首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A lectin from the mycelial extract of an endophytic strain of Fusarium solani was purified. Its hemagglutinating activity was inhibited by glycoproteins possessing N-linked as well as O-linked glycans. The thermodynamics and kinetics of binding of glycans and glycoproteins to F. solani lectin was studied using surface plasmon resonance. The lectin showed high affinity for asialofetuin, asialomucin, asialofibrinogen, and thyroglobulin; and comparatively low affinity for mucin, fetuin, fibrinogen, and holotransferrin. Glycoproteins showed several fold higher affinity than their corresponding glycans with significant contribution from enthalpy and positive entropy, suggesting the involvement of non-polar protein-protein interaction. Moreover, the higher affinity of the glycoproteins was due to their faster association rates and low activation energy.  相似文献   

2.
A novel 114 kDa hexameric lectin was purified from the fruiting bodies of the mushroom Ganoderma lucidum. Biochemical characterization revealed it to be a glycoprotein having 9.3% neutral sugar and it showed hemagglutinating activity on pronase treated human erythrocytes. The lectin was stable in the pH range of 5-9 and temperature up to 50 degrees C. The hemagglutinating activity was inhibited by glycoproteins that possessed N-as well as O-linked glycans. Chemical modification of the G. lucidum lectin revealed contribution of tryptophan and lysine to binding activity. The thermodynamics of binding of bi- and triantennary N-glycans to G. lucidum lectin was studied by spectrofluorimetry. The lectin showed very high affinity for asialo N-linked triantennary glycan and a preference for asialo glycans over sialylated glycans. The binding was accompanied with a large negative change in enthalpy as well as entropy, indicating primarily involvement of polar hydrogen, van der Waals and hydrophobic interactions in the binding.  相似文献   

3.
The affinity interactions of Concanavalin A (Con A) with various saccharide oligomers (dextrins, dextrans, and selected N-linked glycans from various glycoproteins) have been investigated through a capillary electrophoresis approach. Con A has shown a notable binding discrimination between the α-1,6-linked dextran and α-1,4-linked dextrin oligomers. Both the binding capacity and binding discrimination appear to decrease with an increase in sugar chainlength. While the core structure of N-linked glycans is deemed to be responsible for the overall binding of various glycans to Con A, the presence of mannose units at the non-reducing ends was found to be very beneficial to the affinity interaction with Con A. Finally, a connection between the glycan–lectin interaction and glycoprotein–lectin interaction has also been suggested.  相似文献   

4.
A novel 114 kDa hexameric lectin was purified from the fruiting bodies of the mushroom Ganoderma lucidum. Biochemical characterization revealed it to be a glycoprotein having 9.3% neutral sugar and it showed hemagglutinating activity on pronase treated human erythrocytes. The lectin was stable in the pH range of 5–9 and temperature up to 50 °C. The hemagglutinating activity was inhibited by glycoproteins that possessed N-as well as O-linked glycans. Chemical modification of the G. lucidum lectin revealed contribution of tryptophan and lysine to binding activity. The thermodynamics of binding of bi- and triantennary N-glycans to G. lucidum lectin was studied by spectrofluorimetry. The lectin showed very high affinity for asialo N-linked triantenary glycan and a preference for asialo glycans over sialylated glycans. The binding was accompanied with a large negative change in enthalpy as well as entropy, indicating primarily involvement of polar hydrogen, van der Waals and hydrophobic interactions in the binding.  相似文献   

5.
Amaranthus leucocarpus lectin is a homodimeric glycoprotein of 35 kDa per sub-unit, which interacts specifically with N-acetyl-galactosamine. In this work, we compared different glycoproteins that contain Galbeta1-3 GalNAcalpha1-3 Ser/Thr or GalNAcalpha1-3 Ser/Thr in their structure as ligands to purify the A. leucocarpus lectin. From the glycoproteins tested, fetuin was the most potent inhibitor of the hemagglutinating activity and the better ligand for lectin purification; however, the use of desialylated stroma from erythrocytes represented the cheapest method to purify this lectin. O-linked glycans released from the glycoproteins used as affinity matrix and those from different erythrocytes were less inhibitory than parental glycoproteins. The NH2-terminal of the lectin is blocked; moreover, this is the only example of a lectin isolated from this genus to be a glycoprotein. Analysis of the glycoprotein sequences with inhibitory activity for the lectin, showed a different pattern in the O-glycosylation, which confirms that A. leucocarpus lectin recognizes conformation and, probably, distances among O-linked glycans moieties.  相似文献   

