首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
The abundance and cytoplasmic organization of keratin filaments enables them to contribute to the maintenance of structural integrity in epithelial tissues. Co-polymers of the type II keratin 8 and type I keratin 18 form the major intermediate filament network in simple epithelia. We investigated the mechanical properties of K8-K18 filament suspensions using rheological assays in conjunction with light and electron microscopy. Suspensions of K8-K18 filaments behave like a viscoelastic solid under standard assembly conditions. Bulk elasticity is weakly dependent on deformation frequency but is very sensitive to the concentration (G' approximately C1.5) and size of individual keratin polymers, in agreement with recent models of semiflexible-polymer physics. K8-K18 filaments can self-organize to form a bundled network that exhibits gel-like mechanical properties. In all cases the mechanical properties of the suspensions correlate with the structural features of individual polymers, as seen under light and electron microscopy. Importantly, these bulk viscoelastic properties of K8-K18 filaments are revealed only when interfacial elastic effects are minimized by the application of phospholipids at the air-liquid interface. Suspensions of K5-K14 and vimentin filaments also exhibit interfacial elasticity, which distorts the interpretation of the viscoelastic moduli as determined by standard rheometry. The potential for modulation of mechanical properties through self-organization may be a general property of keratin polymers and contribute to their organization and function in vivo.  相似文献   

2.
Keratin filaments arise from the copolymerization of type I and II sequences, and form a pancytoplasmic network that provides vital mechanical support to epithelial cells. Keratins 5 and 14 are expressed as a pair in basal cells of stratified epithelia, where they occur as bundled arrays of filaments. In vitro, bundles of K5-K14 filaments can be induced in the absence of cross-linkers, and exhibit enhanced resistance to mechanical strain. This property is not exhibited by copolymers of K5 and tailless K14, in which the nonhelical tail domain has been removed, or copolymers of K5 and K19, a type I keratin featuring a short tail domain. The purified K14 tail domain binds keratin filaments in vitro with specificity (kD approximately 2 microM). When transiently expressed in cultured cells, the K14 tail domain associates with endogenous keratin filaments. Utilization of the K14 tail domain as a bait in a yeast two-hybrid screen pulls out type I keratin sequences from a skin cDNA library. These data suggest that the tail domain of K14 contributes to the ability of K5-K14 filaments to self-organize into large bundles showing enhanced mechanical resilience in vitro.  相似文献   

3.
Keratins 5 and 14 polymerize to form the intermediate filament network in the progenitor basal cells of many stratified epithelia including epidermis, where it provides crucial mechanical support. Inherited mutations in K5 or K14 result in epidermolysis bullosa simplex (EBS), a skin-fragility disorder. The impact that such mutations exert on the intrinsic mechanical properties of K5/K14 filaments is unknown. Here we show, by using differential interference contrast microscopy, that a 'hot-spot' mutation in K14 greatly reduces the ability of reconstituted mutant filaments to bundle under crosslinking conditions. Rheological assays measure similar small-deformation mechanical responses for crosslinked solutions of wild-type and mutant keratins. The mutation, however, markedly reduces the resilience of crosslinked networks against large deformations. Single-particle tracking, which probes the local organization of filament networks, shows that the mutant polymer exhibits highly heterogeneous structures compared to those of wild-type filaments. Our results indicate that the fragility of epithelial cells expressing mutant keratin may result from an impaired ability of keratin polymers to be crosslinked into a functional network.  相似文献   

4.
Dividing populations of stratified and simple epithelial tissues express keratins 5 and 14, and keratins 8 and 18, respectively. It has been suggested that these keratins form a mechanical framework important to cellular integrity, since their absence gives rise to a blistering skin disorder in neonatal epidermis, and hemorrhaging within the embryonic liver. An unresolved fundamental issue is whether different keratins perform unique functions in epithelia. We now address this question using transgenic technology to express a K16-14 hybrid epidermal keratin transgene and a K18 simple epithelial keratin transgene in the epidermis of mice null for K14. Under conditions where the hybrid epidermal keratin restored a wild-type phenotype to newborn epidermis, K18 partially but not fully rescued. The explanation does not appear to reside in an inability of K18 to form 10-nm filaments with K5, which it does in vitro and in vivo. Rather, it appears that the keratin network formed between K5 and K18 is deficient in withstanding mechanical stress, leading to perturbations in the keratin network in regions of the skin that are subjected either to natural or to mechanically induced trauma. Taken together, these findings suggest that the loss of a type I epidermal keratin cannot be fully compensated by its counterpart of simple epithelial cells, and that in vivo, all keratins are not equivalent.  相似文献   

