共查询到20条相似文献,搜索用时 15 毫秒
1.
Internal translation initiation on poliovirus RNA: further characterization of La function in poliovirus translation in vitro. 总被引:15,自引:14,他引:15 下载免费PDF全文
Y V Svitkin K Meerovitch H S Lee J N Dholakia D J Kenan V I Agol N Sonenberg 《Journal of virology》1994,68(3):1544-1550
Initiation of poliovirus RNA translation by internal entry of ribosomes is believed to require the participation of trans-acting factors. The mechanism of action of these factors is poorly defined. The limiting amount of one of these factors, La protein, in rabbit reticulocyte lysates (RRL) has been postulated to partially explain the inefficient translation of poliovirus RNA in this system. To further characterize La activity in translation and to identify other potential limiting factors, we assayed the ability of La protein as well as purified initiation factors, eIF-2, guanine nucleotide exchange factor (GEF), eIF-4A, eIF-4B, eIF-4F, and eIF-3, to stimulate the synthesis of P1, the capsid precursor protein, in poliovirus type 1 (Mahoney) RNA-programmed RRL. Of the proteins tested, only La, GEF, and to some extent eIF-2 stimulated the synthesis of P1. The enhanced translation of P1 in response to La occurred concomitantly with the inhibition of synthesis of most aberrant polypeptides, resulting from initiation in the middle of the genome. Deletion of the carboxy-terminal half (214 amino acids) of La did not decrease its binding to the poliovirus 5' untranslated region but abrogated the stimulatory and correcting activity in translation. In contrast to La, GEF and eIF-2 stimulated the overall translation and increased the synthesis of aberrant products as well as P1. Neither La, GEF, nor any other factor stimulated translation of encephalomyocarditis virus RNA in RRL. The implications of these findings for the mechanism of internal translation initiation on picornavirus RNAs are discussed. 相似文献
2.
Iu V Svitkin T V Pestova S V Maslova 《Molekuliarnaia genetika, mikrobiologiia i virusologiia》1989,(4):3-6
Initiation of poliovirus RNA translation in reticulocyte lysates is mainly not precise, i.e. it occurs at the sites in the middle of the viral genome but not at the beginning of the polyprotein reading frame. The anomaly is due to the deficiency of translation initiation factors. Partial purification of the protein fraction stimulating the precise translation from the Krebs-2 cells is reported in the paper. This fraction, like the crude lysates factors, was considerably less active with the RNA of attenuated poliovirus strains of type 1 and 3 than with the RNA of virulent strains. The change in interaction of the specific segment of viral RNA with the translation initiation factors is suggested to contribute to the attenuated phenotype of the Sabin poliovirus strains. 相似文献
3.
Distinct poly(rC) binding protein KH domain determinants for poliovirus translation initiation and viral RNA replication 下载免费PDF全文
The limited coding capacity of picornavirus genomic RNAs necessitates utilization of host cell factors in the completion of an infectious cycle. One host protein that plays a role in both translation initiation and viral RNA synthesis is poly(rC) binding protein 2 (PCBP2). For picornavirus RNAs containing type I internal ribosome entry site (IRES) elements, PCBP2 binds the major stem-loop structure (stem-loop IV) in the IRES and is essential for translation initiation. Additionally, the binding of PCBP2 to the 5'-terminal stem-loop structure (stem-loop I or cloverleaf) in concert with viral protein 3CD is required for initiation of RNA synthesis directed by poliovirus replication complexes. PCBP1, a highly homologous isoform of PCBP2, binds to poliovirus stem-loop I with an affinity similar to that of PCBP2; however, PCBP1 has reduced affinity for stem-loop IV. Using a dicistronic poliovirus RNA, we were able to functionally uncouple translation and RNA replication in PCBP-depleted extracts. Our results demonstrate that PCBP1 rescues RNA replication but is not able to rescue translation initiation. We have also generated mutated versions of PCBP2 containing site-directed lesions in each of the three RNA-binding domains. Specific defects in RNA binding to either stem-loop I and/or stem-loop IV suggest that these domains may have differential functions in translation and RNA replication. These predictions were confirmed in functional assays that allow separation of RNA replication activities from translation. Our data have implications for differential picornavirus template utilization during viral translation and RNA replication and suggest that specific PCBP2 domains may have distinct roles in these activities. 相似文献
4.
