首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
smg GDS and rho GDI are stimulatory and inhibitory GDP/GTP exchange proteins, respectively, for a group of ras p21-related small GTP-binding proteins (G proteins). rho p21 is a common substrate small G protein for both GDP/GTP exchange proteins. We examined here the functional interactions of these GDP/GTP exchange proteins with rho p21 as a substrate. smg GDS and rho GDI interacted with the GDP-bound form of rho p21 and thereby stimulated and inhibited, respectively, the dissociation of GDP. The inhibitory effect of rho GDI was much stronger than the stimulatory effect of smg GDS. The GDP-bound form of rho p21 formed a complex with rho GDI but not with smg GDS in their simultaneous presence. Since the content of smg GDS was generally less than that of rho GDI in cells, these results suggest that there is some mechanism to release the inhibitory action of rho GDI and to make rho p21 sensitive to the smg GDS action during the conversion of rhoA p21 from the GDP-bound inactive form to the GTP-bound active form in intact cells. On the other hand, rho p21 was previously shown to be ADP-ribosylated by bacterial ADP-ribosyltransferases, named C3 and EDIN, at Asn41 in the putative effector region of rho p21. This ADP-ribosylation was inhibited by rho GDI much more efficiently than by smg GDS. These results suggest that rho GDI may mask the putative effector region of rho p21 and thereby inhibit its interaction with the target protein even in the presence of smg GDS. Thus, both smg GDS and rho GDI are important to regulate the rho p21 activity and action in cooperation with each other.  相似文献   

2.
We have recently purified to near homogeneity the stimulatory GDP/GTP exchange protein for smg p21s (ras p21-like GTP-binding proteins) from bovine brain cytosol. This regulatory protein, named GDP dissociation stimulator (GDS), stimulates the GDP/GTP exchange reaction of smg p21s by stimulating the dissociation of GDP from and the subsequent binding of GTP to them. In this study, we have isolated and sequenced the cDNA of smg p21 GDS from a bovine brain cDNA library by using an oligonucleotide probe designed from the partial amino acid sequence of the purified smg p21 GDS. The cDNA has an open reading frame encoding a protein of 558 amino acids with a calculated Mr value of 61,066, similar to the Mr of 53,000 estimated for the purified smg p21 GDS by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and sucrose density gradient ultracentrifugation. The isolated cDNA is expressed in Escherichia coli, and the encoded protein exhibits smg p21 GDS activity. smg p21 GDS is overall hydrophilic, but there are several short hydrophobic regions. The smg p21 GDS mRNA is present in bovine brain and various rat tissues. smg p21 GDS has low amino acid sequence homology with the yeast CDC25 and SCD25 proteins, which may regulate the GDP/GTP exchange reaction of the yeast RAS2 protein, but not with ras p21 GTPase-activating protein, the inhibitory GDP/GTP exchange proteins (GDP dissociation inhibitor) for smg p25A and rho p21s, and the beta gamma subunits of heterotrimeric GTP-binding proteins such as Gs and Gi.  相似文献   

3.
The superoxide-generating NADPH oxidase system in phagocytes consists of at least membrane-associated cytochrome b558 and three cytosolic components named SOCI/NCF-3/sigma 1/C1, SOCII/NCF-1/p47-phox, and SO-CIII/NCF-2/p67-phox. p47-phox and p67-phox were isolated, and their primary structures were determined, but SOCI has not been well characterized. In the present study, we first purified SOCI to homogeneity from the cytosol fraction of the differentiated HL-60 cells. The purified SOCI was a small GTP-binding protein (G protein) with a M(r) of about 22,000. The guanosine 5'-(3-O-thio)triphosphate-bound form, but not the GDP-bound form, of this small G protein showed the SOCI activity. The partial amino acid sequence of SOCI thus far determined was identical to the amino acid sequence deduced from the cDNA encoding rac2 p21. None of the purified small G proteins, including Ki-ras p21, smg p21B/rap1B p21, rhoA p21, and rac1 p21, showed the SOCI activity. These results indicate that SOCI is a small G protein very similar, if not identical, to rac2 p21. The GDP/GTP exchange reaction of SOCI was stimulated and inhibited by stimulatory and inhibitory GDP/GTP exchange proteins for small G proteins, named smg GDS and rho GDI, respectively. The NADPH oxidase activity was also stimulated and inhibited by smg GDS and rho GDI, respectively. These results indicate that the superoxide-generating NADPH oxidase system is regulated by both smg GDS and rho GDI through rac2 p21 or the rac2-related small G protein in phagocytes.  相似文献   

