首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Alterations in Ca(2+) homeostasis and accumulation of unfolded proteins in the endoplasmic reticulum (ER) lead to an ER stress response. Prolonged ER stress may lead to cell death. Glucose-regulated protein (GRP) 78 (Bip) is an ER lumen protein whose expression is induced during ER stress. GRP78 is involved in polypeptide translocation across the ER membrane, and also acts as an apoptotic regulator by protecting the host cell against ER stress-induced cell death, although the mechanism by which GRP78 exerts its cytoprotective effect is not understood. The present study was carried out to determine whether one of the mechanisms of cell death inhibition by GRP78 involves inhibition of caspase activation. Our studies indicate that treatment of cells with ER stress inducers causes GRP78 to redistribute from the ER lumen with subpopulations existing in the cytosol and as an ER transmembrane protein. GRP78 inhibits cytochrome c-mediated caspase activation in a cell-free system, and expression of GRP78 blocks both caspase activation and caspase-mediated cell death. GRP78 forms a complex with caspase-7 and -12 and prevents release of caspase-12 from the ER. Addition of (d)ATP dissociates this complex and may facilitate movement of caspase-12 into the cytoplasm to set in motion the cytosolic component of the ER stress-induced apoptotic cascade. These results define a novel protective role for GRP78 in preventing ER stress-induced cell death.  相似文献   

2.
Coupling endoplasmic reticulum stress to the cell death program   总被引:17,自引:0,他引:17  
The endoplasmic reticulum (ER) regulates protein synthesis, protein folding and trafficking, cellular responses to stress and intracellular calcium (Ca(2+)) levels. Alterations in Ca(2+) homeostasis and accumulation of misfolded proteins in the ER cause ER stress that ultimately leads to apoptosis. Prolonged ER stress is linked to the pathogenesis of several different neurodegenerative disorders. Apoptosis is a form of cell death that involves the concerted action of a number of intracellular signaling pathways including members of the caspase family of cysteine proteases. The two main apoptotic pathways, the death receptor ('extrinsic') and mitochondrial ('intrinsic') pathways, are activated by caspase-8 and -9, respectively, both of which are found in the cytoplasm. Recent studies point to the ER as a third subcellular compartment implicated in apoptotic execution. Here, we review evidence for the contribution of various cellular molecules that contribute to ER stress and subsequent cellular death. It is hoped that dissection of the molecular components and pathways that alter ER structure and function and ultimately promote cellular death will provide a framework for understanding degenerative disorders that feature misfolded proteins.  相似文献   

3.
Accumulation of misfolded proteins and alterations in Ca2+ homeostasis in the endoplasmic reticulum (ER) causes ER stress and leads to cell death. However, the signal-transducing events that connect ER stress to cell death pathways are incompletely understood. To discern the pathway by which ER stress-induced cell death proceeds, we performed studies on Apaf-1(-/-) (null) fibroblasts that are known to be relatively resistant to apoptotic insults that induce the intrinsic apoptotic pathway. While these cells were resistant to cell death initiated by proapoptotic stimuli such as tamoxifen, they were susceptible to apoptosis induced by thapsigargin and brefeldin-A, both of which induce ER stress. This pathway was inhibited by catalytic mutants of caspase-12 and caspase-9 and by a peptide inhibitor of caspase-9 but not by caspase-8 inhibitors. Cleavage of caspases and poly(ADP-ribose) polymerase was observed in cell-free extracts lacking cytochrome c that were isolated from thapsigargin or brefeldin-treated cells. To define the molecular requirements for this Apaf-1 and cytochrome c-independent apoptosis pathway further, we developed a cell-free system of ER stress-induced apoptosis; the addition of microsomes prepared from ER stress-induced cells to a normal cell extract lacking mitochondria or cytochrome c resulted in processing of caspases. Immunodepletion experiments suggested that caspase-12 was one of the microsomal components required to activate downstream caspases. Thus, ER stress-induced programmed cell death defines a novel, mitochondrial and Apaf-1-independent, intrinsic apoptotic pathway.  相似文献   

