共查询到20条相似文献,搜索用时 11 毫秒
1.
Electron tomography of the Maurer's cleft organelles of Plasmodium falciparum-infected erythrocytes reveals novel structural features 总被引:1,自引:0,他引:1
Hanssen E Sougrat R Frankland S Deed S Klonis N Lippincott-Schwartz J Tilley L 《Molecular microbiology》2008,67(4):703-718
During intraerythrocytic development, the human malaria parasite, Plasmodium falciparum, establishes membrane-bound compartments, known as Maurer's clefts, outside the confines of its own plasma membrane. The Maurer's compartments are thought to be a crucial component of the machinery for protein sorting and trafficking; however, their ultrastructure is only partly defined. We have used electron tomography to image Maurer's clefts of 3D7 strain parasites. The compartments are revealed as flattened structures with a translucent lumen and a more electron-dense coat. They display a complex and convoluted morphology, and some regions are modified with surface nodules, each with a circular cross-section of approximately 25 nm. Individual 25 nm vesicle-like structures are also seen in the erythrocyte cytoplasm and associated with the red blood cell membrane. The Maurer's clefts are connected to the red blood cell membrane by regions with extended stalk-like profiles. Immunogold labelling with specific antibodies confirms differential labelling of the Maurer's clefts and the parasitophorous vacuole and erythrocyte membranes. Spot fluorescence photobleaching was used to demonstrate the absence of a lipid continuum between the Maurer's clefts and parasite membranes and the host plasma membrane. 相似文献
2.
Chlamydia parasitism: ultrastructural characterization of the interaction between the chlamydial cell envelope and the host cell. 总被引:4,自引:0,他引:4 下载免费PDF全文
Ultrastructural analysis of the growth cycles of Chlamydia trachomatis and Chlamydia psittaci showed that the chlamydial cell envelope became rigid and septated at the time of the reorganization from reticulate to elementary body. This process occurred in the immediacy of the inclusion membrane and in close proximity with the mitochondria or the endoplasmic reticulum of the host cell. 相似文献
3.
Proteomic analysis of rhoptry organelles reveals many novel constituents for host-parasite interactions in Toxoplasma gondii 总被引:9,自引:0,他引:9
Bradley PJ Ward C Cheng SJ Alexander DL Coller S Coombs GH Dunn JD Ferguson DJ Sanderson SJ Wastling JM Boothroyd JC 《The Journal of biological chemistry》2005,280(40):34245-34258
Rhoptries are specialized secretory organelles that are uniquely present within protozoan parasites of the phylum Apicomplexa. These obligate intracellular parasites comprise some of the most important parasites of humans and animals, including the causative agents of malaria (Plasmodium spp.) and chicken coccidiosis (Eimeria spp.). The contents of the rhoptries are released into the nascent parasitophorous vacuole during invasion into the host cell, and the resulting proteins often represent the literal interface between host and pathogen. We have developed a method for highly efficient purification of rhoptries from one of the best studied Apicomplexa, Toxoplasma gondii, and we carried out a detailed proteomic analysis using mass spectrometry that has identified 38 novel proteins. To confirm their rhoptry origin, antibodies were raised to synthetic peptides and/or recombinant protein. Eleven of 12 of these yielded antibody that showed strong rhoptry staining by immunofluorescence within the rhoptry necks and/or their bulbous base. Hemagglutinin epitope tagging confirmed one additional novel protein as from the rhoptry bulb. Previously identified rhoptry proteins from Toxoplasma and Plasmodium were unique to one or the other organism, but our elucidation of the Toxoplasma rhoptry proteome revealed homologues that are common to both. This study also identified the first Toxoplasma genes encoding rhoptry neck proteins, which we named RONs, demonstrated that toxofilin and Rab11 are rhoptry proteins, and identified novel kinases, phosphatases, and proteases that are likely to play a key role in the ability of the parasite to invade and co-opt the host cell for its own survival and growth. 相似文献
4.
