urate oxidase were present in both cell types. Although the levels of all enzymes assayed were higher in infected cells, both cell types possessed the necessary enzyme complement for ureide formation. A model for the cellular and subcellular organization of nitrogen metabolism and the transport of nitrogenous solutes in cowpea nodules is proposed.  相似文献   

19.
A partly defined medium was successfully designed for the cultivation of Tritrichomonas foetus, an anaerobic protozoan parasite of cattle. The medium consists of hypoxanthine, uracil, and thymidine as the sole precursors of nucleotides in T. foetus. Elimination of any one of the three precursors from the medium led to cessation of T. foetus growth. The information provided by this medium verifies our previous observations that T. foetus is incapable of de novo purine and pyrimidine synthesis, that hypoxanthine can be converted to AMP and GMP, that uracil is incorporated into all pyrimidine ribonucleotides including UDP-glucose—the precursor of glycogen synthesis, and that thymidine is the only precursor of TMP. The omission of folate from the medium, without affecting growth of T. foetus, also supports our previous finding that the parasite does not have functioning dihydrofolate reductase or thymidylate synthetase. The successful plating of T. foetus on agar plates incorporating the partly defined medium with near 100% plating efficiency makes it possible to isolate T. foetus mutants for further studies of purine and pyrimidine metabolism in this parasite.  相似文献   

20.
Enzymes of amide and ureide biogenesis in developing soybean nodules   总被引:13,自引:10,他引:3       下载免费PDF全文
Amide and ureide biogenic enzymes were measured in the plant fraction of soybean (Glycine max) nodules during the period 11 to 23 days after inoculation with Rhizobium japonicum (USDA 3I1b142). Enzymes involved in the initial assimilation of ammonia, i.e. glutamine synthetase, glutamate synthase, and aspartate aminotransferase, showed substantial increases in their specific activities over the time course. These increases paralleled the induction of nitrogenase activity in the bacteroid and leghemoglobin synthesis in the plant fraction. The specific activity of asparagine synthetase, however, showed a rapid decline after an initial increase in specific activity. Following the initial increases in the ammonia assimilatory enzymes, there was an increase in the activity of 5-phosphoribosylpyrophosphate amidotransferase, the enzyme which catalyzes the first committed step of de novo purine biosynthesis. This was followed by a dramatic increase in the purine oxidative enzymes, xanthine dehydrogenase and uricase. Smaller increases were observed in the activities of enzymes associated with the supply of metabolites to the purine biosynthetic pathway: phosphoglycerate dehydrogenase, serine hydroxymethylase, and methylene tetrahydrofolate dehydrogenase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号