4.
Glucose-regulated protein 94 is the HSP90-like protein in the lumen of the endoplasmic reticulum and therefore it chaperones secreted and membrane proteins. It has essential functions in development and physiology of multicellular organisms, at least in part because of this unique clientele. GRP94 shares many biochemical features with other HSP90 proteins, in particular its domain structure and ATPase activity, but also displays distinct activities, such as calcium binding, necessitated by the conditions in the endoplasmic reticulum. GRP94's mode of action varies from the general HSP90 theme in the conformational changes induced by nucleotide binding, and in its interactions with co-chaperones, which are very different from known cytosolic co-chaperones. GRP94 is more selective than many of the ER chaperones and the basis for this selectivity remains obscure. Recent development of molecular tools and functional assays has expanded the spectrum of clients that rely on GRP94 activity, but it is still not clear how the chaperone binds them, or what aspect of folding it impacts. These mechanistic questions and the regulation of GRP94 activity by other proteins and by post-translational modification differences pose new questions and present future research avenues. This article is part of a Special Issue entitled: Heat Shock Protein 90 (HSP90).  相似文献   

5.
The endoplasmic reticulum (ER) is the site of assembly of polypeptide chains destined for secretion or routing into various subcellular compartments. It also regulates cellular responses to stress and intracellular Ca(2+) levels. A variety of toxic insults can result in ER stress that ultimately leads to apoptosis. Apoptosis is initiated by the activation of members of the caspase family and serves as a central mechanism in the cell death process. The present study was carried out to determine the role of caspases in triggering ER stress-induced cell death. Treatment of cells with ER stress inducers such as brefeldin-A or thapsigargin induces the expression of caspase-12 protein and also leads to translocation of cytosolic caspase-7 to the ER surface. Caspase-12, like most other members of the caspase family, requires cleavage of the prodomain to activate its proapoptotic form. Caspase-7 associates with caspase-12 and cleaves the prodomain to generate active caspase-12, resulting in increased cell death. We propose that any cellular insult that causes prolonged ER stress may induce apoptosis through caspase-7-mediated caspase-12 activation. The data underscore the involvement of ER and caspases associated with it in the ER stress-induced apoptotic process.  相似文献   

6.
The microenvironment of cancerous cells includes endoplasmic reticulum (ER) stress the resistance to which is required for the survival and growth of tumors. Acute ER stress triggers the induction of a family of ER stress proteins that promotes survival and/or growth of the cancer cells, and also confers resistance to radiation and chemotherapy. Prolonged or severe ER stress, however, may ultimately overwhelm the cellular protective mechanisms, triggering cell death through specific programmed cell death (pcd) pathways. Thus, downregulation of the protective stress proteins may offer a new therapeutic approach to cancer treatment. In this regard, recent reports have demonstrated the roles of the phytochemical curcumin in the inhibition of proteasomal activity and triggering the accumulation of cytosolic Ca2+ by inhibiting the Ca2+-ATPase pump, both of which enhance ER stress. Using a mouse melanoma cell line, we investigated the possibility that curcumin may trigger ER stress leading to programmed cell death. Our studies demonstrate that curcumin triggers ER stress and the activation of specific cell death pathways that feature caspase cleavage and activation, p23 cleavage, and downregulation of the anti-apoptotic Mcl-1 protein.  相似文献   