5.
6.
Keratin intermediate filaments (IFs) fulfill an important function of structural support in epithelial cells. The necessary mechanical attributes require that IFs be organized into a crosslinked network and accordingly, keratin IFs are typically organized into large bundles in surface epithelia. For IFs comprised of keratins 5 and 14 (K5, K14), found in basal keratinocytes of epidermis, bundling can be self-driven through interactions between K14's carboxy-terminal tail domain and two regions in the central α-helical rod domain of K5. Here, we exploit theoretical principles and computational modeling to investigate how such cis-acting determinants best promote IF crosslinking. We develop a simple model where keratin IFs are treated as rigid rods to apply Brownian dynamics simulation. Our findings suggest that long-range interactions between IFs are required to initiate the formation of bundlelike configurations, while tail domain-mediated binding events act to stabilize them. Our model explains the differences observed in the mechanical properties of wild-type versus disease-causing, defective IF networks. This effort extends the notion that the structural support function of keratin IFs necessitates a combination of intrinsic and extrinsic determinants, and makes specific predictions about the mechanisms involved in the formation of crosslinked keratin networks in vivo.  相似文献   

7.
The properties of keratin intermediate filaments (IFs) have been studied after transfection with green fluorescent protein (GFP)-tagged K18 and/or K8 (type I/II IF proteins). GFP-K8 and -K18 become incorporated into tonofibrils, which are comprised of bundles of keratin IFs. These tonofibrils exhibit a remarkably wide range of motile and dynamic activities. Fluorescence recovery after photobleaching (FRAP) analyses show that they recover their fluorescence slowly with a recovery t(1/2) of approximately 100 min. The movements of bleach zones during recovery show that closely spaced tonofibrils (<1 microm apart) often move at different rates and in different directions. Individual tonofibrils frequently change their shapes, and in some cases these changes appear as propagated waveforms along their long axes. In addition, short fibrils, termed keratin squiggles, are seen at the cell periphery where they move mainly towards the cell center. The motile properties of keratin IFs are also compared with those of type III IFs (vimentin) in PtK2 cells. Intriguingly, the dynamic properties of keratin tonofibrils and squiggles are dramatically different from those of vimentin fibrils and squiggles within the same cytoplasmic regions. This suggests that there are different factors regulating the dynamic properties of different types of IFs within the same cytoplasmic regions.  相似文献   

8.
Injury to stratified epithelia causes a strong induction of keratins 6 (K6) and 16 (K16) in post-mitotic keratinocytes located at the wound edge. We show that induction of K6 and K16 occurs within 6 h after injury to human epidermis. Their subsequent accumulation in keratinocytes correlates with the profound reorganization of keratin filaments from a pan-cytoplasmic distribution to one in which filaments are aggregated in a juxtanuclear location, opposite to the direction of cell migration. This filament reorganization coincides with additional cytoarchitectural changes and the onset of re-epithelialization after 18 h post-injury. By following the assembly of K6 and K16 in vitro and in cultured cells, we find that relative to K5 and K14, a well- characterized keratin pair that is constitutively expressed in epidermis, K6 and K16 polymerize into short 10-nm filaments that accumulate near the nucleus, a property arising from K16. Forced expression of human K16 in skin keratinocytes of transgenic mice causes a retraction of keratin filaments from the cell periphery, often in a polarized fashion. These results imply that K16 may not have a primary structural function akin to epidermal keratins. Rather, they suggest that in the context of epidermal wound healing, the function of K16 could be to promote a reorganization of the cytoplasmic array of keratin filaments, an event that precedes the onset of keratinocyte migration into the wound site.  相似文献   