6.
Bovine binucleate trophoblast giant cells (BNCs) produce large amounts of PAS-positive cytoplasmic granules. After fusion of BNCs with uterine epithelial cells, the contents of these granules are released into the maternal stroma which underlies the uterine epithelium. Histochemically, the granules can be labeled with N-acetylgalactosamine-specific lectins ( Dolichos biflorus, Vicia villosa, and Wisteria floribunda agglutinins) and with Phaseolus vulgaris leucoagglutinin. In this study, we used lectin western blot analysis of proteins from fetal cotyledons to characterize the lectin binding glycoproteins. Lectin western blots showed several bands. A main band of approximately 65 kDa was identified as pregnancy-associated glycoproteins (PAGs) and a double band at 34-35 kDa as prolactin-related protein-I (PRP-I) by their crossreactivity with specific antisera. Enzymatic cleavage of N-linked glycans with peptide- N-glycanase F abolished the lectin binding to PRP and PAGs in western blots, revealing that the lectins bound to asparagine-linked glycans. The high specificity of the lectins was used for the enrichment of PRP-I and PAGs from placental cotyledons with Vicia villosa lectin affinity chromatography. The occurrence of the relatively uncommon asparagine-linked N-acetylgalactosaminyl glycans on secretory proteins of the BNCs suggests a functional role of this specific glycosylation pattern.  相似文献   

7.
A lectin with strong mitogenic activity towards human peripheral blood mononuclear cells (PBMCs) and cytotoxic effect on human ovarian cancer cells has been purified from the mycelium of a phytopathogenic fungus, Rhizoctonia bataticola, using ion exchange chromatography and affinity chromatography on asialofetuin-Sepharose. The lectin, termed RBL, is a tetramer of 11-kDa subunits and has unique amino acid sequence at its blocked N-terminus. The purified RBL was blood group nonspecific and its hemagglutination activity was inhibited by mucin (porcine stomach), fetuin (fetal calf serum) and asialofetuin. Glycan array analysis revealed high affinity binding of RBL towards N-glycans and also the glycoproteins containing complex N-glycan chains. Interestingly, the lectin showed high affinity for glycans which are part of ovarian cancer marker CA125, a high molecular weight mucin containing high mannose and complex bisecting type N-linked glycans as well core 1 and 2 type O-glycans. RBL bound to human PBMCs eliciting strong mitogenic response, which could be blocked by mucin, fetuin and asialofetuin demonstrating the carbohydrate-mediated interaction with the cells. Analysis of the kinetics of binding of RBL to PBMCs revealed a delayed mitogenic response indicating a different signaling pathway compared to phytohemagglutinin-L. RBL had a significant cytotoxic effect on human ovarian cancer cell line, PA-1.  相似文献   

8.
For many years, molecular interactions with vascular endothelium have been studied in vitro on cultured endothelial cells. Yet, it is clear that the different environmental conditions in vivo vs. in vitro may cause phenotypic drift and altered expression of cell surface molecules. In this study, we identify several endothelial surface proteins of similar apparent molecular mass by radioiodination of cultured microvascular cells and by intravascular radioiodination of rat heart endothelium in situ. The radioiodinated surface polypeptides detected by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) (followed by autoradiography) were subjected to lectin affinity chromatography in order to provide an additional screen for identifying common surface glycoproteins and a means for partial characterization of their glycans. With a battery of 18 lectins, seven major (gp140, gp120, gp100, gp85, gp75, gp60, gp47) and 6 minor (gp330, gp300, gp180, gp160, gp150, gp42) glycoproteins were identified on the cultured cells each with a different lectin binding profile. The lectin binding profiles of many endothelial glycoproteins in situ were similar to those of their counterparts in culture. A common set of seven major glycoproteins with the same apparent molecular masses was found in situ as well as in vitro. These common glycoproteins were characterized further using both sialidase digestion and sequential lectin affinity chromatography of cell lysates. Most of the glycoproteins appear to have both complex-type N-linked and O-linked glycans except for gp60 with only O-linked glycans, gp47 with only complex N-linked sugars, and gp42 with only simple N-linked sugars. A subset of sialoglycoproteins (gp140, gp120, gp100, gp60, gp47) was identified. One of them, gp120, is podocalyxin based on immunoprecipitation with specific antiserum and another one, gp60, is a recently identified albumin binding protein on the surface of cultured microvascular endothelial cells. This study shows that gp60 is indeed present on the surface of endothelium in situ and that it is a sialoglycoprotein with typical O-linked glycans. It is apparent that the continuous type of microvascular endothelium can indeed express in culture and in situ a common set of major glycoproteins.  相似文献   