7.
We previously described a novel molecular chaperone (designated p88) that participates in the assembly of murine class I histocompatibility molecules (Degen, E., and Williams, D. B. (1991) J. Cell Biol. 112, 1099-1115). Our findings suggest that p88 may either promote proper assembly of class I molecules or retain them, probably within the endoplasmic reticulum (ER), until assembly of the ternary complex of heavy chain, beta 2-microglobulin, and peptide ligand is complete. In this report, we compare p88 to calnexin, a calcium-binding 90-kDa phosphoprotein of the ER membrane (Wada, I., Rindress, D., Cameron, P. H., Ou, W.-J., Doherty, J.-J., II, Louvard, D., Bell, A.W., Dignard, D., Thomas, D. Y., and Bergeron, J. J. M. (1991) J. Biol. Chem. 266, 19599-19610). We show that p88 and calnexin share antigenic epitopes defined by a polyclonal anti-calnexin antiserum. Furthermore, both proteins were immunoprecipitated in association with an intracellularly retained variant of the class I H-2Kb molecule. Since p88 and calnexin were also indistinguishable by sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis, were resistant to digestion with endoglycosidase H, and exhibited virtually identical patterns of peptide fragments following digestion with either V8 protease or trypsin, we conclude that p88 and calnexin represent the same protein. The identification of the p88 chaperone as a phosphorylated, calcium-binding protein of the ER membrane suggests possible means whereby its interaction with class I molecules may be regulated.  相似文献   

8.
The 47,000-D collagen-binding glycoprotein, heat shock protein 47 (HSP47), is a stress-inducible protein localized in the ER of collagen- secreting cells. The location and collagen-binding activity of this protein led to speculation that HSP47 might participate in collagen processing. Chemical crosslinking studies were used to test this hypothesis both before and after the perturbation of procollagen processing. The association of procollagen with HSP47 was demonstrated using cleavable bifunctional crosslinking reagents. HSP47 and procollagen were shown to be coprecipitated by the treatment of intact cells with anti-HSP47 or with anticollagen antibodies. Furthermore, several proteins residing in the ER were noted to be crosslinked to and coprecipitated with HSP47, suggesting that these ER-resident proteins may form a large complex in the ER. When cells were heat shocked, or when stable triple-helix formation was inhibited by treatment with alpha,alpha'-dipyridyl, coprecipitation of procollagen with HSP47 was increased. This increase was due to the inhibition of procollagen secretion and to the accumulation of procollagen in the ER. Pulse label and chase experiments revealed that coprecipitated procollagen was detectable as long as procollagen was present in the endoplasmic reticulum of alpha,alpha'-dipyridyl-treated cells. Under normal growth conditions, coprecipitated procollagen was observed to decrease after a chase period of 10-15 min, whereas total procollagen decreased only after 20-25 min. In addition, the intracellular association between HSP47 and procollagen was shown to be disrupted by a change in physiological pH, suggesting that the dissociation of procollagen from HSP47 is pH dependent. These findings support a specific role for HSP47 in the intracellular processing of procollagen, and provide evidence of a new category of "molecular chaperones" in terms of its substrate specificity and the dissociation mechanism.  相似文献   

9.
Cystic fibrosis (CF) is the most common Caucasian autosomal recessive disease. It is due to mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene encoding the CFTR protein, which is a chloride (Cl(-)) channel. The most common mutation leads to a missing phenylalanine at position 508 (DeltaF508). The DeltaF508-CFTR protein is misfolded and retained in the endoplasmic reticulum and may trigger the unfolded protein response (UPR). Furthermore, CF is accompanied by inflammation and infection, which are also involved in the UPR. To date, the UPR transducer ATF6 and ER stress sensor Grp78 have been used as UPR markers. Therefore, our aim was to study the activation of ATF6 and Grp78 in transfected human epithelial cells expressing the DeltaF508-CFTR protein, and we showed that they are activated in these cells. We investigated the effect of exogenous UPR inducers thapsigargin (Tg) and tunicamycin (Tu) on Grp78 and ATF6 expression. Whereas the cells reacted to the UPR induction, we show a difference in the electrophoretic pattern of ATF6. The Grp78/ATF6 complex was previously described, but its stability during UPR is controversial. Using co-immunoprecipitation we show that it is stable in DeltaF508-CFTR-expressing cells and is maintained under UPR conditions. Finally, using siRNA, we show that decreased ATF6 expression induces increased cAMP-dependent halide flux through DeltaF508-CFTR due to its increased membrane localization. Therefore, our results suggest that UPR may be triggered in CF and that ATF6 may be a therapeutic target.  相似文献   

