首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The homing endonuclease I-Ssp6803I causes the insertion of a group I intron into a bacterial tRNA gene-the only example of an invasive mobile intron within a bacterial genome. Using a computational fold prediction, mutagenic screen and crystal structure determination, we demonstrate that this protein is a tetrameric PD-(D/E)-XK endonuclease - a fold normally used to protect a bacterial genome from invading DNA through the action of restriction endonucleases. I-Ssp6803I uses its tetrameric assembly to promote recognition of a single long target site, whereas restriction endonuclease tetramers facilitate cooperative binding and cleavage of two short sites. The limited use of the PD-(D/E)-XK nucleases by mobile introns stands in contrast to their frequent use of LAGLIDADG and HNH endonucleases - which in turn, are rarely incorporated into restriction/modification systems.  相似文献   

2.
3.
A group I self-splicing intron has been found in the anticodon loop of tRNA(fMet) genes in three cyanobacterial genera: Dermocarpa, Scytonema and Synechocystis; it is absent in nine others. The Synechocystis intron is also interrupted by an open reading frame (ORF) of 150 codons. Of these three bacteria, only Scytonema also contains the group I intron that has previously been reported in tRNA(Leu) (UAA) genes in both cyanobacteria and chloroplasts. The presence of an ORF in the tRNA(fMet) intron, the sporadic distribution of the intron among cyanobacteria and the lack of correlation between relatedness of the intron sequences and the bacteria in which they reside, are all consistent with recent introduction of this intron by lateral transfer.  相似文献   

4.
The first group I intron in the cox1 gene (cox1I1b ) of the mitochondrial genome of the fission yeast Schizosaccharomyces pombe is a mobile DNA element. The mobility is dependent on an endonuclease protein that is encoded by an intronic open reading frame (ORF). The intron-encoded endonuclease is a typical member of the LAGLIDADG protein family of endonucleases with two consensus motifs. In addition to this, analysis of several intron mutants revealed that this protein is required for intron splicing. However, this protein is one of the few group I intron-encoded proteins that functions in RNA splicing simultaneously with its DNA endonuclease activity. We report here on the biochemical characterization of the endonuclease activity of this protein artificially expressed in Escherichia coli. Although the intronic ORF is expressed as a fusion protein with the upstream exon in vivo, the experiments showed that a truncated translation product consisting of the C-terminal 304 codons of the cox1I1b ORF restricted to loop 8 of the intron RNA secondary structure is sufficient for the specific endonuclease activity in vitro. Based on the results, we speculate on the evolution of site-specific homing endonucleases encoded by group I introns in eukaryotes.  相似文献   

5.
6.
A J Thompson  X Yuan  W Kudlicki  D L Herrin 《Gene》1992,119(2):247-251
Several group-I introns have been shown to specifically invade intron-minus alleles of the genes that contain them. This type of intron mobility is referred to as 'intron homing', and depends on restriction endonucleases (ENases) encoded by the mobile introns. The ENase cleaves the intron-minus allele near the site of intron insertion, thereby initiating gene conversion. The 23S (LSU) rRNA-encoding gene (LSU) of the chloroplast genome of Chlamydomonas reinhardtii contains a self-splicing group-I intron (CrLSU) that has a free-standing open reading frame (ORF) of 163 codons. Translation of CrLSU intron RNA in cell-free systems produces a polypeptide of approx. 18 kDa, the size expected for correct translation of the ORF. The in vitro-synthesized 18-kDa protein cleaves plasmid DNA that contains a portion of LSU where the intron normally resides, but lacking the intron itself. Cleavage by the intron-encoded enzyme (I-CreI) occurs 5 bp and 1 bp 3' to the intron insertion site (in the 3'-exon) in the top (/) and bottom (,) strands, respectively, resulting in 4-nt single-stranded overhangs with 3'-OH termini. We also show that the recognition sequence of I-CreI spans the cleavage site and is 24 bp in length (5'-CAAAACGTC,GTGA/GACAGTTTGGT).  相似文献   

7.
We have determined the DNA sequence of intron 1 and flanking exons in the mitochondrial apocytochrome b gene of the Neurospora laboratory strain 74A and the natural isolate North Africa. In contrast to a previous report, we find that this intron contains an open reading frame (ORF) of 951 bases in frame with the upstream exon. The putative intron-encoded protein resembles those of other intron ORFs with respect to length, calculated isoelectric point, and proportion of basic, acidic, polar, and non-polar amino acids; however, no amino acid sequences resembling the "decapeptides" characteristic of maturase-like ORFs were found. Coupled with the previous finding that this intron is capable of self-splicing in vitro in the absence of proteins, the observations discussed here raise the possibility that other introns with long, in-frame ORFs may also be capable of RNA-catalyzed splicing in vitro.  相似文献   

