首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The use of crop wild relative species to improve major crops performance is well established. Hordeum chilense has a high potential as a genetic donor to increase the carotenoid content of wheat. Crosses between the 7Hch H. chilense substitution lines in wheat and the wheat pairing homoeologous1b (ph1b) mutant allowed the development of wheat-H. chilense translocation lines for both 7Hchα and 7Hchβ chromosome arms in the wheat background. These translocation lines were characterized by in situ hybridization and using molecular markers. In addition, reverse phase chromatography (HPLC) analysis was carried out to evaluate the carotenoid content and both 7Hchα∙7AL and 7AS∙7Hchβ disomic translocation lines. The carotenoid content in 7Hchα∙7AL and 7AS∙7Hchβ disomic translocation lines was higher than the wheat-7Hch addition line and double amount of carotenoids than the wheat itself. A proteomic analysis confirmed that the presence of chromosome 7Hch introgressions in wheat scarcely altered the proteomic profile of the wheat flour. The Psy1 (Phytoene Synthase1) gene, which is the first committed step in the carotenoid biosynthetic pathway, was also cytogenetically mapped on the 7Hchα chromosome arm. These new wheat-H. chilense translocation lines can be used as a powerful tool in wheat breeding programs to enrich the diet in bioactive compounds.  相似文献   

2.
Summary The meiotic behaviour of the amphiploid Hordeum chilense X Triticum turgidum conv. durum using a C-banding staining method is studied. Nine pairs of chromosomes at metaphase-1 (4A, 7A and the seven of the B genome) were identified and the remaining wheat chromosomes (1A, 2A, 3A, 5A and 6A) and seven of the chilense (1 to 7 H ch chromosomes) were assigned to its particular genome. A similar mean number of univalents from parental genomes (wheat and wild barley) were found. No meiotic pairing between chilense and turgidum chromosomes was detected. Differences in the meiotic behaviour per chromosome and amongst genomes are explained on the basis of cytomorphological and heterochromatin characteristics.  相似文献   

3.
Two alloplasmic wheat-barley substitution lines were studied: a line replaced at three pairs of chromosomes 1H mar (1B), 5H mar (5D), and 7H mar (7D), and the disomic-substituted line 7H mar (7D). The lines were constructed on the basis of individual plants from BC1F8 and BC2F6 progeny of barley-wheat hybrids (H. marinum subsp. gussoneanum Hudson (= H. geniculatum All.) (2n = 28) × T. aestivum L.) (2n = 42) (Pyrotrix 28), respectively. Moreover, the alloplasmic wheat-barley ditelosomic addition line 7HL mar isolated among plants from the BC1F6 progeny of a barley-wheat amphiploid was studied, which in this work corresponds to BC2F10 and BC2F11 progeny. It was ascertained that when grown in the field, these alloplasmic lines manifest stable self-fertility. Plants of the given lines are characterized by low height, shortened ears, the fewer number of stems and ears, and of spikelets in the ear, by decreased grain productivity and weight of 1000 grains, in comparison with the common wheat cultivar Pyrotrix 28. The inhibition of trait expression in alloplasmic wheat-barley substitution and addition lines may be connected not only with the influence of wild barley chromosomes functioning in the genotypic environment of common wheat, but also with the effect of the barley cytoplasm. The alloplasmic line with substitution of chromosomes 1H mar (1B), 5H mar (5D), and 7H mar (7D) or the alloplasmic line 5HL mar with ditelosomic addition have, in comparison with the common wheat cultivar Pyrotrix 28, an increased grain protein content, which is explained by the effect of wild barley H. marinum subsp. gussoneanum chromosomes.  相似文献   