10.
A cell-free protein transport reaction has been used to monitor the purification of a functional form of the Sec23 protein, a SEC gene product required for the formation or stability of protein transport vesicles that bud from the endoplasmic reticulum (ER). Previously, we reported that Sec23p is an 84-kDa peripheral membrane protein that is released from a sedimentable fraction by vigorous mechanical agitation of yeast cells and is required for ER to Golgi transport assayed in vitro. We have purified soluble Sec23p by complementation of an in vitro ER to Golgi transport reaction reconstituted with components from sec23 mutant cells. Sec23p overproduced in yeast exists in two forms: a monomeric species and a species that behaves as a 250- to 300-kDa complex that contains Sec23p and a distinct 105-kDa polypeptide (p105). Sec23p purified from cells containing one SEC23 gene exists solely in the large multimeric form. A stable association between Sec23p and p105 is confirmed by cofractionation of the two proteins throughout the purification. p105 is a novel yeast protein involved in ER to Golgi transport. Like Sec23p, it is required for vesicle budding from the ER because p105 antiserum completely inhibits transport vesicle formation in vitro.  相似文献   

11.
12.
Sec1p/Munc18 (SM) proteins are essential for membrane fusion events in eukaryotic cells. Here we describe a systematic, structure-based mutational analysis of the yeast SM protein Sly1p, which was previously shown to function in anterograde endoplasmic reticulum (ER)-to-Golgi and intra-Golgi protein transport. Five new temperature-sensitive (ts) mutants, each carrying a single amino acid substitution in Sly1p, were identified. Unexpectedly, not all of the ts mutants exhibited striking anterograde ER-to-Golgi transport defects. For example, in cells of the novel sly1-5 mutant, transport of newly synthesized lysosomal and secreted proteins was still efficient, but the ER-resident Kar2p/BiP was missorted to the outside of the cell, and two proteins, Sed5p and Rer1p, which normally shuttle between the Golgi and the ER, failed to relocate to the ER. We also discovered that in vivo, Sly1p was associated with a SNARE complex formed on the ER, and that in vitro, the SM protein directly interacted with the ER-localized nonsyntaxin SNAREs Use1p/Slt1p and Sec20p. Furthermore, several conditional mutants defective in Golgi-to-ER transport were synthetically lethal with sly1-5. Together, these results indicate a previously unrecognized function of Sly1p in retrograde transport to the endoplasmic reticulum.  相似文献   

13.
Toxoplasma gondii is an obligate intracellular protozoan parasite in which 36 predicted Hsp40 family members were identified by searching the T. gondii genome. The predicted protein sequence from the gene ID TGME49_065310 showed an amino acid sequence and domain structure similar to Saccharomyces cerevisiae Sis1. TgSis1 did not show differences in its expression profile during alkaline stress by microarray analysis. Furthermore, TgSis1 showed to be a cytosolic Hsp40 which co-immunoprecipitated with T. gondii Hsp70 and Hsp90. Structural modeling of the TgSis1 peptide binding fragment revealed structural and electrostatic properties different from the experimental model of human Sis1-like protein (Hdj1). Based on these differences; we propose that TgSis1 may be a potentially attractive drug target for developing a novel anti-T. gondii therapy.  相似文献   