BackgroundThe threat of cadmium (Cd), which is the cause of itai-itai disease in Japan, is still complicated and confusing, especially for digestive system, such as liver disease. One of the most keys of this problem is demonstrating that the hepatotoxicity is indeed induced by Cd. Therefore, we attempt detecting Cd at microscale during ultrastructural imaging of liver tissue.Methods12 rats were divided randomly into two experimental groups: control and Cd-treated. Treated rats were intraperitoneal injected with 1 mg/kg body weight cadmium chloride (CdCl2) for 4 weeks (5 P.M each day for 6 days/week). At the end of the exposure period, liver tissue samples were processed into ultrathin sections for analysis of advanced analytical transmission electron microscopy and X-ray energy dispersive spectroscopy (TEM/X-EDS) investigations. Ultrastructural images and X-ray energy dispersive spectrum were acquired at microscale.ResultsCd can cause changes in the structure of the organelle, including the collapse of the membrane structure in the cell, the destruction of the internal structure of the organelle, the mitochondrial swelling, the expansion of the endoplasmic reticulum, and the appearance of inclusions. Cadmium bioaccumulation is detected in the mitochondria at microscale by TEM/X-EDS, which is the visual evidence of morphological changes of mitochondria related to Cd.ConclusionThe combination of detailed ultrastructure and microscale X-ray energy dispersive spectroscopy (X-EDS) characterization of cadmium hepatotoxicity demonstrate that cadmium indeed leads to mitochondrial damage, which is helpful for further investigation of the pathological mechanism of cadmium hepatotoxicity. 相似文献
5.
Mads Lausen Gunna Christiansen Thomas Bouet Guldbæk Poulsen Svend Birkelund 《Microbes and infection / Institut Pasteur》2019,21(2):73-84
Infections caused by the intracellular bacterium Chlamydia trachomatis are a global health burden affecting more than 100 million people annually causing damaging long-lasting infections. In this review, we will present and discuss important aspects of the interaction between C. trachomatis and monocytes/macrophages. 相似文献
6.
Nick M. Wheelhouse Michelle Sait Kevin Aitchison Morag Livingstone Frank Wright Kevin McLean Neil F. Inglis David G. E. Smith David Longbottom 《PloS one》2012,7(11)
Background
Chlamydia possess a unique family of autotransporter proteins known as the Polymorphic membrane proteins (Pmps). While the total number of pmp genes varies between Chlamydia species, all encode a single pmpD gene. In both Chlamydia trachomatis (C. trachomatis) and C. pneumoniae, the PmpD protein is proteolytically cleaved on the cell surface. The current study was carried out to determine the cleavage patterns of the PmpD protein in the animal pathogen C. abortus (termed Pmp18D).Methodology/Principal Findings
Using antibodies directed against different regions of Pmp18D, proteomic techniques revealed that the mature protein was cleaved on the cell surface, resulting in a100 kDa N-terminal product and a 60 kDa carboxy-terminal protein. The N-terminal protein was further processed into 84, 76 and 73 kDa products. Clustering analysis resolved PmpD proteins into three distinct clades with C. abortus Pmp18D, being most similar to those originating from C. psittaci, C. felis and C. caviae.Conclusions/Significance
This study indicates that C. abortus Pmp18D is proteolytically processed at the cell surface similar to the proteins of C. trachomatis and C. pneumoniae. However, patterns of cleavage are species-specific, with low sequence conservation of PmpD across the genus. The absence of conserved domains indicates that the function of the PmpD molecule in chlamydia remains to be elucidated. 相似文献7.
Shaw AC Larsen MR Roepstorff P Christiansen G Birkelund S 《FEMS microbiology letters》2002,212(2):193-202
The genome of the obligate intracellular bacterium Chlamydia trachomatis comprises 894 genes predicted by computer-based analysis. As part of a large-scale proteome analysis of C. trachomatis, a small abundant protein encoded by a previously unrecognized novel 204-bp open reading frame was identified by tandem mass spectrometry. No homology of this protein was observed to proteins from other organisms. The protein was conserved in C. trachomatis but not found in Chlamydia pneumoniae. Using proteomics, we show that the expression of the protein is initiated at the middle of the developmental cycle. The protein is rapidly degraded and is only present in reticulate or intermediate bodies, suggesting a possible function in the intracellular stage of C. trachomatis development. We have termed the protein '7-kDa reticulate body protein'. 相似文献
8.
