首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A final step in the influenza virus replication cycle is the assembly of the viral structural proteins and the packaging of the eight segments of viral RNA (vRNA) into a fully infectious virion. The process by which the RNA genome is packaged efficiently remains poorly understood. In an approach to analyze how vRNA is packaged, we rescued a seven-segmented virus lacking the hemagglutinin (HA) vRNA (deltaHA virus). This virus could be passaged in cells constitutively expressing HA protein, but it was attenuated in comparison to wild-type A/WSN/33 virus. Supplementing the deltaHA virus with an artificial segment containing green fluorescent protein (GFP) or red fluorescent protein (RFP) with HA packaging regions (45 3' and 80 5' nucleotides) partially restored the growth of this virus to wild-type levels. The absence of the HA vRNA in the deltaHA virus resulted in a 40 to 60% reduction in the packaging of the PA, NP, NA, M, and NS vRNAs, as measured by quantitative PCR (qPCR), and the packaging of these vRNAs was partially restored in the presence of GFP/RFP packaging constructs. To further define nucleotides of the HA coding sequence which are important for vRNA packaging, synonymous mutations were introduced into the full-length HA cDNA of influenza A/WSN/33 and A/Puerto Rico/8/34 viruses, and mutant viruses were rescued. qPCR analysis of vRNAs packaged in these mutant viruses identified a key region of the open reading frame (nucleotides 1659 to 1671) that is critical for the efficient packaging of an influenza virus H1 HA segment.  相似文献   

2.
Liang Y  Hong Y  Parslow TG 《Journal of virology》2005,79(16):10348-10355
The influenza A virus genome consists of eight negative-sense RNA segments. The cis-acting signals that allow these viral RNA segments (vRNAs) to be packaged into influenza virus particles have not been fully elucidated, although the 5' and 3' untranslated regions (UTRs) of each vRNA are known to be required. Efficient packaging of the NA, HA, and NS segments also requires coding sequences immediately adjacent to the UTRs, but it is not yet known whether the same is true of other vRNAs. By assaying packaging of genetically tagged vRNA reporters during plasmid-directed influenza virus assembly in cells, we have now mapped cis-acting sequences that are sufficient for packaging of the PA, PB1, and PB2 segments. We find that each involves portions of the distal coding regions. Efficient packaging of the PA or PB1 vRNAs requires at least 40 bases of 5' and 66 bases of 3' coding sequences, whereas packaging of the PB2 segment requires at least 80 bases of 5' coding region but is independent of coding sequences at the 3' end. Interestingly, artificial reporter vRNAs carrying mismatched ends (i.e., whose 5' and 3' ends are derived from different vRNA segments) were poorly packaged, implying that the two ends of any given vRNA may collaborate in forming specific structures to be recognized by the viral packaging machinery.  相似文献   

3.
The influenza A virus genome comprises eight single-stranded negative-sense RNA segments (vRNAs). All eight vRNAs are selectively packaged into each progeny virion via so-called segment-specific genome-packaging signal sequences that are located in the noncoding and terminal coding regions of both the 3′ and the 5′ ends of the vRNAs. However, it remains unclear how these signals ensure that eight different vRNAs are packaged. Here, by using a reverse genetics system, we demonstrated that, in the absence of the other seven vRNAs, a recombinant NP vRNA bearing only a reporter gene flanked by the noncoding NP regions was incorporated into virus-like particles (VLPs) as efficiently as a recombinant NP vRNA bearing the reporter gene flanked by the complete NP packaging signals (i.e., the noncoding sequences and the terminal coding regions). Viruses that comprised a recombinant NP vRNA whose packaging signal was disrupted, and the remaining seven authentic vRNAs, did not undergo multiple cycles of replication; however, a recombinant NP vRNA with only the noncoding regions was readily incorporated into VLPs, suggesting that the packaging signal as currently defined is not necessarily essential for the packaging of the vRNA in which it resides; rather, it is required for the packaging of the full set of vRNAs. We propose that the 3′ and 5′ noncoding regions of each vRNA bear a virion incorporation signal for that vRNA and that the terminal coding regions serve as a bundling signal that ensures the incorporation of the complete set of eight vRNAs into the virion.  相似文献   