4.
Cytoplasmic male sterility (CMS) systems are based in the incompatible interaction between nucleus and cytoplasm and are commonly used for hybrid seed production in many crop species. The msH1 CMS system in common wheat results from the incompatibility between the nuclear genome of wheat and the cytoplasm of Hordeum chilense. Fertility restoration of the CMS phenotype is associated with the addition of the short arm of chromosome 6Hch from H. chilense. In this work, we attempt to transfer the msH1 system to durum wheat and to evaluate its potential as a new source of CMS for the production of hybrid durum wheat. For that purpose, an alloplasmic durum wheat line was developed by substituting wheat cytoplasm by that from H. chilense. This line was completely male sterile. Also, the double translocation T6HchS·6DL was transferred from common wheat into durum wheat, to test its potential as a restorer line. Finally, the system was tested by using the double T6HchS·6DL translocation in durum wheat as pollen donor for the alloplasmic male sterile line, which confirmed the fertility restoration ability of 6HchS in durum wheat.  相似文献   

5.
The DNA hypomethylation effect of 5-azacytine (5-AC; a cytosine analog) is widely known. This agent has been used for rRNA gene expression studies of Triticeae amphiploids and hybrids regarding rye rRNA genes suppression caused by the wheat nucleolar dominance phenomenon. However, this situation is reverted by 5-AC treatment which activates rye rRNA gene expression as it has been intensively observed in triticale. For nucleolar dominance studies, we produced F1 multigeneric hybrids (AABBRHch; 2n = 6x = 42) from crosses between the triticale cultivar ‘Corgo’ (AABBRR; 2n = 6x = 42) and the tritordeum cultivars HT9 and HT31 (AABBHchHch; 2n = 6x = 42). The hybrid seeds were germinated in a low concentration of 5-AC (treatment) and in distilled water (nontreated control plants). Silver nitrate staining performed in one 5-AC-treated F1 hybrid revealed a reduced number of interphase cells with seven nucleoli, metaphases with eight Ag-NORs, and neocentromeres in the long arm of three wheat chromosomes. Nontreated hybrids presented six Ag-NORs per mitotic metaphase cell and a maximum of six nucleoli per interphase because of the 1R Ag-NOR suppression. No neocentromere was found in the control F1 hybrid plants. Both treated and nontreated seedlings were subsequently evaluated by fluorescent in situ hybridization performed with genomic and repetitive DNA probes to identify Hch and rye genomes, to confirm Ag-NORs location, and to detect inactive rDNA loci. DAPI counterstaining was also helpful for the detection of neocentromeres in the long arm of three wheat chromosomes. This study allowed us to suggest that 5-AC treatment specifically induced wheat neocentromeres in the F1 multigeneric triticale × tritordeum hybrids.  相似文献   

6.
A 171ACS line (AABBDD, 2n = 6x = 42) has been crossed with the tetra-(AABB and AAGG, 2n = 4x = 28) and octoploid (AAAABBGG, 2n = 8x = 56) wheat species without the D genome, as well as with hexaploid (AABBDD and AAGGDD, 2n = 6x = 42) wheat species and tetra-(AADD, 2n = 4x = 28) and hexaploid (AADDSS, 2n = 6x = 42) amphidiploids that have the D genome. The inheritance of a novel type of spike branching in these obtained hybrid populations F1–F3 was studied. According to the results of a morphogenetic analysis of hybrid populations derived from crossings between 171ACS and wheat species without the D genome, the novel type of branching was found to be controlled by a single recessive gene (although a phenotype of the 171ACS line gives a handle for a doubt about occurrence of the second gene) and the 171ACS line is a source of the novel type branching. However, not a single branched spike plant was observed in hybrid populations that were produced by crosses of the 171ACS line with wheat species, as well as with amphidiploids that have the D genome. This result also experimentally confirmed the inhibitor effect of chromosomes of the D genome on the expression of the spike-branching trait. The appearance of branched-spike forms, together with normal spiked plants in hybrid populations of the 171ACS line and T. araraticum Jakubz. (AAGG) or T. fungicidum Zhuk. (AAAABBGG) confirmed that, as opposed to the D genome, neither genome G nor genome B demonstrated the inhibition of the expression of the spikebranching trait. In conclusion, keeping in mind that branching is exhibited in hybrid progenies obtained from crosses between the 171ACS line and wheat species with AABB and AAGG genomes, it can be said that this gene belongs to the A genome.  相似文献   