9.
The scavenger receptor C-type lectin (SRCL) is a glycan-binding receptor that has the capacity to mediate endocytosis of glycoproteins carrying terminal Lewis(x) groups (Galβ1-4(Fucα1-3)GlcNAc). A screen for glycoprotein ligands for SRCL using affinity chromatography on immobilized SRCL followed by mass spectrometry-based proteomic analysis revealed that soluble glycoproteins from secondary granules of neutrophils, including lactoferrin and matrix metalloproteinases 8 and 9, are major ligands. Binding competition and surface plasmon resonance analysis showed affinities in the low micromolar range. Comparison of SRCL binding to neutrophil and milk lactoferrin indicates that the binding is dependent on cell-specific glycosylation in the neutrophils, as the milk form of the glycoprotein is a much poorer ligand. Binding to neutrophil glycoproteins is fucose-dependent, and mass spectrometry-based glycomic analysis of neutrophil and milk lactoferrin was used to establish a correlation between high affinity binding to SRCL and the presence of multiple clustered terminal Lewis(x) groups on a heterogeneous mixture of branched glycans, some with poly N-acetyllactosamine extensions. The ability of SRCL to mediate uptake of neutrophil lactoferrin was confirmed using fibroblasts transfected with SRCL. The common presence of Lewis(x) groups in granule protein glycans can thus target granule proteins for clearance by SRCL. PCR and immunohistochemical analysis confirm that SRCL is widely expressed on endothelial cells and thus represents a distributed system that could scavenge released neutrophil glycoproteins both locally at sites of inflammation or systemically when they are released in the circulation.  相似文献   

10.
Wu AM  Wu JH  Tsai MS  Hegde GV  Inamdar SR  Swamy BM  Herp A 《Life sciences》2001,69(17):2039-2050
In order to investigate the functional roles of a phytopathogenic fungal lectin (SRL) isolated from the bodies of Sclerotium rolfsii, the binding properties of SRL were studied by enzyme linked lectinosorbent assay and by inhibition of SRL-glycan interaction. Among glycoproteins (gp) tested for binding, SRL reacted strongly with GalNAc alpha1-->4Ser/Thr (Tn) and/or Gal beta1-->3GalNAc alpha1-->(T(alpha)) containing gps: human T(alpha) and Tn glycophorin, asialo salivary gps, and asialofetuin, but its reactivity toward sialylated glycoproteins was reduced significantly. Of the sugar ligands tested for inhibition of SRL-asialofetuin binding, Thomsen-Friedenreich residue (T(alpha)) was the best, being 22.4 and 2.24 x 10(3) more active than GalNAc and Gal beta1--> residues, respectively. Other ligands tested were inactive. When the glycans used as inhibitors, T(alpha), and/or Tn containing gps, especially asialo PSM, asialo BSM, asialo OSM, active antifreeze gp, asialo glycophorin and Tn-glycophorin were very active, and 1.0 x 10(4) times more potent than GalNAc. From these results, it is clear that the combining site of SRL should be of a cavity type and recognizes only Tn and T(alpha) residues of glycans; it is suggested that T(alpha) and Tn glycotopes, which are present only in abnormal carbohydrate sequences of higher orders of mammal, are the most likely sites for phytopathogenic fungal attachment as an initial step of infection. The affinity of SRL for ligands can be ranked in decreasing order as follows: multivalent T(alpha) and Tn > monomeric T(alpha) and Tn > GalNAc > II (Gal beta1-->4GlcNAc), L (Gal beta1-->4Glc), and Gal.  相似文献   