4.
The genome of influenza A virus consists of eight-segmented, single-stranded, negative-sense viral RNAs (vRNAs). Each vRNA contains a central coding region that is flanked by noncoding regions. It has been shown that upon virion formation, the eight vRNAs are selectively packaged into progeny virions through segment-specific packaging signals that are located in both the terminal coding regions and adjacent noncoding regions of each vRNA. Although recent studies using next-generation sequencing suggest that multiple intersegment interactions are involved in genome packaging, contributions of the packaging signals to the intersegment interactions are not fully understood. Herein, using synthesized full-length vRNAs of H1N1 WSN (A/WSN/33 [H1N1]) virus and short vRNAs containing the packaging signal sequences, we performed in vitro RNA binding assays and identified 15 intersegment interactions among eight vRNAs, most of which were mediated by the 3′- and 5′-terminal regions. Interestingly, all eight vRNAs interacted with multiple other vRNAs, in that some bound to different vRNAs through their respective 3′- and 5′-terminal regions. These in vitro findings would be of use in future studies of in vivo vRNA–vRNA interactions during selective genome packaging.  相似文献   

5.
The genomic viral RNA (vRNA) segments of influenza A virus contain specific packaging signals at their termini that overlap the coding regions. To further characterize cis-acting signals in segment 7, we introduced synonymous mutations into the terminal coding regions. Mutation of codons that are normally highly conserved reduced virus growth in embryonated eggs and MDCK cells between 10- and 1,000-fold compared to that of the wild-type virus, whereas similar alterations to nonconserved codons had little effect. In all cases, the growth-impaired viruses showed defects in virion assembly and genome packaging. In eggs, nearly normal numbers of virus particles that in aggregate contained apparently equimolar quantities of the eight segments were formed, but with about fourfold less overall vRNA content than wild-type virions, suggesting that, on average, fewer than eight segments per particle were packaged. Concomitantly, the particle/PFU and segment/PFU ratios of the mutant viruses showed relative increases of up to 300-fold, with the behavior of the most defective viruses approaching that predicted for random segment packaging. Fluorescent staining of infected cells for the nucleoprotein and specific vRNAs confirmed that most mutant virus particles did not contain a full genome complement. The specific infectivity of the mutant viruses produced by MDCK cells was also reduced, but in this system, the mutations also dramatically reduced virion production. Overall, we conclude that segment 7 plays a key role in the influenza A virus genome packaging process, since mutation of as few as 4 nucleotides can dramatically inhibit infectious virus production through disruption of vRNA packaging.  相似文献   

6.
The genome of influenza A viruses comprises eight negative-strand RNA segments. Although all eight segments must be present in cells for efficient viral replication, the mechanism(s) by which these viral RNA (vRNA) segments are incorporated into virions is not fully understood. We recently found that sequences at both ends of the coding regions of the HA, NA, and NS vRNA segments of A/WSN/33 play important roles in the incorporation of these vRNAs into virions. In order to similarly identify the regions of the PB2, PB1, and PA vRNAs of this strain that are critical for their incorporation, we generated a series of mutant vRNAs that possessed the green fluorescent protein gene flanked by portions of the coding and noncoding regions of the respective segments. For all three polymerase segments, deletions at the ends of their coding regions decreased their virion incorporation efficiencies. More importantly, these regions not only affected the incorporation of the segment in which they reside, but were also important for the incorporation of other segments. This effect was most prominent with the PB2 vRNA. These findings suggest a hierarchy among vRNA segments for virion incorporation and may imply intersegment association of vRNAs during virus assembly.  相似文献   

