首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.

Background  

The genomes of higher plants are, on the majority, polyploid, and hybridisation is more frequent in plants than in animals. Both polyploidisation and hybridisation contribute to increased variability within species, and may transfer adaptations between species in a changing environment. Studying these aspects of evolution within a diversified species complex could help to clarify overall spatial and temporal patterns of plant speciation. The Arabidopsis lyrata complex, which is closely related to the model plant Arabidopsis thaliana, is a perennial, outcrossing, herbaceous species complex with a circumpolar distribution in the Northern Hemisphere as well as a disjunct Central European distribution in relictual habitats. This species complex comprises three species and four subspecies, mainly diploids but also several tetraploids, including one natural hybrid. The complex is ecologically, but not fully geographically, separated from members of the closely related species complex of Arabidopsis halleri, and the evolutionary histories of both species compexes have largely been influenced by Pleistocene climate oscillations.  相似文献   

2.

Background  

The filamentous fungus Ashbya gossypii grows into a multicellular mycelium that is distinct from the unicellular morphology of its closely related yeast species. It has been proposed that genes important for cell cycle regulation play central roles for such phenotypic differences. Because A. gossypii shares an almost identical set of cell cycle genes with the typical yeast Saccharomyces cerevisiae, the differences might occur at the level of orthologous gene regulation. Codon usage patterns were compared to identify orthologous genes with different gene regulation between A. gossypii and nine closely related yeast species.  相似文献   

3.

Background  

Hybrid male sterility (HMS) is a usual outcome of hybridization between closely related animal species. It arises because interactions between alleles that are functional within one species may be disrupted in hybrids. The identification of genes leading to hybrid sterility is of great interest for understanding the evolutionary process of speciation. In the current work we used marked P-element insertions as dominant markers to efficiently locate one genetic factor causing a severe reduction in fertility in hybrid males of Drosophila simulans and D. mauritiana.  相似文献   

4.

Background  

Phylogenetic studies of wild Canis species have relied heavily on the mitochondrial DNA control region (mtDNA CR) to infer species relationships and evolutionary lineages. Previous analyses of the CR provided evidence for a North American evolved eastern wolf (C. lycaon), that is more closely related to red wolves (C. rufus) and coyotes (C. latrans) than grey wolves (C. lupus). Eastern wolf origins, however, continue to be questioned. Therefore, we analyzed mtDNA from 89 wolves and coyotes across North America and Eurasia at 347 base pairs (bp) of the CR and 1067 bp that included the ATPase6 and ATPase8 genes. Phylogenies and divergence estimates were used to clarify the evolutionary history of eastern wolves, and regional comparisons of nonsynonomous to synonomous substitutions (dN/dS) at the ATPase6 and ATPase8 genes were used to elucidate the potential role of selection in shaping mtDNA geographic distribution.  相似文献   

5.

Background  

The regulatory network underlying the yeast galactose-use pathway has emerged as a model system for the study of regulatory network evolution. Evidence has recently been provided for adaptive evolution in this network following a whole genome duplication event. An ancestral gene encoding a bi-functional galactokinase and co-inducer protein molecule has become subfunctionalized as paralogous genes (GAL1 and GAL3) in Saccharomyces cerevisiae, with most fitness gains being attributable to changes in cis-regulatory elements. However, the quantitative functional implications of the evolutionary changes in this regulatory network remain unexplored.  相似文献   

6.

Background  

Species complexes or aggregates consist of a set of closely related species often of different ploidy levels, whose relationships are difficult to reconstruct. The N Hemisphere Achillea millefolium aggregate exhibits complex morphological and genetic variation and a broad ecological amplitude. To understand its evolutionary history, we study sequence variation at two nuclear genes and three plastid loci across the natural distribution of this species complex and compare the patterns of such variations to the species tree inferred earlier from AFLP data.  相似文献   

7.
8.

Background  

The genes for salivary androgen-binding protein (ABP) subunits have been evolving rapidly in ancestors of the house mouse Mus musculus, as evidenced both by recent and extensive gene duplication and by high ratios of nonsynonymous to synonymous nucleotide substitution rates. This makes ABP an appropriate model system with which to investigate how recent adaptive evolution of paralogous genes results in functional innovation (neofunctionalization).  相似文献   

9.

Background  

Rates of molecular evolution vary widely among species. While significant deviations from molecular clock have been found in many taxa, effects of life histories on molecular evolution are not fully understood. In plants, annual/perennial life history traits have long been suspected to influence the evolutionary rates at the molecular level. To date, however, the number of genes investigated on this subject is limited and the conclusions are mixed. To evaluate the possible heterogeneity in evolutionary rates between annual and perennial plants at the genomic level, we investigated 85 nuclear housekeeping genes, 10 non-housekeeping families, and 34 chloroplast genes using the genomic data from model plants including Arabidopsis thaliana and Medicago truncatula for annuals and grape (Vitis vinifera) and popular (Populus trichocarpa) for perennials.  相似文献   

10.

Background  

Many electron transport chain (ETC) genes show accelerated rates of nonsynonymous nucleotide substitutions in anthropoid primate lineages, yet in non-anthropoid lineages the ETC proteins are typically highly conserved. Here, we test the hypothesis that COX5A, the ETC gene that encodes cytochrome c oxidase subunit 5A, shows a pattern of anthropoid-specific adaptive evolution, and investigate the distribution of this protein in catarrhine brains.  相似文献   

11.