7.
Hexaploid tritordeum (HchHchAABB; 2n?=?42) results from the cross between Hordeum chilense (HchHch; 2n?=?14) and cultivated durum wheat (Triticum turgidum ssp. durum (AABB; 2n?=?28). Morphologically, tritordeum resembles the wheat parent, showing promise for agriculture and wheat breeding. Start Codon Targeted (SCoT) polymorphism is a recently developed technique that generates gene-targeted markers. Thus, we considered it interesting to evaluate its potential for the DNA fingerprinting of newly synthesized hexaploid tritordeums and their respective parents. In this study, 60 SCoT primers were tested, and 18 and 19 of them revealed SCoT polymorphisms in the newly synthesized tritordeum lines HT27 and HT22, respectively, and their parents. An analysis of the presence/absence of bands among tritordeums and their parents revealed three types of polymorphic markers: (i) shared by tritordeums and one of their parents, (ii) exclusively amplified in tritordeums, and (iii) exclusively amplified in the parents. No polymorphism was detected among individuals of each parental species. Three SCoT markers were exclusively amplified in tritordeums of lines HT22 and HT27, being considered as polyploidization-induced rearrangements. About 70 % of the SCoT markers of H. chilense origin were not transmitted to the allopolyploids of both lines, and most of the SCoTs scored in the newly synthesized allopolyploids originated from wheat, reinforcing the potential use of tritordeum as an alternative crop.  相似文献   

8.
Background

The wild barley Hordeum chilense fulfills some requirements for being a useful tool to investigate the endosperm yellow pigment content (YPC) in the Triticeae including its diploid constitution, the availability of genetic resources (addition and deletion stocks and a high density genetic map) and, especially, its high seed YPC not silenced in tritordeums (amphiploids derived from H. chilense and wheat). Thus, the aim of this work was to test the utility of the H. chilense genome for investigating the YPC in the Triticeae.

Results

Twelve genes related to endosperm carotenoid content and/or YPC in grasses (Dxr, Hdr [synonym ispH], Ggpps1, Psy2, Psy3, Pds, Zds, e-Lcy, b-Lcy, Hyd3, Ccd1 and Ppo1) were identified, and mapped in H. chilense using rice genes to identify orthologs from barley, wheat, sorghum and maize. Macrocolinearity studies revealed that gene positions were in agreement in H. vulgare and H. chilense. Additionally, three main regions associated with YPC were identified in chromosomes 2Hch, 3Hch and 7Hch in H. chilense, the former being the most significant one.

Conclusions

The results obtained are consistent with previous findings in wheat and suggest that Ggpps1, Zds and Hyd3 on chromosome 2Hch may be considered candidate genes in wheat for further studies in YPC improvement. Considering the syntenic location of carotenoid genes in H. chilense, we have concluded that the Hch genome may constitute a valuable tool for YPC studies in the Triticeae.

  相似文献   

9.
Summary Polyacrylamide and starch gel electrophoresis of esterase (EST), glutamate oxaloacetate transaminase (GOT) and phosphoglucomutase (PGM) isozymes in Hordeum chilense, Triticum turgidum conv. durum, the amphiploid H. chilense X T. turgidum (Tritordeum), and the durum wheat/H. chilense monosomic addition lines revealed the chromosomal location of one EST locus, two GOT loci and one PGM locus. Loci Est-H ch1 and Got-H ch2 were found on chromosome 6Hch,Got-H ch3 on chromosome 3Hch, and Pgm-H ch1 on chromosome 4Hch. These results lend evidence for the assumed homoeology relationships between chromosomes of Triticeae species.  相似文献   