7.
The genomes of influenza A viruses consist of eight negative-strand RNA segments. Recent studies suggest that influenza viruses are able to specifically package their segmented genomes into the progeny virions. Segment-specific packaging signals of influenza virus RNAs (vRNAs) are located in the 5' and 3' noncoding regions, as well as in the terminal regions, of the open reading frames. How these packaging signals function during genome packaging remains unclear. Previously, we generated a 7-segmented virus in which the hemagglutinin (HA) and neuraminidase (NA) segments of the influenza A/Puerto Rico/8/34 virus were replaced by a chimeric influenza C virus hemagglutinin/esterase/fusion (HEF) segment carrying the HA packaging sequences. The robust growth of the HEF virus suggested that the NA segment is not required for the packaging of other segments. In this study, in order to determine the roles of the other seven segments during influenza A virus genome assembly, we continued to use this HEF virus as a tool and analyzed the effects of replacing the packaging sequences of other segments with those of the NA segment. Our results showed that deleting the packaging signals of the PB1, HA, or NS segment had no effect on the growth of the HEF virus, while growth was greatly impaired when the packaging sequence of the PB2, PA, nucleoprotein (NP), or matrix (M) segment was removed. These results indicate that the PB2, PA, NP, and M segments play a more important role than the remaining four vRNAs during the genome-packaging process.  相似文献   

8.
The influenza A virus genome consists of eight viral RNAs (vRNAs) that form viral ribonucleoproteins (vRNPs). Even though evidence supporting segment-specific packaging of vRNAs is accumulating, the mechanism ensuring selective packaging of one copy of each vRNA into the viral particles remains largely unknown. We used electron tomography to show that the eight vRNPs emerge from a common 'transition zone' located underneath the matrix layer at the budding tip of the virions, where they appear to be interconnected and often form a star-like structure. This zone appears as a platform in 3D surface rendering and is thick enough to contain all known packaging signals. In vitro, all vRNA segments are involved in a single network of intermolecular interactions. The regions involved in the strongest interactions were identified and correspond to known packaging signals. A limited set of nucleotides in the 5' region of vRNA 7 was shown to interact with vRNA 6 and to be crucial for packaging of the former vRNA. Collectively, our findings support a model in which the eight genomic RNA segments are selected and packaged as an organized supramolecular complex held together by direct base pairing of the packaging signals.  相似文献   

9.
A型流行性感冒病毒的负链RNA基因组由编码病毒中12个蛋白质的八个节段组成。在病毒组装的最后阶段,病毒体从细胞顶端胞浆膜突出时将这些基因组的病毒体(v)RNAs吸收进其中。基因组分段赋予了流感病毒进化的优势,但也提出了问题,在病毒体组装时需要八个节段每一个的至少一个复制本以产生完全有传染性的病毒颗粒。历史上一直存在争论:一方赞同确保足额的基因组合并的特异性包装机制;另一方赞同基因组节段被随机选择而不是以充足数量被包装以确保能自行产生合理比例病毒体的替代模式。近年来人们对该问题已达成一致意见:大多数病毒体仅包含八个节段,特异性机制为选择每个vRNA的某一复制本的确发挥了作用。本综述总结了得出这一结论所做的工作,叙述了在识别特异性包装信号方面最新的进展,讨论了这些RNA元素运转的可能机制。  相似文献   

10.
11.
The influenza A virus genome consists of eight negative-sense RNA segments that must each be packaged to produce an infectious virion. We have previously mapped the minimal cis-acting regions necessary for efficient packaging of the PA, PB1, and PB2 segments, which encode the three protein subunits of the viral RNA polymerase. The packaging signals in each of these RNAs lie within two separate regions at the 3′ and 5′ termini, each encompassing the untranslated region and extending up to 80 bases into the adjacent coding sequence. In this study, we introduced scanning mutations across the coding regions in each of these RNA segments in order to finely define the packaging signals. We found that mutations producing the most severe defects were confined to a few discrete 5′ sites in the PA or PB1 coding regions but extended across the entire (80-base) 5′ coding region of PB2. In sequence comparisons among more than 580 influenza A strains from diverse hosts, these highly deleterious mutations were each found to affect one or more conserved bases, though they did not all lie within the most broadly conserved portions of the regions that we interrogated. We have introduced silent and conserved mutations to the critical packaging sites, which did not affect protein function but impaired viral replication at levels roughly similar to those of their defects in RNA packaging. Interestingly, certain mutations showed strong tendencies to revert to wild-type sequences, which implies that these putative packaging signals are critical for the influenza life cycle.  相似文献   