11.
Engineered receptor fragments and glycoprotein ligands employed in different assay formats have been used to dissect the basis for the dramatic enhancement of binding of two model membrane receptors, dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin (DC-SIGN) and the macrophage galactose lectin, to glycoprotein ligands compared to simple sugars. These approaches make it possible to quantify the importance of two major factors that combine to enhance the affinity of single carbohydrate-recognition domains (CRDs) for glycoprotein ligands by 100-to 300-fold. First, the presence of extended binding sites within a single CRD can enhance interaction with branched glycans, resulting in increases of fivefold to 20-fold in affinity. Second, presentation of glycans on a glycoprotein surface increases affinity by 15-to 20-fold, possibly due to low-specificity interactions with the surface of the protein or restriction in the conformation of the glycans. In contrast, when solution-phase networking is avoided, enhancement due to binding of multiple branches of a glycan to multiple CRDs in the oligomeric forms of these receptors is minimal and binding of a receptor oligomer to multiple glycans on a single glycoprotein makes only a twofold contribution to overall affinity. Thus, in these cases, multivalent interactions of individual glycoproteins with individual receptor oligomers have a limited role in achieving high affinity. These findings, combined with considerations of membrane receptor geometry, are consistent with the idea that further enhancement of the binding to multivalent glycoprotein ligands requires interaction of multiple receptor oligomers with the ligands.  相似文献   

12.
A collection of Caenorhabditis elegans mutants that show ectopic surface lectin binding (Srf mutants) was analyzed to determine the biochemical basis for this phenotype. This analysis involved selective removal or labeling of surface components, specific labeling of surface glycans, and fractionation of total protein with subsequent detection of wheat germ agglutinin (WGA) binding proteins. Wild-type and mutant nematodes showed no differences in their profiles of extractable surface glycoproteins or total WGA-binding proteins, suggesting that the ectopic lectin binding does not result from the novel expression of surface glycans. Instead, these results support a model in which ectopic lectin binding results from an unmasking of glycosylated components present in the insoluble cuticle matrix of wild-type animals. To explain the multiple internal defects found in some surface mutants, we propose that these mutants have a basic defect in protein processing. This defect would interfere with the expression of the postulated masking protein(s), as well as other proteins required for normal development.  相似文献   

13.
Glucosidase II (GII) sequentially removes the two innermost glucose residues from the glycan (Glc(3)Man(9)GlcNAc(2)) transferred to proteins. GII also participates in cycles involving the lectin/chaperones calnexin (CNX) and calreticulin (CRT) as it removes the single glucose unit added to folding intermediates and misfolded glycoproteins by the UDP-Glc:glycoprotein glucosyltransferase (UGGT). GII is a heterodimer in which the α subunit (GIIα) bears the active site, and the β subunit (GIIβ) modulates GIIα activity through its C-terminal mannose 6-phosphate receptor homologous (MRH) domain. Here we report that, as already described in cell-free assays, in live Schizosaccharomyces pombe cells a decrease in the number of mannoses in the glycan results in decreased GII activity. Contrary to previously reported cell-free experiments, however, no such effect was observed in vivo for UGGT. We propose that endoplasmic reticulum α-mannosidase-mediated N-glycan demannosylation of misfolded/slow-folding glycoproteins may favor their interaction with the lectin/chaperone CNX present in S. pombe by prolonging the half-lives of the monoglucosylated glycans (S. pombe lacks CRT). Moreover, we show that even N-glycans bearing five mannoses may interact in vivo with the GIIβ MRH domain and that the N-terminal GIIβ G2B domain is involved in the GIIα-GIIβ interaction. Finally, we report that protists that transfer glycans with low mannose content to proteins have nevertheless conserved the possibility of displaying relatively long-lived monoglucosylated glycans by expressing GIIβ MRH domains with a higher specificity for glycans with high mannose content.  相似文献   

14.
We recently showed that a class of novel carboxylated N:-glycans was constitutively expressed on endothelial cells. Activated, but not resting, neutrophils expressed binding sites for the novel glycans. We also showed that a mAb against these novel glycans (mAbGB3.1) inhibited leukocyte extravasation in a murine model of peritoneal inflammation. To identify molecules that mediated these interactions, we isolated binding proteins from bovine lung by their differential affinity for carboxylated or neutralized glycans. Two leukocyte calcium-binding proteins that bound in a carboxylate-dependent manner were identified as S100A8 and annexin I. An intact N terminus of annexin I and heteromeric assembly of S100A8 with S100A9 (another member of the S100 family) appeared necessary for this interaction. A mAb to S100A9 blocked neutrophil binding to immobilized carboxylated glycans. Purified human S100A8/A9 complex and recombinant human annexin I showed carboxylate-dependent binding to immobilized bovine lung carboxylated glycans and recognized a subset of mannose-labeled endothelial glycoproteins immunoprecipitated by mAbGB3.1. Saturable binding of S100A8/A9 complex to endothelial cells was also blocked by mAbGB3.1. These results suggest that the carboxylated glycans play important roles in leukocyte trafficking by interacting with proteins known to modulate extravasation.  相似文献   