9.
Human keratin 18 (K18) and keratin 8 (K8) and their mouse homologs, Endo B and Endo A, respectively, are expressed in adult mice primarily in a variety of simple epithelial cell types in which they are normally found in equal amounts within the intermediate filament cytoskeleton. Expression of K18 alone in mouse L cells or NIH 3T3 fibroblasts from either the gene or a cDNA expression vector results in K18 protein which is degraded relatively rapidly without the formation of filaments. A K8 cDNA containing all coding sequences was isolated and expressed in mouse fibroblasts either singly or in combination with K18. Immunoprecipitation of stably transfected L cells revealed that when K8 was expressed alone, it was degraded in a fashion similar to that seen previously for K18. However, expression of K8 in fibroblasts that also expressed K18 resulted in stabilization of both K18 and K8. Immunofluorescent staining revealed typical keratin filament organization in such cells. Thus, expression of a type I and a type II keratin was found to be both necessary and sufficient for formation of keratin filaments within fibroblasts. To determine whether a similar proteolytic system responsible for the degradation of K18 in fibroblasts also exists in simple epithelial cells which normally express a type I and a type II keratin, a mutant, truncated K18 protein missing the carboxy-terminal tail domain and a conserved region of the central, alpha-helical rod domain was expressed in mouse parietal endodermal cells. This resulted in destabilization of endogenous Endo A and Endo B and inhibition of the formation of typical keratin filament structures. Therefore, cells that normally express keratins contain a proteolytic system similar to that found in experimentally manipulated fibroblasts which degrades keratin proteins not found in their normal polymerized state.  相似文献   

10.
All epithelial cells feature a prominent keratin intermediate filament (IF) network in their cytoplasm. Studies in transgenic mice and in patients with inherited epithelial fragility syndromes showed that a major function of keratin IFs is to provide mechanical support to epithelial cell sheets. Yet the micromechanical properties of keratin IFs themselves remain unknown. We used rheological methods to assess the properties of suspensions of epidermal type I and type II keratin IFs and of vimentin, a type III IF polymer. We find that both types of IFs form gels with properties akin to visco-elastic solids. With increasing deformation they display strain hardening and yield relatively rapidly. Remarkably, both types of gels recover their preshear properties upon cessation of the deformation. Repeated imposition of small deformations gives rise to a progressively stiffer gel for keratin but not vimentin IFs. The visco-elastic moduli of both gels show a weak dependence upon the frequency of the input shear stress and the concentration of the polymer, suggesting that both steric and nonsteric interactions between individual polymers contribute to the observed mechanical properties. In support of this, the length of individual polymers contributes only modestly to the properties of IF gels. Collectively these properties render IFs unique among cytoskeletal polymers and have strong implications for their function in vivo.  相似文献   

11.
12.
《The Journal of cell biology》1994,127(4):1049-1060
In epidermal cells, keratin intermediate filaments connect with desmosomes to form extensive cadherin-mediated cytoskeletal architectures. Desmoplakin (DPI), a desmosomal component lacking a transmembrane domain, has been implicated in this interaction, although most studies have been conducted with cells that contain few or no desmosomes, and efforts to demonstrate direct interactions between desmoplakin and intermediate filaments have not been successful. In this report, we explore the biochemical nature of the connections between keratin filaments and desmosomes in epidermal keratinocytes. We show that the carboxy terminal "tail" of DPI associates directly with the amino terminal "head" of type II epidermal keratins, including K1, K2, K5, and K6. We have engineered and purified recombinant K5 head and DPI tail, and we demonstrate direct interaction in vitro by solution- binding assays and by ligand blot assays. This marked association is not seen with simple epithelial type II keratins, vimentin, or with type I keratins, providing a possible explanation for the greater stability of the epidermal keratin filament architecture over that of other cell types. We have identified an 18-amino acid residue stretch in the K5 head that is conserved only among type II epidermal keratins and that appears to play some role in DPI tail binding. This finding might have important implications for understanding a recent point mutation found within this binding site in a family with a blistering skin disorder.  相似文献   