10.
The analysis of the hexaploid wheat genome (Triticum aestivum L., 2n=6x=42) is hampered by its large size (16,974 Mb/1C) and presence of three homoeologous genomes (A, B and D). One of the possible strategies is a targeted approach based on subgenomic libraries of large DNA inserts. In this work, we purified by flow cytometry a total of 107 of three wheat D-genome chromosomes: 1D, 4D and 6D. Chromosomal DNA was partially digested with HindIII and used to prepare a specific bacterial artificial chromosome (BAC) library. The library (designated as TA-subD) consists of 87,168 clones, with an average insert size of 85 kb. Among these clones, 53% had inserts larger than 100 kb, only 29% of inserts being shorter than 75 kb. The coverage was estimated to be 3.4-fold, giving a 96.5% probability of identifying a clone corresponding to any sequence on the three chromosomes. Specificity for chromosomes 1D, 4D and 6D was confirmed after screening the library pools with single-locus microsatellite markers. The screening indicated that the library was not biased and gave an estimated coverage of sixfold. This is the second report on BAC library construction from flow-sorted plant chromosomes, which confirms that dissecting of the complex wheat genome and preparation of subgenomic BAC libraries is possible. Their availability should facilitate the analysis of wheat genome structure and evolution, development of cytogenetic maps, construction of local physical maps and map-based cloning of agronomically important genes.  相似文献   

11.
Individual plants from the BC1F6 and BC1F8 backcross progenies of barley-wheat [H. marinum subsp. gussoneanum Hudson (=H. geniculatum All.) (2n = 28) × T. aestivum L. (2n = 42)] and the BC1F6 progeny of their amphiploids were used to obtain alloplasmic euploid (2n = 42) lines L-28, L-29, and L-49 and alloplasmic telocentric addition (2n = 42 + 2t) lines L-37, L-38, and L-50. The lines were examined by genomic in situ hybridization (GISH), microsatellite analysis, chromosome C-banding, and PCR analysis of the mitochondrial 18S/5S repeat. Lines L-29 and L-49 were characterized by substitution of wild barley chromosome 7H1 for common wheat chromosome 7D. In line L-49, common wheat chromosomes 1B, 5D, and 7D were substituted with homeologous barley chromosomes. Lines L-37, L-38, and L-50 each contained a pair of telocentric chromosomes, which corresponded to barley chromosome arm 7H1L. All lines displayed heteroplasmy for the mitochondrial 18S/5S locus; i.e., both barley and wheat sequences were found. Original Russian Text ? N.V. Trubacheeva, E.D. Badaeva, I.G. Adonina, L.I. Belova, E.P. Devyatkina, L.A. Pershina, 2008, published in Genetika, 2008, Vol. 44, No. 1, pp. 81–89.  相似文献   