15.
Rani PG  Bachhawat K  Reddy GB  Oscarson S  Surolia A 《Biochemistry》2000,39(35):10755-10760
The carbohydrate binding specificity of the seed lectin from Artocarpus integrifolia, artocarpin, has been elucidated by the enzyme-linked lectin absorbent assay [Misquith, S., et al (1994) J. Biol. Chem. 269, 30393-30401], wherein it was demonstrated to be a Man/Glc specific lectin with high affinity for the trisaccharide present in the core of all N-linked oligosaccharide chains of glycoproteins. As a consequence of this characterization, the binding epitopes of this trisaccharide, 3, 6-di(alpha-D-mannopyranosyl)-D-mannose, for artocarpin were investigated by isothermal titration calorimetry using its monodeoxy as well as Glc and Gal analogues. The thermodynamic data presented here implicate 2-, 3-, 4-, and 6-hydroxyl groups of the alpha(1-3) Man and alpha(1-6) Man residues, and the 2- and 4-OH groups of the central Man residue, in binding to artocarpin. Nevertheless, alpha(1-3) Man is the primary contributor to the binding affinity, unlike other Man/Glc binding lectins which exhibit a preference for alpha(1-6) Man. In addition, unlike the binding reactions of most lectins reported so far, the interaction of mannotriose involves all of its hydroxyl groups with the combining site of the lectin. Moreover, the free energy and enthalpy contributions to binding of individual hydroxyl groups of the trimannoside estimated from the corresponding monodeoxy analogues show nonlinearity, suggesting differential contributions of the solvent and protein to the thermodynamics of binding of the analogues. Thus, this study not only provides evidence for the extended site recognition of artocarpin for the trimannoside epitope but also suggests that its combining site is best described as a deep cleft as opposed to shallow indentations implicated in other lectins.  相似文献   

16.
The kinetics of the binding of mannooligosaccharides to the heterodimeric lectin from garlic bulbs was studied using surface plasmon resonance. The interaction of the bound lectin immobilized on the sensor chip with a selected group of high mannose oligosaccharides was monitored in real time with the change in response units. This investigation corroborates our earlier study about the special preference of garlic lectin for terminal alpha-1,2-linked mannose residues. An increase in binding propensity can be directly correlated to the addition of alpha-1,2-linked mannose to the mannooligosaccharide at its nonreducing end. Mannononase glycopeptide (Man9GlcNAc2Asn), the highest oligomer studied, exhibited the greatest binding affinity (Ka = 1.2 x 10(6) m(-1) at 25 degrees C). An analysis of these data reveals that the alpha-1,2-linked terminal mannose on the alpha-1,6 arm is the critical determinant in the recognition of mannooligosaccharides by the lectin. The association (k1) and dissociation rate constants (k(-1)) for the binding of Man9GlcNAc2Asn to Allium sativum agglutinin I are 6.1 x 10(4) m(-1) s(-1) and 4.9 x 10(-2) s(-1), respectively, at 25 degrees C. Whereas k1 increases progressively from Man3 to Man7 derivatives, and more dramatically so for Man8 and Man9 derivatives, k(-1) decreases relatively much less gradually from Man3 to Man9 structures. An unprecedented increase in the association rate constant for interaction with Allium sativum agglutinin I with the structure of the oligosaccharide ligand constitutes a significant finding in protein-sugar recognition.  相似文献   