Kamal L. Nahas Viv Connor Katharina M. Scherer Clemens F. Kaminski Maria Harkiolaki Colin M. Crump Stephen C. Graham 《PLoS pathogens》2022,18(7)
Herpes simplex virus-1 (HSV-1) is a large, enveloped DNA virus and its assembly in the cell is a complex multi-step process during which viral particles interact with numerous cellular compartments such as the nucleus and organelles of the secretory pathway. Transmission electron microscopy and fluorescence microscopy are commonly used to study HSV-1 infection. However, 2D imaging limits our understanding of the 3D geometric changes to cellular compartments that accompany infection and sample processing can introduce morphological artefacts that complicate interpretation. In this study, we used soft X-ray tomography to observe differences in whole-cell architecture between HSV-1 infected and uninfected cells. To protect the near-native structure of cellular compartments we used a non-disruptive sample preparation technique involving rapid cryopreservation, and a fluorescent reporter virus was used to facilitate correlation of structural changes with the stage of infection in individual cells. We observed viral capsids and assembly intermediates interacting with nuclear and cytoplasmic membranes. Additionally, we observed differences in the morphology of specific organelles between uninfected and infected cells. The local concentration of cytoplasmic vesicles at the juxtanuclear compartment increased and their mean width decreased as infection proceeded, and lipid droplets transiently increased in size. Furthermore, mitochondria in infected cells were elongated and highly branched, suggesting that HSV-1 infection alters the dynamics of mitochondrial fission/fusion. Our results demonstrate that high-resolution 3D images of cellular compartments can be captured in a near-native state using soft X-ray tomography and have revealed that infection causes striking changes to the morphology of intracellular organelles. 相似文献
9.
10.
CysG structure reveals tetrapyrrole-binding features and novel regulation of siroheme biosynthesis 总被引:4,自引:0,他引:4
Stroupe ME Leech HK Daniels DS Warren MJ Getzoff ED 《Nature structural biology》2003,10(12):1064-1073
Sulfur metabolism depends on the iron-containing porphinoid siroheme. In Salmonella enterica, the S-adenosyl-L-methionine (SAM)-dependent bismethyltransferase, dehydrogenase and ferrochelatase, CysG, synthesizes siroheme from uroporphyrinogen III (uro'gen III). The reactions mediated by CysG encompass two branchpoint intermediates in tetrapyrrole biosynthesis, diverting flux first from protoporphyrin IX biosynthesis and then from cobalamin (vitamin B(12)) biosynthesis. We determined the first structure of this multifunctional siroheme synthase by X-ray crystallography. CysG is a homodimeric gene fusion product containing two structurally independent modules: a bismethyltransferase and a dual-function dehydrogenase-chelatase. The methyltransferase active site is a deep groove with a hydrophobic patch surrounded by hydrogen bond donors. This asymmetric arrangement of amino acids may be important in directing substrate binding. Notably, our structure shows that CysG is a phosphoprotein. From mutational analysis of the post-translationally modified serine, we suggest a conserved role for phosphorylation in inhibiting dehydrogenase activity and modulating metabolic flux between siroheme and cobalamin pathways. 相似文献
11.
Morphometric, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) investigations have displayed regional differences in the mare oviductal epithelium. The entire mucosa of the oviduct was lined with a pseudostratified epithelium, which consisted of two distinct cell types, ciliated and non-ciliated. Ciliated cells were predominant in the three different segments of the oviduct and their percentage increased from fimbriae to ampulla and significantly decreased in the isthmus. SEM revealed in the infundibulum finger-like mucosal folds, some of them interconnected, in the ampulla numerous and elaborated branched folds of the mucosa, whereas the isthmus displayed a narrow lumen, short and non-branched mucosal folds. In the ampulla and isthmus the majority of non-ciliated cells showed apical blebs provided or not of short microvilli. TEM displayed different ultrastructural features of ciliated and non-ciliated cells along the oviduct. Isthmus ciliated cells presented a more electron-dense cytoplasm than in infundibulum and ampulla cells and its cilia were enclosed in an amorphous matrix. The non-ciliated cells of infundibulum did not contain secretory granules but some apical endocytic vesicles and microvilli coated by a well developed glycocalyx. Non-ciliated cells of ampulla and isthmus contained secretory granules. Apical protrusions of ampulla displayed two types of secretory granules as well as occasional electron-lucent vesicles. Isthmus non-ciliated cells showed either electron-lucent or electron-dense cytoplasm and not all contained apical protrusions. The electron-dense non-ciliated cells displayed microvilli coated with a well developed glycocalyx. Three types of granules were observed in the isthmus non-ciliated cells. The regional differences observed along the epithelium lining the mare oviduct suggest that the epithelium of the each segment is involved in the production of a distinctive microenvironment with a unique biochemical milieu related to its functional role. 相似文献
12.