13.
It has only recently been recognized that intermediate filaments (IFs) and their assembly intermediates are highly motile cytoskeletal components with cell-type- and isotype-specific characteristics. To elucidate the cell-type-independent contribution of actin filaments and microtubules to these motile properties, fluorescent epithelial IF keratin polypeptides were introduced into non-epithelial, adrenal cortex-derived SW13 cells. Time-lapse fluorescence microscopy of stably transfected SW13 cell lines synthesizing fluorescent human keratin 8 and 18 chimeras HK8-CFP and HK18-YFP revealed extended filament networks that are entirely composed of transgene products and exhibit the same dynamic features as keratin systems in epithelial cells. Detailed analyses identified two distinct types of keratin motility: (I) Slow (approximately 0.23 microm/min), inward-directed, continuous transport of keratin filament precursor particles from the plasma membrane towards the cell interior, which is most pronounced in lamellipodia. (II) Fast (approximately 17 microm/min), bidirectional and intermittent transport of keratin particles in axonal-type cell processes. Disruption of actin filaments inhibited type I motility while type II motility remained. Conversely, microtubule disruption inhibited transport mode II while mode I continued. Combining the two treatments resulted in a complete block of keratin motility. We therefore conclude that keratin motility relies both on intact actin filaments and microtubules and is not dependent on epithelium-specific cellular factors.  相似文献   

14.
15.
Epithelial cell keratins make up the type I (K9-K20) and type II (K1-K8) intermediate filament proteins. In glandular epithelia, K8 becomes phosphorylated on S73 ((71)LLpSPL) in human cultured cells and tissues during stress, apoptosis, and mitosis. Of all known proteins, the context of the K8 S73 motif (LLS/TPL) is unique to type II keratins and is conserved in epidermal K5/K6, esophageal K4, and type II hair keratins, except that serine is replaced by threonine. Because knowledge regarding epidermal and esophageal keratin regulation is limited, we tested whether K4-K6 are phosphorylated on the LLTPL motif. K5 and K6 become phosphorylated in vitro on threonine by the stress-activated kinase p38. Site-specific anti-phosphokeratin antibodies to LLpTPL were generated, which demonstrated negligible basal K4-K6 phosphorylation. In contrast, treatment of primary keratinocytes and other cultured cells, and ex vivo skin and esophagus cultures, with serine/threonine phosphatase inhibitors causes a dramatic increase in K4-K6 LLpTPL phosphorylation. This phosphorylation is accompanied by keratin solubilization, filament reorganization, and collapse. K5/K6 LLTPL phosphorylation occurs in vivo during mitosis and apoptosis induced by UV light or anisomycin, and in human psoriatic skin and squamous cell carcinoma. In conclusion, type II keratins of proliferating epithelia undergo phosphorylation at a unique and conserved motif as part of physiological mitotic and stress-related signals.  相似文献   

16.
17.
The mechanical properties of epithelial cells are modulated by structural changes in keratin intermediate filament networks. To investigate the relationship between network architecture and viscoelasticity, we assembled keratin filaments from recombinant keratin proteins 8 (K8) and 18 (K18) in the presence of divalent ions (Mg2+). We probed the viscoelastic modulus of the network by tracking the movement of microspheres embedded in the network during assembly, and studied the network architecture using scanning electron microscopy. Addition of Mg2+ at physiological concentrations (<1 mM) resulted in networks whose structure was similar to that of keratin networks in epithelial cells. Moreover, the elastic moduli of networks assembled in vitro were found to be within the same magnitude as those measured in keratin networks of detergent-extracted epithelial cells. These findings suggest that Mg2+-induced filament cross-linking represents a valid model for studying the cytoskeletal mechanics of keratin networks.  相似文献   