12.
Retrotransposon (RTN)-based markers, such as the inter-retrotransposon amplified polymorphism (IRAP) and the retrotransposon-microsatellite amplified polymorphism (REMAP), are highly informative, multilocus, and reveal insertion polymorphisms among individuals. These markers have been used for evolutionary studies, genetic diversity assessment, DNA fingerprinting, and detection of genetic rearrangements induced by allopolyploidization. The hexaploid tritordeum (HchHchAABB; 2n?=?6x?=?42) is an allopolyploid produced from crosses between wild barley (Hordeum chilense Roem. et Schultz.) (HchHch; 2n?=?2x?=?14) and durum wheat (Triticum turgidum L. conv. durum) (AABB; 2n?=?4x?=?28). With this study, we carried out the DNA fingerprinting of two newly formed hexaploid tritordeum lines (HT22 and HT27) and their respective parents, line H1 of H. chilense and line T81 of durum wheat, based on IRAPs, REMAPs and inter-simple sequence repeats (ISSRs), in order to detect potential rearrangements in tritordeum derived from polyploidization. The amphiploid nature of the HT22 and HT27 individuals was successfully confirmed after fluorescence in situ hybridization (FISH), which was performed on their mitotic chromosome spreads with genomic DNA from H. chilense and 45S ribosomal DNA (rDNA), simultaneously, as probes. Six combinations of LTR (long terminal repeat) primers and seven combinations of one LTR and one SSR (simple sequence repeat) primers successfully produced IRAPs and REMAPs, respectively, in both tritordeum lines, and their respective parents. ISSRs were produced with three SSR primers (8081, 8082, and 8564). The analysis of the presence/absence of bands among the tritordeum lines and the respective parents allowed the detection of polymorphic bands: (1) shared by tritordeum and one of the parents; (2) exclusively amplified in tritordeum; and (3) exclusively present in one of the parents. Once no polymorphism was detected among the individuals of each parental species, the polymorphic bands that fit into the second and third cases probably constituted rearrangements in the newly formed tritordeums that arose in response to allopolyploidization, which resulted from the loss of parental bands or, conversely, from the appearance of novel bands not seen in the parental species. Most of the polymorphic IRAPs in tritordeum were shared with the female parent (H. chilense), while most of the polymorphic REMAPs and ISSRs were common to the male parent (durum wheat), but globally, most of the bands inherited by tritordeum had a wheat origin. In conclusion, these dominant markers were successful for DNA fingerprinting and detection of rearrangements in newly formed tritordeum derived from responses to allopolyploidization.  相似文献   

13.
We studied some features of the development of self-fertile 42-chromosome lines on the base of self-pollination progeny of 46-chromosome plants obtained by backcrossing of barley-wheat hybrids Hordeum marinum subsp. gussoneanum Hudson (= H. geniculatum All.) (2n = 28) × Triticum aestivum L. (2n = 42). The stabilization of karyotypes, resulting in 42-chromosome plants of the wheat type was generally completed by generation BC1F10. The plants of all self-pollination progenies, including BC1F10, showed some phenotypic traits characteristic of wild barley. Plants of BC1F10 with the chromosome sets 2n = 42 and 2n = 42 + t were analyzed by RAPD with a set of 115 primers. Fragments of the wild barley genome were detected in RAPD patterns with 19 primers. Cross-hybridization confirmed that these fragments belonged to the wild barley genome. We raised four phenotypically different 42-chromosome lines from grains obtained from plants of generation BC1F10, and these lines proved to be cytogenetically stable and self-fertile when grown in the field.  相似文献   

14.
Summary Three proteins (components 1, 2, and 4) of the non-prolamin, 70% ethanol soluble fraction from the endosperm of Hordeum chilense have been identified as putative subunits of the tetrameric inhibitors active against insect -amylases. In experiments carried out with the synthetic alloploid Tritordeum (H. chilense x Triticum turgidum conv. durum), previously described proteins from T. turgidum, designated CM2, CM3 and CM 16, have been also identified as subunits of -amylase inhibitors. Genes for components 1 and 4 of H. chilense have been located in chromosomes 4Hch and 7Hch, based on the analysis of H. chilense-T.turgidum addition lines. Subunits of the inhibitors from wheat and from cultivated barley had been previously assigned to chromosomes of the same homoeology groups.  相似文献   