17.
The carbohydrate-binding specificity of a novel plant lectin isolated from the seeds of Tetracarpidium conophorum (Nigerian walnut) has been studied by quantitative hapten inhibition assays and by determining the behavior of a number of oligosaccharides and glycopeptides on lectin-Sepharose affinity columns. The Tetracarpidium lectin shows preference for simple, unbranched oligosaccharides containing a terminal Gal beta 1----4GlNAc sequence over a Gal beta 1----3GlcNAc sequence and substitution by sialic acid or fucose of the terminal galactose residue, the subterminal N-acetylglucosamine or more distally located sugar residues of oligosaccharides reduce binding activity. Branched complex-type glycans containing either Gal beta 1----4GlcNAc or Gal beta 1----3GlcNAc termini bind with higher affinity than simpler oligosaccharides. The lectin shows highest affinity for a tri-antennary glycan carrying Gal beta 1----4GlcNAc substituents on C-2 and C-4 of Man alpha 1----3 and C-2 of Man alpha 1----6 core residues. Bi- and tri-glycans lacking this branching pattern bind more weakly. Tetra-antennary glycans and mono- and di-branched hybrid-type glycans also bind weakly to the immobilized lectin. Therefore, Tetracarpidium lectin complements the binding specificities of well-known lectins such as Datura stramonium agglutinin, Phaseolus vulgaris agglutinin, and lentil lectin and will be a useful additional tool for the identification and separation of complex-type glycans.  相似文献   

18.
Lectins belonging to the jacalin-related lectin family are distributed widely in the plant kingdom. Recently, two mannose-specific lectins having tandem repeat-type structures were discovered in Castanea crenata (angiosperm) and Cycas revoluta (gymnosperm). The occurrence of such similar molecules in taxonomically less related plants suggests their importance in the plant body. To obtain clues to understand their physiological roles, we performed detailed analysis of their sugar-binding specificity. For this purpose, we compared the dissociation constants (K(d)) of Castanea crenata agglutinin (CCA) and Cycas revoluta leaf lectin (CRLL) by using 102 pyridylaminated and 13 p-nitrophenyl oligosaccharides with a recently developed automated system for frontal affinity chromatography. As a result, we found that the basic carbohydrate-binding properties of CCA and CRLL were similar, but differed in their preference for larger N-linked glycans (e.g. Man7-9 glycans). While the affinity of CCA decreased with an increase in the number of extended alpha1-2 mannose residues, CRLL could recognize these Man7-9 glycans with much enhanced affinity. Notably, both lectins also preserved considerable affinity for mono-antennary, complex type N-linked glycans, though the specificity was much broader for CCA. The information obtained here should be helpful for understanding their functions in vivo as well as for development of useful probes for animal cells. This is the first systematic approach to elucidate the fine specificities of plant lectins by means of high-throughput, automated frontal affinity chromatography.  相似文献   

19.
The N-terminal lectin domain (Nh) of the tandem repeat-type nematode galectin LEC-1 has a lower affinity for sugars than the C-terminal lectin domain. To confirm that LEC-1 forms a complex with N-acetyllactosamine-containing glycoproteins, we used several mutants of LEC-1 in which a unique cysteine residue was introduced into the Nh domain and examined their binding to bovine asialofetuin with a photoactivatable sulfhydryl crosslinking reagent. A crosslinked product was formed with the Q38C mutant, strongly suggesting the low-affinity interaction of Nh with the glycoprotein could be detected with this system.  相似文献   

20.
The affinity of the D-galactose-binding lectin from Artocarpus heterophyllus lectin, known as jacalin, with immonuglobulins (Igs) was determined by biofunctionalization of a piezoelectric transducer. This piezoelectric biofunctionalized transducer was used as a mass-sensitive analytical tool, allowing the real-time binding analysis of jacalin-human immunoglobulin A1 (IgA(1)) and jacalin-bovine IgG(1) interactions from which the apparent affinity constant was calculated. The strategy was centered in immobilizing jacalin on the gold electrode's surface of the piezoelectric crystal resonator using appropriate procedures based on self-assembling of 11-mercaptoundecanoic acid and 2-mercaptoethanol thiol's mixture, a particular immobilization strategy by which it was possible to avoid cross-interaction between the proteins over electrode's surface. The apparent affinity constants obtained between jacalin-human IgA(1) and jacalin-bovine IgG(1) differed by 1 order of magnitude [(8.0 ± 0.9) 10(5) vs (8.3 ± 0.1) 10(6) L mol(-1)]. On the other hand, the difference found between human IgA(1) and human IgA(2) interaction with jacalin, eight times higher for IgA(1), was attributed to the presence of O-linked glycans in the IgA(1) hinge region, which is absent in IgA(2). Specific interaction of jacalin with O-glycans, proved to be present in the human IgA(1) and hypothetically present in bovine IgG(1) structures, is discussed as responsible for the obtained affinity values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号