8.
A novel and only recently recognized class of enzymes is composed of the site-specific endonucleases encoded by some group I introns. We have characterized several aspects of I-Ppo, the endonuclease that mediates the mobility of intron 3 in the ribosomal DNA of Physarum polycephalum. This intron is unique among mobile group I introns in that it is located in nuclear DNA. We found that I-Ppo is encoded by an open reading frame in the 5' half of intron 3, upstream of the sequences required for self-splicing of group I introns. Either of two AUG initiation codons could start this reading frame, one near the beginning of the intron and the other in the upstream exon, leading to predicted polypeptides of 138 and 160 amino acid residues. The longer polypeptide was the major form translated in vitro in a reticulocyte extract. From nuclease assays of proteins synthesized in vitro with partially deleted DNAs, we conclude that both polypeptides possess endonuclease activity. We also have expressed I-Ppo in Escherichia coli, using a bacteriophage T7 RNA polymerase expression system. The longer polypeptide also was the predominant form made in this system. It showed enzymatic activity in bacteria in vivo, as demonstrated by the cleavage of a plasmid carrying the target site. Like several other intron-encoded endonucleases, I-Ppo makes a four-base staggered cut in its ribosomal DNA target sequence, very near the site where intron 3 becomes integrated in crosses of intron 3-containing and intron 3-lacking Physarum strains.  相似文献   

9.
10.
MOTIVATION: Restriction endonucleases (REases) and homing endonucleases (HEases) are biotechnologically important enzymes. Nearly all structurally characterized REases belong to the PD-(D/E)XK superfamily of nucleases, while most HEases belong to an unrelated LAGLIDADG superfamily. These two protein folds are typically associated with very different modes of protein-DNA recognition, consistent with the different mechanisms of action required to achieve high specificity. REases recognize short DNA sequences using multiple contacts per base pair, while HEases recognize very long sites using a few contacts per base pair, thereby allowing for partial degeneracy of the target sequence. Thus far, neither REases with the LAGLIDADG fold, nor HEases with the PD-(D/E)XK fold, have been found. RESULTS: Using protein fold recognition, we have identified the first member of the PD-(D/E)XK superfamily among homing endonucleases, a cyanobacterial enzyme I-Ssp6803I. We present a model of the I-Ssp6803I-DNA complex based on the structure of Type II restriction endonuclease R.BglI and predict the active site and residues involved in specific DNA sequence recognition by I-Ssp6803I. Our finding reveals a new unexpected evolutionary link between HEases and REases and suggests how PD-(D/E)XK nucleases may develop a 'HEase-like' way of interacting with the extended DNA sequence. This in turn may be exploited to study the evolution of DNA sequence specificity and to engineer nucleases with new substrate specificities.  相似文献   

11.
The essential Bacillus anthracis nrdE gene carries a self-splicing group I intron with a putative homing endonuclease belonging to the GIY-YIG family. Here, we show that the nrdE pre-mRNA is spliced and that the homing endonuclease cleaves an intronless nrdE gene 5 nucleotides (nt) upstream of the intron insertion site, producing 2-nt 3' extensions. We also show that the sequence required for efficient cleavage spans at least 4 bp upstream and 31 bp downstream of the cleaved coding strand. The position of the recognition sequence in relation to the cleavage position is as expected for a GIY-YIG homing endonuclease. Interestingly, nrdE genes from several other Bacillaceae were also susceptible to cleavage, with those of Bacillus cereus, Staphylococcus epidermidis (nrdE1), B. anthracis, and Bacillus thuringiensis serovar konkukian being better substrates than those of Bacillus subtilis, Bacillus lichenformis, and S. epidermidis (nrdE2). On the other hand, nrdE genes from Lactococcus lactis, Escherichia coli, Salmonella enterica serovar Typhimurium, and Corynebacterium ammoniagenes were not cleaved. Intervening sequences (IVSs) residing in protein-coding genes are often found in enzymes involved in DNA metabolism, and the ribonucleotide reductase nrdE gene is a frequent target for self-splicing IVSs. A comparison of nrdE genes from seven gram-positive low-G+C bacteria, two bacteriophages, and Nocardia farcinica showed five different insertion sites for self-splicing IVSs within the coding region of the nrdE gene.  相似文献   

12.
13.
The protein encoded by intron 1 of the single 23S rRNA gene of the archaeal hyperthermophile Pyrobaculum organotrophum was isolated and shown to constitute a homing-type DNA endonuclease, I-PorI. It cleaves the intron- 23S rDNA of the closely related organism Pyrobaculum islandicum near the site of intron insertion in Pb.organotrophum. In contrast, no endonuclease activity was detected for the protein product of intron 2 of the same gene of Pb.organotrophum which, like I-PorI, carries the LAGLI-DADG motif, common to group I intron-encoded homing enzymes. I-PorI cleaves optimally at 80 degrees C, with kcat and Km values of about 2 min-1 and 4 nM, respectively, and generates four nucleotide 3'-overhangs and 5'-phosphates. It can cleave a 25 base pair DNA fragment encompassing the intron insertion site. A mutation-selection study established the base pair specificity of the endonuclease within a 17 bp region, from positions -6 to +11 with respect to the intron-insertion site. Four of the essential base pairs encode the sequence involved in the intron-exon interaction in the pre-rRNA that is required for recognition by the RNA splicing enzymes. Properties of the enzyme are compared and contrasted with those of eucaryotic homing endonucleases.  相似文献   