15.
Hordeum californicum (2n = 2x = 14, HH) is resistant to several wheat diseases and tolerant to lower nitrogen. In this study, a molecular karyotype of H. californicum chromosomes in the Triticum aestivum L. cv. Chinese Spring (CS)-H. californicum amphidiploid (2n = 6x = 56, AABBDDHH) was established. By genomic in situ hybridization (GISH) and multicolor fluorescent in situ hybridization (FISH) using repetitive DNA clones (pTa71, pTa794 and pSc119.2) as probes, the H. californicum chromosomes could be differentiated from each other and from the wheat chromosomes unequivocally. Based on molecular karyotype and marker analyses, 12 wheat--alien chromosome lines, including four disomic addition lines (DAH1, DAH3, DAH5 and DAH6), five telosomic addition lines (MtH7L, MtHIS, MtH1L, DtH6S and DtH6L), one multiple addition line involving H. californicum chromosome H2, one disomic substitution line (DSH4) and one translocation line (TH7S/1BL), were identified from the progenies derived from the crosses of CS-H. californicum amphidiploid with common wheat varieties. A total of 482 EST (expressed sequence tag) or SSR (simple sequence repeat) markers specific for individual H. californicum chromosomes were identified, and 47, 50, 45, 49, 21, 51 and 40 markers were assigned to chromosomes H1, H2, H3, H4, H5, H6 and H7, respectively. According to the chromosome allocation of these markers, chromosomes H2, H3, H4, H5, and H7 of H. californicum have relationship with wheat homoeologous groups 5, 2, 6, 3, and 1, and hence could be designated as 5Hc, 2He, 6Hc, 3Hc and 1Hc, respectively. The chromosomes H1 and H6 were designated as 7Hc and 4Hc, respectively, by referring to SSR markers located on rye chromosomes.  相似文献   

16.
Genomes of three alloplasmic wheat lines obtained on the basis of barley–wheat hybrid Hordeum geniculatumAll. (2n = 28) ×Triticum aestivumL. (2n = 42)(Pyrotrix 28) were examined using random amplified polymorphic DNA (RAPD) analysis. Line L-29 was obtained after first backcross of the initial hybrid with the wheat variety Pyrotrix 28 and ten subsequent self-pollinating generations. This line was represented by euploid plants with typical to the common wheat chromosome number (2n = 42), as well as by aneuploids, which contained an additional telocentric chromosome in the main karyotype (2n = 42 + t). Lines L-26 and L-27 were obtained by two backcrosses of one BC1 plant with the wheat variety Novosibirskaya 67 and one subsequent self-polination of one BC3 plant. Chromosome number in all these plants corresponded to 2n = 40 + 4t. RAPD analysis was carried out using seven primers, which were previously proved to be effective for identification of the barley genome fragments within hybrid genomes of alloplasmic lines. The presence of barley genome fragments in line L-29 was revealed by use of five primers, while in lines L-26 and L-27 these fragments were detected by use of one primer. The significant difference in the number of barley RAPD fragments in the genomes of alloplasmic lines obtained at different backcrossing stages suggests more intense displacement of barley genome during backcrossing compared to self-pollination in BC1 plants.  相似文献   

17.
Pollen fertility restoration of the CMS phenotype caused by H. chilense cytoplasm in wheat was associated with the addition of chromosome 6HchS from H. chilense accession H1. In order to develop an euploid restored line, different genomic combinations substituting the 6HchS arm for another homoeologous chromosome in wheat were evaluated, with the conclusion that the optimal combination was the translocation T6HchS·6DL. The double translocation T6HchS·6DL in H. chilense cytoplasm was obtained. This line is fertile and stable under different environmental conditions. However, a single dose of the T6HchS·6DL translocation is insufficient for fertility restoration when chromosome 6D is also present. Restoration in the msH1 system is promoted by interaction between two or more genes, and in addition to the restorer of fertility (Rf) located on chromosome 6HchS, one or more inhibitor of fertility (Fi) genes may be present in chromosome 6DL.  相似文献   