12.
Packaging of the human immunodeficiency virus type 1 Vif protein into virus particles is mediated through an interaction with viral genomic RNA and results in the association of Vif with the nucleoprotein complex. Despite the specificity of this process, calculations of the amount of Vif packaged have produced vastly different results. Here, we compared the efficiency of packaging of Vif into virions derived from acutely and chronically infected H9 cells. We found that Vif was efficiently packaged into virions from acutely infected cells (60 to 100 copies per virion), while packaging into virions from chronically infected H9 cells was near the limit of detection (four to six copies of Vif per virion). Superinfection by an exogenous Vif-defective virus did not rescue packaging of endogenous Vif expressed in the chronically infected culture. In contrast, exogenous Vif expressed by superinfection of wild-type virus was readily packaged (30 to 40 copies per virion). Biochemical analyses suggest that the differences in the relative packaging efficiencies were not due to gross differences in the steady-state distribution of Vif in chronically or acutely infected cells but are likely due to differences in the relative rates of de novo synthesis of Vif. Despite its low packaging efficiency, endogenously expressed Vif was sufficient to direct the production of viruses with almost wild-type infectivity. The results from our study provide novel insights into the biochemical properties of Vif and offer an explanation for the reported differences regarding Vif packaging.  相似文献   

13.
The genome of influenza A viruses (IAV) is split into eight viral RNAs (vRNAs) that are encapsidated as viral ribonucleoproteins. The existence of a segment-specific packaging mechanism is well established, but the molecular basis of this mechanism remains to be deciphered. Selective packaging could be mediated by direct interaction between the vRNA packaging regions, but such interactions have never been demonstrated in virions. Recently, we showed that the eight vRNAs of a human H3N2 IAV form a single interaction network in vitro that involves regions of the vRNAs known to contain packaging signals in the case of H1N1 IAV strains. Here, we show that the eight vRNAs of an avian H5N2 IAV also form a single network of interactions in vitro, but, interestingly, the interactions and the regions of the vRNAs they involve differ from those described for the human H3N2 virus. We identified the vRNA sequences involved in five of these interactions at the nucleotide level, and in two cases, we validated the existence of the interaction using compensatory mutations in the interacting sequences. Electron tomography also revealed significant differences in the interactions taking place between viral ribonucleoproteins in H5N2 and H3N2 virions, despite their canonical ‘7 + 1’ arrangement.  相似文献   

14.
15.
Wang T  Tian C  Zhang W  Luo K  Sarkis PT  Yu L  Liu B  Yu Y  Yu XF 《Journal of virology》2007,81(23):13112-13124
Cytidine deaminase APOBEC3G (A3G) has broad antiviral activity against diverse retroviruses and/or retrotransposons, and its antiviral functions are believed to rely on its encapsidation into virions in an RNA-dependent fashion. However, the cofactors of A3G virion packaging have not yet been identified. We demonstrate here that A3G selectively interacts with certain polymerase III (Pol III)-derived RNAs, including Y3 and 7SL RNAs. Among A3G-binding Pol III-derived RNAs, 7SL RNA was preferentially packaged into human immunodeficiency virus type 1 (HIV-1) particles. Efficient packaging of 7SL RNA, as well as A3G, was mediated by the RNA-binding nucleocapsid domain of HIV-1 Gag. A3G mutants that had reduced 7SL RNA binding but maintained wild-type levels of mRNA and tRNA binding were packaged poorly and had impaired antiviral activity. Reducing 7SL RNA packaging by overexpression of SRP19 proteins inhibited 7SL RNA and A3G virion packaging and impaired its antiviral function. Thus, 7SL RNA that is encapsidated into diverse retroviruses is a key cofactor of the antiviral A3G. This selective interaction of A3G with certain Pol III-derived RNAs raises the question of whether A3G and its cofactors may have as-yet-unidentified cellular functions.  相似文献   

16.
We generated a recombinant influenza A virus (Mmut) that produced low levels of matrix (M1) and M2 proteins in infected cells. Mmut virus propagated to significantly lower titers than did wild-type virus in cells infected at low multiplicity. By contrast, virion morphology and incorporation of viral proteins and vRNAs into virus particles were similar to those of wild-type virus. We propose that a threshold amount of M1 protein is needed for the assembly of viral components into an infectious particle and that budding is delayed in Mmut virus-infected cells until sufficient levels of M1 protein accumulate at the plasma membrane.  相似文献   