14.
The I-CeuI endonuclease is a member of the growing family of homing endonucleases that catalyse mobility of group I introns by making a double-strand break at the homing site of these introns in cognate intronless alleles during genetic crosses. In a previous study, we have shown that a short DNA fragment of 26 bp, encompassing the homing site of the fifth intron in the Chlamydomonas eugametos chloroplast large subunit rRNA gene (Ce LSU.5), was sufficient for I-CeuI recognition and cleavage. Here, we report the recognition sequence of the I-CeuI endonuclease, as determined by random mutagenesis of nucleotide positions adjacent to the I-CeuI cleavage site. Single-base substitutions that completely abolish endonuclease activity delimit a 15-bp sequence whereas those that reduce the cleavage rate define a 19-bp sequence that extends from position -7 to position +12 with respect to the Ce LSU.5 intron insertion site. As the other homing endonucleases that have been studied so far, the I-CeuI endonuclease recognizes a non-symmetric degenerate sequence. The top strand of the recognition sequence is preferred for I-CeuI cleavage and the bottom strand most likely determines the rate of double-strand breaks.  相似文献   

15.
The T4 phage td intron-encoded endonuclease (I-Tev I) cleaves the intron-deleted td gene (td delta I) 23 nucleotides upstream of the intron insertion site on the noncoding strand and 25 nucleotides upstream of this site on the coding strand, to generate a 2-base hydroxyl overhang in the 3' end of each DNA strand. I-Tev I-157, a truncated form in which slightly more than one third (88 residues) of the endonuclease is deleted, was purified to homogeneity and shown to possess endonuclease activity similar to that of I-TEV I, the full-length enzyme (245 residues). The minimal length of the td delta I gene that was cleaved by I-Tev I and I-Tev I-157 has been determined to be exactly 39 basepairs, from -27 (upstream in exon1) to +12 (downstream in exon2) relative to the intron insertion site. Similar to the full-length endonuclease, I-Tev I-157 cuts the intronless thymidylate synthase genes from such diverse organisms as Escherichia coli, Lactobacillus casei and the human. The position and nature of the in vitro endonucleolytic cut in these genes are homologous to those in td delta I. Point mutational analysis of the td delta I substrate based on the deduced consensus nucleotide sequence has revealed a very low degree of specificity on either side of the cleavage site, for both the full-length and truncated I-TEV I.  相似文献   

16.
Summary Two group I intron-encoded proteins from the yeast mitochondrial genome have already been shown to have a specific DNA endonuclease activity. This activity mediates intron insertion by cleaving the DNA sequence corresponding to the splice junction of an intronless strain. We have discovered in mitochondrial extracts from the yeast strain 777-3A a new DNA endonuclease activity which cleaves the fused exon A3-exon A4 junction sequence of the COXI gene.  相似文献   

17.
We have previously discovered the new intron-encoded endonuclease I-Sce III by expressing, in E. coli, the ORF contained in the third intron of the yeast mitochondrial COX I gene. In this work, we analyzed the in vitro properties of partially purified I-Sce III and found that it is a very specific DNA endonuclease, tolerating relatively few base changes in its 20 base pair long target site. I-Sce III should be a useful molecular tool to analyze the structure of large genomes. Interestingly, I-Sce III is the first P1-P2 DNA endonuclease for which DNA binding properties could be analyzed by band-shift experiments. Clearly, the cleavage products corresponding to the upstream A3 exon and to the downstream A4 exon could compete with the substrate A3-A4 in forming a DNA-protein complex. However, the A3 exon competes more efficiently than the downstream A4 product. The cleavage of the two DNA strands is also asymmetric the top strand (non-transcribed strand) is cleaved faster than the bottom strand, a property found under various experimental conditions. These findings suggest that this intron-encoded DNA endonuclease may have role in the RNA splicing process of the intron.  相似文献   

18.
Here we describe the discovery of a group I intron in the DNA polymerase gene of Bacillus thuringiensis phage Bastille. Although the intron insertion site is identical to that of the Bacillus subtilis phages SPO1 and SP82 introns, the Bastille intron differs from them substantially in primary and secondary structure. Like the SPO1 and SP82 introns, the Bastille intron encodes a nicking DNA endonuclease of the H-N-H family, I-BasI, with a cleavage site identical to that of the SPO1-encoded enzyme I-HmuI. Unlike I-HmuI, which nicks both intron-minus and intron-plus DNA, I-BasI cleaves only intron-minus alleles, which is a characteristic of typical homing endonucleases. Interestingly, the C-terminal portions of these H-N-H phage endonucleases contain a conserved sequence motif, the intron-encoded endonuclease repeat motif (IENR1) that also has been found in endonucleases of the GIY-YIG family, and which likely comprises a small DNA-binding module with a globular ββααβ fold, suggestive of module shuffling between different homing endonuclease families.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号