18.
Because of the huge size of the common wheat (Triticum aestivum L., 2n = 6x = 42, AABBDD) genome of 17,300 Mb, sequencing and mapping of the expressed portion is a logical first step for gene discovery. Here we report mapping of 7104 expressed sequence tag (EST) unigenes by Southern hybridization into a chromosome bin map using a set of wheat aneuploids and deletion stocks. Each EST detected a mean of 4.8 restriction fragments and 2.8 loci. More loci were mapped in the B genome (5774) than in the A (5173) or D (5146) genomes. The EST density was significantly higher for the D genome than for the A or B. In general, EST density increased relative to the physical distance from the centromere. The majority of EST-dense regions are in the distal parts of chromosomes. Most of the agronomically important genes are located in EST-dense regions. The chromosome bin map of ESTs is a unique resource for SNP analysis, comparative mapping, structural and functional analysis, and polyploid evolution, as well as providing a framework for constructing a sequence-ready, BAC-contig map of the wheat genome.  相似文献   

19.
Alloplasmic lines of common wheat with disomic substitution of chromosome 7D for telocentric chromosome 7H1Lmar of barley H. marinum subsp. gussoneanum Hudson were isolated from the plants of generation BC3, produced as a result of backcrossing of barley-wheat hybrids H. marinum subsp. gussoneanum (2n = 28) × T. aestivum (2n = 42), Pyrotrix, cultivar, with 28 common wheat cultivars Pyrotrix 28 and Novosibirskaya 67. Chromosome substitution pattern was determined using SSR analysis and C-banding. In preliminary genomic in situ hybridization experiments, telocentric chromosomes were assigned to wild barley was established. In the BC3F8 generations of three alloplasmic lines with the 7H1Lmar(7D) substitution type the differences in fertility manifestation were observed: most of the L-32(1) plants were sterile, in line L-32(2) only sporadic plants were sterile, and line L-32(3) was fertile. Simultaneously with these experiments, using selfpollinated progeny of the hybrids obtained in crosses of common wheat cultivar Saratovskaya 29 (2n = 41), monosomic for chromosome 7D, with common wheat cultivar Pyrotrix 28 with addition of pair of telocentric chromosomes 7H1Lmar (7D) of barley H. marinum subsp. gussoneanum, euplasmic wheat-barley ditelosomic substitution 7H1Lmar (7D) lines were isolated. The lines obtained had normal fertility. PCR analysis of the 18S/5S mitochondrial repeat (hereafter, mtDNA sequence) in alloplasmic and euplasmic ditelosomic substitution lines 7H1Lmar(7D) was performed. In the plants from alloplasmic sterile line L-32(1), the sequences only of the barley (maternal) type were revealed, while the plants from alloplasmic fertile lines L-32(2) and L-32(3) demonstrated heteroplasmy (the presence of barley- and wheat-like sequences within one individual). In euplasmic ditelosomic substitution lines the presence of only wheat-like 18S/5S mitochondrial repeat sequences was observed. The results indicate that the presence of barley-like mtDNA sequences in alloplasmic substitution lines was not associated with the presence of barley chromosomes in their nuclear genomes.  相似文献   

20.
Imidazolinone herbicides resistant varieties, induced by mutations at the AHAS gene (acetohydroxyacid synthase), have been developed in many crops. Hexaploid tritordeum (Tritordeum Asch. & Graebn.) is the amphiploid derived from the cross between Hordeum chilense (HchHch) and durum wheat Triticum turgidum L. (Thell) (AABB). Tritordeums have the potential to become a new crop with high added-value for food or feed. Mutagenesis with EMS was conducted to obtain imidazolinone resistant lines derived of the tritordeum HT621. Eleven M3 plants were selected after imidazolinone treatment and five descendants of two of these lines (HT621-M3R1-3 and HT621-M3R10-1) were analyzed at the molecular level. Partial sequences of the three homologous AHAS loci in genomes A, B, and Hch were obtained as well as those of HT621. A partial sequence of the AHAS gene in Hordeum chilense is first described in this work, and the designation ahasL-H ch 1 is proposed. A single Ser-Asn627 substitution at the AHAS locus in the B genome is responsible of resistance in both lines. We propose the name AhasL-B2 for this resistance allele. This is the first report of the selection of imidazolinone resistant lines of tritordeum and the molecular characterization of the mutation conferring this resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号