Background  

Streptococci are divided into six phylogenetic groups, i.e, anginosus, bovis, mitis, mutans, pyogenic, and salivarius, with the salivarius group consisting of only three distinct species. Two of these species, Streptococcus salivarius and Streptococcus vestibularis, are members of the normal human oral microflora whereas the third, Streptococcus thermophilus, is found in bovine milk. Given that S. salivarius and S. vestibularis share several physiological characteristics, in addition to inhabiting the same ecosystem, one would assume that they would be more closely related to each other than to S. thermophilus. However, the few phylogenetic trees published so far suggest that S. vestibularis is more closely related to S. thermophilus. To determine whether this phylogenetic relationship is genuine, we performed phylogenetic inferences derived from secA and secY, the general secretion housekeeping genes, recA, a gene from a separate genetic locus that encodes a major component of the homologous recombinational apparatus, and 16S rRNA-encoding gene sequences using other streptococcal species as outgroups.  相似文献   

12.

Background  

Drosophila Frequenin (Frq), the homolog of the mammalian Neuronal Calcium Sensor-1 (NCS-1), is a high affinity calcium-binding protein with ubiquitous expression in the nervous system. This protein has an important role in the regulation of neurotransmitter release per synapse, axonal growth and bouton formation. In D. melanogaster, Frequenin is encoded by two genes (frq1 and frq2), a very unexpected feature in the Frq/NCS-1 subfamily. These genes are located in tandem in the same genomic region, and their products are 95% identical in their amino acid sequence, clearly indicating their recent origin by gene duplication. Here, we have investigated the factors involved in this unusual feature by examining the molecular evolution of the two frq genes in Drosophila and the evolutionary dynamics of NCS family in a large set of bilaterian species.  相似文献   

13.
14.

Background  

Codon usage bias (CUB), the uneven use of synonymous codons, is a ubiquitous observation in virtually all organisms examined. The pattern of codon usage is generally similar among closely related species, but differs significantly among distantly related organisms, e.g., bacteria, yeast, and Drosophila. Several explanations for CUB have been offered and some have been supported by observations and experiments, although a thorough understanding of the evolutionary forces (random drift, mutation bias, and selection) and their relative importance remains to be determined. The recently available complete genome DNA sequences of twelve phylogenetically defined species of Drosophila offer a hitherto unprecedented opportunity to examine these problems. We report here the patterns of codon usage in the twelve species and offer insights on possible evolutionary forces involved.  相似文献   

15.

Background  

The agriculturally important pasture grass tall fescue (Festuca arundinacea Schreb. syn. Lolium arundinaceum (Schreb.) Darbysh.) is an outbreeding allohexaploid, that may be more accurately described as a species complex consisting of three major (Continental, Mediterranean and rhizomatous) morphotypes. Observation of hybrid infertility in some crossing combinations between morphotypes suggests the possibility of independent origins from different diploid progenitors. This study aims to clarify the evolutionary relationships between each tall fescue morphotype through phylogenetic analysis using two low-copy nuclear genes (encoding plastid acetyl-CoA carboxylase [Acc1] and centroradialis [CEN]), the nuclear ribosomal DNA internal transcribed spacer (rDNA ITS) and the chloroplast DNA (cpDNA) genome-located matK gene. Other taxa within the closely related Lolium-Festuca species complex were also included in the study, to increase understanding of evolutionary processes in a taxonomic group characterised by multiple inter-specific hybridisation events.  相似文献   

16.

Background  

Elucidating the selective and neutral forces underlying molecular evolution is fundamental to understanding the genetic basis of adaptation. Plants have evolved a suite of adaptive responses to cope with variable environmental conditions, but relatively little is known about which genes are involved in such responses. Here we studied molecular evolution on a genome-wide scale in two species of Cardamine with distinct habitat preferences: C. resedifolia, found at high altitudes, and C. impatiens, found at low altitudes. Our analyses focussed on genes that are involved in stress responses to two factors that differentiate the high- and low-altitude habitats, namely temperature and irradiation.  相似文献   

17.

Background  

Many genes involved in the sex determining cascade have indicated signals of positive selection and rapid evolution across different species. Even though fruitless is an important gene involved mostly in several aspects of male courtship behavior, the few studies so far have explained its high rates of evolution by relaxed selective constraints. This would indicate that a large portion of this gene has evolved neutrally, contrary to what has been observed for other genes in the sex cascade.  相似文献   

18.

Background  

Plant circadian clocks regulate many photoperiodic and diurnal responses that are conserved among plant species. The plant circadian clock system has been uncovered in the model plant, Arabidopsis thaliana, using genetics and systems biology approaches. However, it is still not clear how the clock system had been organized in the evolutionary history of plants. We recently revealed the molecular phylogeny of LHY/CCA1 genes, one of the essential components of the clock system. The aims of this study are to reconstruct the phylogenetic relationships of angiosperm clock-associated PRR genes, the partner of the LHY/CCA1 genes, and to clarify the evolutionary history of the plant clock system in angiosperm lineages.  相似文献   

19.

Background  

A non-adaptive radiation triggered by sexual selection resulted in ten endemic land snail species of the genus Xerocrassa on Crete. Only five of these species and a more widespread species are monophyletic in a mitochondrial gene tree. The reconstruction of the evolutionary history of such closely related species can be complicated by incomplete lineage sorting, introgression or inadequate taxonomy. To distinguish between the reasons for the nonmonophyly of several species in the mitochondrial gene tree we analysed nuclear AFLP markers.  相似文献   

20.

Background  

The genus Arachis comprises 80 species and it is subdivided into nine taxonomic sections (Arachis, Caulorrhizae, Erectoides, Extranervosae, Heteranthae, Procumbentes, Rhizomatosae, Trierectoides, and Triseminatae). This genus is naturally confined to South America and most of its species are native to Brazil. In order to provide a better understanding of the evolution of the genus, we reconstructed the phylogeny of 45 species using the variation observed on nucleotide sequences in internal transcribed spacer regions (ITS1 and ITS2) and 5.8 S of nuclear ribosomal DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号