Eukaryotic translation initiation factors and regulators 总被引:18,自引:0,他引:18
Significant progress has been made over the past several years on structural studies of the eukaryotic translation initiation factors that facilitate the assembly of a translation-competent ribosome at the initiation codon of an mRNA. These structural studies have revealed the repeated use of a set of common structural folds, highlighted the evolutionary conservation of the translation apparatus, and provided insight into the mechanism and regulation of cellular and viral protein synthesis. 相似文献
5.
Stability of poliovirus RNA in cell-free translation systems utilizing two initiation sites 总被引:1,自引:0,他引:1
The stability of purified poliovirus RNA in cell-free translation systems prepared from HeLa cells or rabbit reticulocytes has been examined. Degradation of the RNA occurs with a t1/2 of approximately 35 min at 30 degrees C under conditions used for in vitro translation. Degradation is due in part to activity in the cell lysate, and in part to contaminants in the commercial preparations of creatine phosphokinase used in the energy-regenerating system. Addition of crude preparations of initiation factors significantly slows degradation, presumably as a result of protein-RNA interactions which confer resistance to nuclease action. Prior treatment of RNA with methylmercury hydroxide has no effect on degradation rates. On the other hand, endogenous mRNA, present as a messenger ribonucleoprotein particle in extracts from poliovirus-infected HeLa cells, remains completely intact during in vitro translation. These infected cell extracts synthesize the normal complement of viral proteins and utilize two different initiation sites for translation. Treatment of the infected cell extract with micrococcal nuclease destroys the endogenous mRNA. Subsequent addition of exogenous RNA to the same extract results in the formation of a protein-associated RNA particle with sedimentation properties slightly different from the endogenous messenger ribonucleoprotein, and the added RNA is unstable. We conclude that two initiation sites can be utilized on intact poliovirus mRNA, and fragmentation of the RNA is not prerequisite for generation of a second site in this RNA. 相似文献
6.
7.
Andreev DE Hirnet J Terenin IM Dmitriev SE Niepmann M Shatsky IN 《Nucleic acids research》2012,40(12):5602-5614
Adaptation to the host cell environment to efficiently take-over the host cell's machinery is crucial in particular for small RNA viruses like picornaviruses that come with only small RNA genomes and replicate exclusively in the cytosol. Their Internal Ribosome Entry Site (IRES) elements are specific RNA structures that facilitate the 5' end-independent internal initiation of translation both under normal conditions and when the cap-dependent host protein synthesis is shut-down in infected cells. A longstanding issue is which host factors play a major role in this internal initiation. Here, we show that the functionally most important domain V of the poliovirus IRES uses tRNA(Gly) anticodon stem-loop mimicry to recruit glycyl-tRNA synthetase (GARS) to the apical part of domain V, adjacent to the binding site of the key initiation factor eIF4G. The binding of GARS promotes the accommodation of the initiation region of the IRES in the mRNA binding site of the ribosome, thereby greatly enhancing the activity of the IRES at the step of the 48S initiation complex formation. Moonlighting functions of GARS that may be additionally needed for other events of the virus-host cell interaction are discussed. 相似文献
8.
Alternative occupancy of a dual ribosomal binding site by mRNA affected by translation initiation factors 总被引:2,自引:0,他引:2
The interaction between Escherichia coli 30S ribosomal subunits and mRNAs, and the effect of the initiation factors on this process, have been studied using MS2 RNA, polyribonucleotides and model mRNAs encoded by synthetic genes. The interactions were analyzed by gel filtration, by sucrose gradient centrifugation and by competition for ribosome binding between the various mRNAs and a Shine-Dalgarno deoxyoctanucleotide. It was found that the initiation factors do not significantly affect the Shine-Dalgarno interaction nor the apparent Ka values of the 30S-subunit-mRNA binary complexes, but influence the positioning of the mRNAs on the 30S subunit with respect to the Shine-Dalgarno octanucleotide. The results suggest that, in the absence of initiation factors, the mRNA occupies a ribosomal "stand-by" site which is close to or includes the region where the Shine-Dalgarno interaction takes place; in the presence of the factors, the mRNA is shifted away from the stand-by site, towards another ribosomal site with similar affinity for the mRNA. This shift does not require the presence of fMet-tRNA and, depending upon the type of mRNA, is mediated by IF-2 and/or IF-3. 相似文献
9.