Iwasaki K Mitsuoka K Fujiyoshi Y Fujisawa Y Kikuchi M Sekiguchi K Yamada T 《Journal of structural biology》2005,150(3):259-267
We used electron tomography to determine the three-dimensional (3D) structure of integrin alphaIIbbeta3 in the active state. We found that we obtained better density maps when we reconstructed a 3D volume for each individual particle in the tilt series rather than to extract the particle-containing subvolumes from a 3D reconstruction of the entire specimen area. The 3D tomographic reconstructions of 100 particles revealed that activated alphaIIbbeta3 adopts many different conformations. An average of all the individual 3D reconstructions nicely accommodated the crystal structure of the alphaVbeta3 headpiece, confirming the locations assigned to the alpha- and beta-subunit in the density map. The most striking finding of our study is the structural flexibility of the lower leg of the beta-subunit as opposed to the conformational stability of the leg of the alpha-subunit. The good fit of the atomic structure of the betaI domain and the hybrid domain in the active state showed that the hybrid domain swings out, and most particles used for tomography are in the active state. Multivariate statistical analysis and classification applied to the set of 3D reconstructions revealed that more than 90% reconstructions are grouped into the classes that show the active state. Our results demonstrate that electron tomography can be used to classify complexes with a flexible structure such as integrins. 相似文献
13.
14.
Electron cryotomography reveals novel structures of a recently cultured termite gut spirochete 总被引:1,自引:0,他引:1
Electron cryotromography, a relatively new methodology in the field of microbiology, has been exploited by Murphy et al . (in this issue of Molecular Microbiology ) in their analysis of the recently isolated termite gut spirochete Treponema primitia . Unique structures (bowls, arcades of hooks, cones at the cell ends, two layers of wall material) were evident from the analysis of its surface and internal constituents. These results, coupled to video microscopy analysis of swimming cells, allowed the authors to propose a model of cell motility. This highly significant paper highlights the importance of electron cryotomography to the field of microbiology. It also illustrates that newly cultured recalcitrant bacteria from complex environments are likely to possess novel structures not previously seen in other species. 相似文献
15.
David T. Riglar Melanie Rug Leandro Lemgruber Alan F. Cowman Marek Cyrklaff Mikhail Kudryashev Friedrich Frischknecht Jake Baum Stuart A. Ralph 《Cellular microbiology》2013,15(9):1457-1472
Erythrocyte invasion by merozoites forms of the malaria parasite is a key step in the establishment of human malaria disease. To date, efforts to understand cellular events underpinning entry have been limited to insights from non‐human parasites, with no studies at sub‐micrometer resolution undertaken using the most virulent human malaria parasite, Plasmodium falciparum. This leaves our understanding of the dynamics of merozoite sub‐cellular compartments during infectionincomplete, in particular that of the secretory organelles. Using advances in P. falciparum merozoite isolation and new imaging techniques we present a three‐dimensional study of invasion using electron microscopy, cryo‐electron tomography and cryo‐X‐ray tomography. We describe the core architectural features of invasion and identify fusion between rhoptries at the commencement of invasion as a hitherto overlooked event that likely provides a critical step that initiates entry. Given the centrality of merozoite organelle proteins to vaccine development, these insights provide a mechanistic framework to understand therapeutic strategies targeted towards the cellular events of invasion. 相似文献
16.
Proteins are often made in more than one form, with alternate versions sometimes residing in different cellular compartments than the primary species. The mammalian prion protein (PrP), a cell surface GPI-anchored protein, is a particularly noteworthy example for which minor cytosolic and transmembrane forms have been implicated in disease pathogenesis. To study these minor species, we used a selective labeling strategy in which spatially restricted expression of a biotinylating enzyme was combined with asymmetric engineering of the cognate acceptor sequence into PrP. Using this method, we could show that even wild-type PrP generates small amounts of the (Ctm)PrP transmembrane form. Selective detection of (Ctm)PrP allowed us to reveal its N-terminal processing, long half-life, residence in both intracellular and cell surface locations, and eventual degradation in the lysosome. Surprisingly, some human disease-causing mutants in PrP selectively stabilized (Ctm)PrP, revealing a previously unanticipated mechanism of (Ctm)PrP up-regulation that may contribute to disease. Thus, spatiotemporal tagging has uncovered novel aspects of normal and mutant PrP metabolism and should be readily applicable to the analysis of minor topologic isoforms of other proteins. 相似文献
17.