17.
Specificity of retroviral RNA packaging.   总被引:28,自引:25,他引:3  
  相似文献   

18.
It has been assumed that RNA packaging constraints limit the size of retroviral genomes. This notion of a retroviral "headful" was tested by examining the ability of Moloney murine leukemia virus genomes lengthened by 4, 8, or 11 kb to participate in a single replication cycle. Overall, replication of these lengthened genomes was 5- to 10-fold less efficient than that of native-length genomes. When RNA expression and virion formation, RNA packaging, and early stages of replication were compared, long genomes were found to complete each step less efficiently than did normal-length genomes. To test whether short RNAs might facilitate the packaging of lengthy RNAs by heterodimerization, some experiments involved coexpression of a short packageable RNA. However, enhancement of neither long vector RNA packaging nor long vector DNA synthesis was observed in the presence of the short RNA. Most of the proviruses templated by 12 and 16 kb vectors appeared to be full length. Most products of a 19. 2-kb vector contained deletions, but some integrated proviruses were around twice the native genome length. These results demonstrate that lengthy retroviral genomes can be packaged and that genome length is not strictly limited at any individual replication step. These observations also suggest that the lengthy read-through RNAs postulated to be intermediates in retroviral transduction can be packaged directly without further processing.  相似文献   

19.
The RNA-dependent RNA polymerase of influenza A virus is composed of three subunits that together synthesize all viral mRNAs and also replicate the viral genomic RNA segments (vRNAs) through intermediates known as cRNAs. Here we describe functional characterization of 16 site-directed mutants of one polymerase subunit, termed PA. In accord with earlier studies, these mutants exhibited diverse, mainly quantitative impairments in expressing one or more classes of viral RNA, with associated infectivity defects of varying severity. One PA mutant, however, targeting residues 507 and 508, caused only modest perturbations of RNA expression yet completely eliminated the formation of plaque-forming virus. Polymerases incorporating this mutant, designated J10, proved capable of synthesizing translationally active mRNAs and of replicating diverse cRNA or vRNA templates at levels compatible with viral infectivity. Both the mutant protein and its RNA products were appropriately localized in the cytoplasm, where influenza virus assembly occurs. Nevertheless, J10 failed to generate infectious particles from cells in a plasmid-based influenza virus assembly assay, and hemagglutinating material from the supernatants of such cells contained little or no nuclease-resistant genomic RNA. These findings suggest that PA has a previously unrecognized role in assembly or release of influenza virus virions, perhaps influencing core structure or the packaging of vRNAs or other essential components into nascent influenza virus particles.  相似文献   

20.
We recently identified a packaging signal in the neuraminidase (NA) viral RNA (vRNA) segment of an influenza A virus, allowing us to produce a mutant virus [GFP(NA)-Flu] that lacks most of the NA open reading frame but contains instead the gene encoding green fluorescent protein (GFP). To exploit the expanding knowledge of vRNA packaging signals to establish influenza virus vectors for the expression of foreign genes, we studied the replicative properties of this virus in cell culture and mice. Compared to wild-type virus, GFP(NA)-Flu was highly attenuated in normal cultured cells but was able to grow to a titer of >10(6) PFU/ml in a mutant cell line expressing reduced levels of sialic acid on the cell surface. GFP expression from this virus was stable even after five passages in the latter cells. In intranasally infected mice, GFP was detected in the epithelial cells of nasal mucosa, bronchioles, and alveoli for up to 4 days postinfection. We attribute the attenuated growth of GFP(NA)-Flu to virion aggregation at the surface of bronchiolar epithelia. In studies to test the potential of this mutant as a live attenuated influenza vaccine, all mice vaccinated with >/==" BORDER="0">10(5) PFU of GFP(NA)-Flu survived when challenged with lethal doses of the parent virus. These results suggest that influenza virus could be a useful vector for expressing foreign genes and that a sialidase-deficient virus may offer an alternative to the live influenza vaccines recently approved for human use.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号