Shah OJ Kimball SR Jefferson LS 《American journal of physiology. Endocrinology and metabolism》2000,278(1):E76-E82
Glucocorticoids are diabetogenic factors that not only antagonize the action of insulin in target tissues but also render these tissues catabolic. Therefore, in rats, we endeavored to characterize the effects in skeletal muscle of glucocorticoids on translation initiation, a regulated process that, in part, governs overall protein synthesis through the modulated activities of eukaryotic initiation factors (eIFs). Four hours after intraperitoneal administration of dexamethasone (100 microg/100 g body wt), protein synthesis in skeletal muscle was reduced to 59% of the value recorded in untreated control animals. Furthermore, translation initiation factor eIF4E preferred association with its endogenous inhibitor 4E-BP1 rather than eIF4G. Dexamethasone treatment resulted in dephosphorylation of both 4E-BP1 and the 40S ribosomal protein S6 kinase concomitant with enhanced phosphorylation of eIF4E. Moreover, the guanine nucleotide exchange activity of eIF2B was unaffected as was phosphorylation of the alpha-subunit of eIF2. Hence glucocorticoids negatively modulate the activation of a subset of the protein synthetic machinery, thereby contributing to the catabolic properties of this class of hormones in vivo. 相似文献
10.
Interaction of translation initiation factor eIF4B with the poliovirus internal ribosome entry site 下载免费PDF全文
Poliovirus translation is initiated at the internal ribosome entry site (IRES). Most likely involving the action of standard initiation factors, this highly structured cis element in the 5" noncoding region of the viral RNA guides the ribosome to an internal silent AUG. The actual start codon for viral protein synthesis further downstream is then reached by ribosomal scanning. In this study we show that two of the secondary structure elements of the poliovirus IRES, domain V and, to a minor extent, domain VI, are the determinants for binding of the eukaryotic initiation factor eIF4B. Several mutations in domain V which are known to greatly affect poliovirus growth also seriously impair the binding of eIF4B. The interaction of eIF4B with the IRES is not dependent on the presence of the polypyrimidine tract-binding protein, which also binds to the poliovirus IRES. In contrast to its weak interaction with cellular mRNAs, eIF4B remains tightly associated with the poliovirus IRES during the formation of complete 80S ribosomes. Binding of eIF4B to the IRES is energy dependent, and binding of the small ribosomal subunit to the IRES requires the previous energy-dependent association of initiation factors with the IRES. These results indicate that the interaction of eIF4B with the 3" region of the poliovirus IRES may be directly involved in translation initiation. 相似文献
11.
Canonical eukaryotic initiation factors determine initiation of translation by internal ribosomal entry. 总被引:22,自引:9,他引:22 下载免费PDF全文
Translation of picornavirus RNA is initiated after ribosomal binding to an internal ribosomal entry site (IRES) within the 5' untranslated region. We have reconstituted IRES-mediated initiation on encephalomyocarditis virus RNA from purified components and used primer extension analysis to confirm the fidelity of 48S preinitiation complex formation. Eukaryotic initiation factor 2 (eIF2), eIF3, and eIF4F were required for initiation; eIF4B and to a lesser extent the pyrimidine tract-binding protein stimulated this process. We show that eIF4F binds to the IRES in a novel cap-independent manner and suggest that cap- and IRES-dependent initiation mechanisms utilize different modes of interaction with this factor to promote ribosomal attachment to mRNA. 相似文献
12.
Temperature-sensitive mouse cell factors for strand-specific initiation of poliovirus RNA synthesis. 下载免费PDF全文
Two cell lines, TgSVA and TgSVB, were established from the kidneys of transgenic mice carrying the human gene encoding poliovirus receptor. The cells were highly susceptible to poliovirus infection, and a large amount of infectious particles was produced in the infected cells at 37 degrees C. However, the virus yield was greatly reduced at 40 degrees C. This phenomenon was common to all mouse cells tested. To identify the temperature-sensitive step(s) of the virus infection cycle, different steps of the infection cycle were examined for temperature sensitivity. The results strongly suggested that the growth restriction observed at 40 degrees C was due to reduced efficiency of the initiation process of virus-specific RNA synthesis. Furthermore, this restriction appeared to occur only on the synthesis of positive-strand RNA. Virus-specific RNA synthesis in crude replication complexes was not affected by the nonpermissive temperature of 40 degrees C. In vitro uridylylation of VPg seemed to be temperature sensitive only after prolonged incubation at 40 degrees C. These results indicate that a specific host factor(s) is involved in the efficient initiation process of positive-strand RNA synthesis of poliovirus and that the host factor(s) is temperature sensitive in TgSVA and TgSVB cells. 相似文献
13.