14.
15.
Glucose-regulated protein 78 (GRP78) is a well-characterized molecular chaperone that is ubiquitously expressed in mammalian cells. GRP78 is best known for binding to hydrophobic patches on nascent polypeptides within the endoplasmic reticulum (ER) and for its role in signaling the unfolded protein response. Structurally, GRP78 is highly conserved across species. The presence of GRP78 or a homologue in nearly every organism from bacteria to man, reflects the central roles it plays in cell survival. While the principal role of GRP78 as a molecular chaperone is a matter of continuing study, independent work demonstrates that like many other proteins with ancient origins, GRP78 plays more roles than originally appreciated. Studies have shown that GRP78 is expressed on the cell surface in many tissue types both in vitro and in vivo. Cell surface GRP78 is involved in transducing signals from ligands as disparate as activated alpha2-macroglobulin and antibodies. Plasmalemmar GRP78 also plays a role in viral entry of Coxsackie B, and Dengue Fever viruses. GRP78 disregulation is also implicated in atherosclerotic, thrombotic, and auto-immune disease. It is challenging to posit a hypothesis as to why an ER molecular chaperone, such as GRP78, plays such a variety of roles in cellular processes. An ancient and highly conserved protein such as GRP78, whose primary function is to bind to misfolded polypeptides, could be uniquely suited to bind a wide variety of ligands and thus, over time, could assume the wide variety of roles it now plays.  相似文献   

16.
We have demonstrated previously that immunization with tumor-derived endoplasmic reticulum (ER) chaperone glucose-regulated protein 170 (grp170) elicits potent antitumor immunity. In the present study, we determine the impact of extracellular targeting grp170 by molecular engineering on tumor immunogenicity and potential use of grp170-secreting tumor cells as a cancer vaccine. grp170 depleted of ER retention sequence "KNDEL," when secreted by B16 tumor cells, maintained its highly efficient chaperoning activities and was significantly superior to both hsp70 and gp96. The continued secretion of grp170 dramatically reduced the tumorigenicity of B16 tumor cells in vivo, although the modification did not alter its transformation phenotype and cell growth rate. C57BL/6 mice that rejected grp170-secreting B16 tumor cells (B16-sgrp170) developed a strong CTL response recognizing melanocyte differentiation Ag TRP2 and were resistant to subsequent tumor challenge. B16-sgrp170 cells also stimulated the production of proinflammatory cytokines by cocultured dendritic cells. Depletion studies in vivo indicate that NK cells play a primary role in elimination of viable B16-sgrp170 tumor cells inoculated into the animals, whereas both NK cells and CD8(+) T cells are required for a long-term protection against wild-type B16 tumor challenge. Both the secreted and endogenous grp170, when purified from the B16 tumor, exhibited potent tumor-protective activities. However, the B16-sgrp170 cell appears to be more effective than tumor-derived grp170. Thus, molecular engineering of tumor cell to release the largest ER chaperone grp170 is capable of eliciting innate as well as adaptive immune responses, which may provide an effective cell-based vaccination approach for cancer immunotherapy.  相似文献   

17.
18.
19.
20.
Perturbations in endoplasmic reticulum (ER) homeostasis, including depletion of Ca2 + or altered redox status, induce ER stress due to protein accumulation, misfolding and oxidation. This activates the unfolded protein response (UPR) to re-establish the balance between ER protein folding capacity and protein load, resulting in cell survival or, following chronic ER stress, promotes cell death. The mechanisms for the transition between adaptation to ER stress and ER stress-induced cell death are still being understood. However, the identification of numerous points of cross-talk between the UPR and mitogen-activated protein kinase (MAPK) signalling pathways may contribute to our understanding of the consequences of ER stress. Indeed, the MAPK signalling network is known to regulate cell cycle progression and cell survival or death responses following a variety of stresses. In this article, we review UPR signalling and the activation of MAPK signalling pathways in response to ER stress. In addition, we highlight components of the UPR that are modulated in response to MAPK signalling and the consequences of this cross-talk. We also describe several diseases, including cancer, type II diabetes and retinal degeneration, where activation of the UPR and MAPK signalling contribute to disease progression and highlight potential avenues for therapeutic intervention. This article is part of a Special Issue entitled: Calcium Signaling In Health and Disease. Guest Editors: Geert Bultynck, Jacques Haiech, Claus W. Heizmann, Joachim Krebs, and Marc Moreau.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号