18.
The intermediate filaments (IFs) form major structural elements of the cytoskeleton. In vitro analyses of these fibrous proteins reveal very different assembly properties for the nuclear and cytoplasmic IF proteins. However, keratins in particular, the largest and most heterogenous group of cytoplasmic IF proteins, have been difficult to analyze due to their rapid assembly dynamics under the near-physiological conditions used for other IF proteins. We show here that keratins, like other cytoplasmic IF proteins, go through a stage of assembling into full-width soluble complexes, i.e., "unit-length filaments" (ULFs). In contrast to other IF proteins, however, longitudinal annealing of keratin ULFs into long filaments quasi-coincides with their formation. In vitro assembly of IF proteins into filaments can be initiated by an increase of the ionic strength and/or lowering of the pH of the assembly buffer. We now document that 23-mer peptides from the head domains of various IF proteins can induce filament formation even under conditions of low salt and high pH. This suggests that the "heads" are involved in the formation and longitudinal association of the ULFs. Using a Tris-buffering protocol that causes formation of soluble oligomers at pH 9, the epidermal keratins K5/14 form less regular filaments and less efficiently than the simple epithelial keratins K8/18. In sodium phosphate buffers (pH 7.5), however, K5/14 were able to form long partially unraveled filaments which compacted into extended, regular filaments upon addition of 20 mM KCl. Applying the same assembly regimen to mutant K14 R125H demonstrated that mutations causing a severe disease phenotype and morphological filament abnormalities can form long, regular filaments with surprising efficiency in vitro.  相似文献   

19.
Keratins I and II form the largest subgroups of mammalian intermediate filament (IF) proteins and account as obligatory heteropolymers for the keratin filaments of epithelia. All human type I genes except for the K18 gene are clustered on chromosome 17q21, while all type II genes form a cluster on chromosome 12q13, that ends with the type I gene K18. Highly related keratin gene clusters are found in rat and mouse. Since fish seem to lack a keratin II cluster we screened the recently established draft genomes of a bird (chicken) and an amphibian (Xenopus). The results show that keratin I and II gene clusters are a feature of all terrestrial vertebrates. Because hair with its multiple hair keratins and inner root sheath keratins is a mammalian acquisition, the keratin gene clusters of chicken and Xenopus tropicalis have only about half the number of genes found in mammals. Within the type I clusters all genes have the same orientation. In type II clusters there is a rare gene of opposite orientation. Finally we show that the genes for keratins 8 and 18, which are the first expression pair in embryology, are not only adjacent in mammals, but also in Xenopus and three different fish. Thus neighboring K8 and K18 genes seem a feature shared by all vertebrates. In contrast to the two well defined keratin gene clusters of terrestrial vertebrates, three teleost fish show an excess of type I over type II genes, the lack of a keratin type II gene cluster and a striking dispersal of type I genes, that are probably the result of the teleost-specific whole genome duplication followed by a massive gene loss. This raises the question whether keratin gene clusters extend beyond the ancestral bony vertebrate to cartilage fish and lamprey. We also analyzed the complement of non-keratin IF genes of the chicken. Surprisingly, an additional nuclear lamin gene, previously overlooked by cDNA cloning, is documented on chromosome 10. The two splice variants closely resemble the lamin LIII a + b of amphibia and fish. This lamin gene is lost on the mammalian lineage.  相似文献   

20.
Keratins, constituent proteins of intermediate filaments of epithelial cells, are phosphoproteins containing phosphoserine and phosphothreonine. We examined the in vitro phosphorylation of keratin filaments by cAMP-dependent protein kinase, protein kinase C and Ca2+/calmodulin-dependent protein kinase II. When rat liver keratin filaments reconstituted by type I keratin 18 (molecular mass 47 kDa; acidic type) and type II keratin 8 (molecular mass 55 kDa; basic type) in a 1:1 ratio were used as substrates, all the protein kinases phosphorylated both of the constituent proteins to a significant rate and extent, and disassembly of the keratin filament structure occurred. Kinetic analysis suggested that all these protein kinases preferentially phosphorylate keratin 8, compared to keratin 18. The amino acid residues of keratins 8 and 18 phosphorylated by cAMP-dependent protein kinase or protein kinase C were almost exclusively serine, while those phosphorylated by Ca2+/calmodulin-dependent protein kinase II were serine and threonine. Peptide mapping analysis indicated that these protein kinases phosphorylate keratins 8 and 18 in a different manner. These observations gave the way for in vivo studies of the role of phosphorylation in the reorganization of keratin filaments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号