In vitro translation of poliovirus RNA: utilization of internal initiation sites in reticulocyte lysate. 总被引:19,自引:32,他引:19 下载免费PDF全文
A J Dorner B L Semler R J Jackson R Hanecak E Duprey E Wimmer 《Journal of virology》1984,50(2):507-514
The translation of poliovirus RNA in rabbit reticulocyte lysate was examined. Translation of poliovirus RNA in this cell-free system resulted in an electrophoretic profile of poliovirus-specific proteins distinct from that observed in vivo or after translation in poliovirus-infected HeLa cell extract. A group of proteins derived from the P3 region of the polyprotein was identified by immunoprecipitation, time course, and N-formyl-[35S]methionine labeling studies to be the product of the initiation of protein synthesis at an internal site(s) located within the 3'-proximal RNA sequences. Utilization of this internal initiation site(s) on poliovirus RNA was abolished when reticulocyte lysate was supplemented with poliovirus-infected HeLa cell extract. Authentic P1-1a was also synthesized in reticulocyte lysate, indicating that correct 5'-proximal initiation of translation occurs in that system. We conclude that the deficiency of a component(s) of the reticulocyte lysate necessary for 5'-proximal initiation of poliovirus protein synthesis resulted in the ability of ribosomes to initiate translation on internal sequences. This aberrant initiation could be corrected by factors present in the HeLa cell extract. Apparently, under certain conditions, ribosomes are capable of recognizing internal sequences as authentic initiation sites. 相似文献
14.
The majority of mRNAs in eukaryotic cells are translated via a method that is dependent upon the recognition of, and binding to, the methylguanosine cap at the 5' end of the mRNA, by a set of protein factors termed eIFs (eukaryotic initiation factors). However, many of the eIFs involved in this process are modified and become less active under a number of pathophysiological stress conditions, including amino acid starvation, heat shock, hypoxia and apoptosis. During these conditions, the continued synthesis of proteins essential to recovery from stress or maintenance of a cellular programme is mediated via an alternative form of translation initiation termed IRES (internal ribosome entry site)-mediated translation. This relies on the mRNA containing a complex cis-acting structural element in its 5'-UTR (untranslated region) that is able to recruit the ribosome independently of the cap, and is often dependent upon additional factors termed ITAFs (IRES trans-acting factors). A limited number of ITAFs have been identified to date, particularly for cellular IRESs, and it is not yet fully understood how they exert their control and which cellular pathways are involved in their regulation. 相似文献
15.
High-throughput assays probing protein-RNA interactions of eukaryotic translation initiation factors
Galicia-Vázquez G Lindqvist L Wang X Harvey I Liu J Pelletier J 《Analytical biochemistry》2009,384(1):180-188
Protein-RNA interactions are involved in all facets of RNA biology. The identification of small molecules that selectively block such bimolecular interactions could provide insight into previously unexplored steps of gene regulation. Such is the case for regulation of eukaryotic protein synthesis where interactions between messenger RNA (mRNA) and several eukaryotic initiation factors govern the recruitment of 40S ribosomes (and associated factors) to mRNA templates during the initiation phase. We have designed simple fluorescence polarization-based high-throughput screening assays that query the binding of several translation factors to RNA and found that the mixed inhibitor p-chloromercuribenzoate interferes with poly(A) binding protein-RNA interaction. 相似文献
16.
Eukaryotic initiation factor 6 mediates a continuum between 60S ribosome biogenesis and translation 下载免费PDF全文
Eukaryotic ribosome biogenesis and translation are linked processes that limit the rate of cell growth. Although ribosome biogenesis and translation are mainly controlled by distinct factors, eukaryotic initiation factor 6 (eIF6) has been found to regulate both processes. eIF6 is a necessary protein with a unique anti‐association activity, which prevents the interaction of 40S ribosomal subunits with 60S subunits through its binding to 60S ribosomes. In the nucleolus, eIF6 is a component of the pre‐ribosomal particles and is required for the biogenesis of 60S subunits, whereas in the cytoplasm it mediates translation downstream from growth factors. The translational activity of eIF6 could be due to its anti‐association properties, which are regulated by post‐translational modifications; whether this anti‐association activity is required for the biogenesis and nuclear export of ribosomes is unknown. eIF6 is necessary for tissue‐specific growth and oncogene‐driven transformation, and could be a new rate‐limiting step for the initiation of translation. 相似文献
17.
18.