Background
Identification of tumor heterogeneity and genomic similarities across different cancer types is essential to the design of effective stratified treatments and for the discovery of treatments that can be extended to different types of tumors. However, systematic investigations on comprehensive molecular profiles have not been fully explored to achieve this goal.Results
Here, we performed a network-based integrative pan-cancer genomic analysis on >3000 samples from 12 cancer types to uncover novel stratifications among tumors. Our study not only revealed recurrently reported cross-cancer similarities, but also identified novel ones. The macro-scale stratification demonstrates strong clinical relevance and reveals consistent risk tendency among cancer types. The micro-scale stratification shows essential pan-cancer heterogeneity with subgroup-specific gene network characteristics and biological functions.Conclusions
In summary, our comprehensive network-based pan-cancer stratification provides valuable information about inter- and intra- cancer stratification for patient clinical assessments and therapeutic strategies.Electronic supplementary material
The online version of this article (doi:10.1186/s12864-015-1687-x) contains supplementary material, which is available to authorized users. 相似文献18.
GYF domains are conserved eukaryotic adaptor domains that recognize proline-rich sequences. Although the structure and function of the prototypic GYF domain from the human CD2BP2 protein have been characterized in detail, very little is known about GYF domains from other proteins and species. Here we describe the binding properties of four GYF domains of various origins. Phage display in combination with SPOT analysis revealed the PPG(F/I/L/M/V) motif as a general recognition signature. Based on these results, the proteomes of human, yeast, and Arabidopsis thaliana were searched for potential interaction sites. Binding of several candidate proteins was confirmed by pull-down experiments or yeast two-hybrid analysis. The binding epitope of the GYF domain from the yeast SMY2 protein was mapped by NMR spectroscopy and led to a structural model that accounts for the different binding properties of SMY2-type GYF domains and the CD2BP2-GYF domain. 相似文献
19.
Abhishek Kumar Mingxing Ouyang Koen Van den Dries Ewan James McGhee Keiichiro Tanaka Marie D. Anderson Alexander Groisman Benjamin T. Goult Kurt I. Anderson Martin A. Schwartz 《The Journal of cell biology》2016,213(3):371-383
Integrin-dependent adhesions are mechanosensitive structures in which talin mediates a linkage to actin filaments either directly or indirectly by recruiting vinculin. Here, we report the development and validation of a talin tension sensor. We find that talin in focal adhesions is under tension, which is higher in peripheral than central adhesions. Tension on talin is increased by vinculin and depends mainly on actin-binding site 2 (ABS2) within the middle of the rod domain, rather than ABS3 at the far C terminus. Unlike vinculin, talin is under lower tension on soft substrates. The difference between central and peripheral adhesions requires ABS3 but not vinculin or ABS2. However, differential stiffness sensing by talin requires ABS2 but not vinculin or ABS3. These results indicate that central versus peripheral adhesions must be organized and regulated differently, and that ABS2 and ABS3 have distinct functions in spatial variations and stiffness sensing. Overall, these results shed new light on talin function and constrain models for cellular mechanosensing. 相似文献
20.
Chlamydia spp. are intracellular obligate bacterial pathogens that infect a wide range of host cells. Here, we show that C. caviae enters, replicates, and performs a complete developmental cycle in Drosophila SL2 cells. Using this model system, we have performed a genome-wide RNA interference screen and identified 54 factors that, when depleted, inhibit C. caviae infection. By testing the effect of each candidate's knock down on L. monocytogenes infection, we have identified 31 candidates presumably specific of C. caviae infection. We found factors expected to have an effect on Chlamydia infection, such as heparansulfate glycosaminoglycans and actin and microtubule remodeling factors. We also identified factors that were not previously described as involved in Chlamydia infection. For instance, we identified members of the Tim-Tom complex, a multiprotein complex involved in the recognition and import of nuclear-encoded proteins to the mitochondria, as required for C. caviae infection of Drosophila cells. Finally, we confirmed that depletion of either Tom40 or Tom22 also reduced C. caviae infection in mammalian cells. However, C. trachomatis infection was not affected, suggesting that the mechanism involved is C. caviae specific. 相似文献