Requirement of poly(rC) binding protein 2 for translation of poliovirus RNA. 总被引:23,自引:5,他引:23 下载免费PDF全文
Poly(rC) binding protein 2 (PCBP2) is one of several cellular proteins that interact specifically with a major stem-loop domain in the poliovirus internal ribosome entry site. HeLa cell extracts subjected to stem-loop IV RNA affinity chromatography were depleted of all detectable PCBP2. Such extracts were unable to efficiently translate poliovirus RNA, although extracts recovered from control columns of matrix unlinked to RNA retained full translation activity. Both translation and production of infectious progeny virus were restored in the PCBP2-depleted extracts by addition of recombinant PCBP2, but not by PCBP1, which is a closely related member of the protein family. The data show that PCBP2 is an essential factor, which is required for efficient translation of poliovirus RNA in HeLa cells. 相似文献
19.
Translational repression mediates activation of nuclear factor kappa B by phosphorylated translation initiation factor 2 下载免费PDF全文
Deng J Lu PD Zhang Y Scheuner D Kaufman RJ Sonenberg N Harding HP Ron D 《Molecular and cellular biology》2004,24(23):10161-10168
Numerous stressful conditions activate kinases that phosphorylate the alpha subunit of translation initiation factor 2 (eIF2alpha), thus attenuating mRNA translation and activating a gene expression program known as the integrated stress response. It has been noted that conditions associated with eIF2alpha phosphorylation, notably accumulation of unfolded proteins in the endoplasmic reticulum (ER), or ER stress, are also associated with activation of nuclear factor kappa B (NF-kappaB) and that eIF2alpha phosphorylation is required for NF-kappaB activation by ER stress. We have used a pharmacologically activable version of pancreatic ER kinase (PERK, an ER stress-responsive eIF2alpha kinase) to uncouple eIF2alpha phosphorylation from stress and found that phosphorylation of eIF2alpha is both necessary and sufficient to activate both NF-kappaB DNA binding and an NF-kappaB reporter gene. eIF2alpha phosphorylation-dependent NF-kappaB activation correlated with decreased levels of the inhibitor IkappaBalpha protein. Unlike canonical signaling pathways that promote IkappaBalpha phosphorylation and degradation, eIF2alpha phosphorylation did not increase phosphorylated IkappaBalpha levels or affect the stability of the protein. Pulse-chase labeling experiments indicate instead that repression of IkappaBalpha translation plays an important role in NF-kappaB activation in cells experiencing high levels of eIF2alpha phosphorylation. These studies suggest a direct role for eIF2alpha phosphorylation-dependent translational control in activating NF-kappaB during ER stress. 相似文献
20.
Deng D Yao K Chu W Li T Huang R Yin Y Liu Z Zhang J Wu G 《The Journal of nutritional biochemistry》2009,20(7):544-552
Weanling mammals (including infants) often experience intestinal dysfunction when fed a high-protein diet. Recent work with the piglet (an animal model for studying human infant nutrition) shows that reducing protein intake can improve gut function during weaning but compromises the provision of essential amino acids (EAA) for muscle growth. The present study was conducted with weaned pigs to test the hypothesis that supplementing deficient EAA (Lys, Met, Thr, Trp, Leu, Ile and Val) to a low-protein diet may maintain the activation of translation initiation factors and adequate protein synthesis in tissues. Pigs were weaned at 21 days of age and fed diets containing 20.7, 16.7 or 12.7% crude protein (CP), with the low-CP diets supplemented with EAA to achieve the levels in the high-CP diet. On Day 14 of the trial, tissue protein synthesis was determined using the phenylalanine flooding dose method. Reducing dietary CP levels decreased protein synthesis in pancreas, liver, kidney and longissimus muscle. A low-CP diet reduced the phosphorylation of eukaryotic initiation factor (eIF) 4E-binding protein-1 (4E-BP1) in skeletal muscle and liver while increasing the formation of an inactive eIF4E.4E-BP1 complex in muscle. Dietary protein deficiency also decreased the phosphorylation of mammalian target of rapamycin (mTOR) and the formation of an active eIF4E.eIF4G complex in liver. These results demonstrate for the first time that chronic feeding of a low-CP diet suppresses protein synthesis in animals partly by inhibiting mTOR signaling. Additionally, our findings indicate that supplementing deficient EAA to low-protein diets is not highly effective in restoring protein synthesis or whole-body growth in piglets. We suggest that conditionally essential amino acids (e.g., glutamine and arginine) may be required to maintain the activation of translation initiation factors and optimal protein synthesis in neonates. 相似文献