4.
smg GDP dissociation stimulator (GDS) is a stimulatory GDP/GTP exchange protein for a group of ras p21-like small GTP-binding proteins (G proteins) including c-Ki-ras p21, smg p21A, smg p21B, and rhoA p21. smg GDS converts the GDP-bound inactive form to the GTP-bound active form of each small G protein by stimulating their GDP/GTP exchange reaction in a cell-free system. The point-mutated c-Ki-ras p21 (c-Ki-rasval12 p21) is known to strongly transform NIH/3T3 cells and to markedly stimulate the c-fos promoter/enhancer in this cell line, whereas the normal c-Ki-ras p21 is weak in these activities. In the present study, we examined the effect of smg GDS on these activities to explore its physiological function. Overexpression of both smg GDS and c-Ki-ras p21 strongly transformed NIH/3T3 cells, whereas overexpression of either smg GDS or c-Ki-ras p21 alone weakly transformed the cells. Furthermore, overexpression of both smg GDS and c-Ki-ras p21 markedly stimulated the c-fos promoter/enhancer in NIH/3T3 cells, whereas overexpression of either smg GDS or c-Ki-ras p21 alone weakly stimulated it. These results indicate that smg GDS transforms NIH/3T3 cells and stimulates the c-fos promoter/enhancer in this cell line in cooperation with c-Ki-ras p21.  相似文献   

5.
Evidence is accumulating that rho p21, a ras p21-related small GTP-binding protein (G protein), regulates the actomyosin system. The actomyosin system is known to be essential for cell motility. In the present study, we examined the action of rho p21, its inhibitory GDP/GTP exchange protein (named rho GDI), its stimulatory GDP/GTP exchange protein (named smg GDS), and Clostridium botulinum ADP-ribosyltransferase C3, known to selectively ADP-ribosylate rho p21 and to impair its function, in cell motility (chemokinesis) of Swiss 3T3 cells. We quantitated the capacity of cell motility by measuring cell tracks by phagokinesis. Microinjection of the GTP gamma S-bound active form of rhoA p21 or smg GDS into Swiss 3T3 cells did not affect cell motility, but microinjection of rho GDI into the cells did inhibit cell motility. This rho GDI action was prevented by comicroinjection of rho GDI with the GTP gamma S-bound form of rhoA p21 but not with the same form of rhoA p21 lacking the C-terminal three amino acids which was not posttranslationally modified with lipids. The rho GDI action was not prevented by Ki-rasVal-12 p21 or any of the GTP gamma S-bound form of other small GTP-binding proteins including rac1 p21, G25K, and smg p21B. Among these small G proteins, rhoA p21, rac1 p21, and G25K are known to be substrates for rho GDI. The rho GDI action was not prevented by comicroinjection of rho GDI with smg GDS. Microinjection of C3 into Swiss 3T3 cells also inhibited cell motility. These results indicate that the rho GDI-rho p21 system regulates cell motility, presumably through the actomyosin system.  相似文献   

6.
《The Journal of cell biology》1993,120(5):1187-1195
Evidence is accumulating that the rho family, a member of the ras p21- related small GTP-binding protein superfamily, regulates cell morphology, cell motility, and smooth muscle contraction through the actomyosin system. The actomyosin system is also known to be essential for cytoplasmic division of cells (cytokinesis). In this study, we examined the action of rho p21, its inhibitory GDP/GTP exchange protein, named rho GDI, its stimulatory GDP/GTP exchange protein, named smg GDS, and botulinum ADP-ribosyltransferase C3, known to selectively ADP-ribosylate rho p21 and to impair its function, in the cytoplasmic division using Xenopus embryos. The sperm-induced cytoplasmic division of Xenopus embryos was not affected by microinjection into the embryos of either smg GDS or the guanosine-5'-(3-O-thio)triphosphate (GTP gamma S)-bound form of rhoA p21, one member of the rho family, but completely inhibited by microinjection of rho GDI or C3. Under these conditions, nuclear division occurred normally but the furrow formation, which was induced by the contractile ring consisting of actomyosin just beneath the plasma membrane, was impaired. Comicroinjection of rho GDI with the GTP gamma S-bound form of rhoA p21 prevented the rho GDI action. Moreover, the sperm-induced cytoplasmic division of Xenopus embryos was inhibited by microinjection into the embryos of the rhoA p21 pre-ADP- ribosylated by C3 which might serve as a dominant negative inhibitor of endogenous rho p21. These results indicate that rho p21 together with its regulatory proteins regulates the cytoplasmic division through the actomyosin system.  相似文献   

7.
We have recently purified from bovine brain cytosol to near homogeneity a GDP/GTP exchange protein for the rho proteins, named rho GDI, that inhibits the dissociation of GDP from and the subsequent binding of GTP to the rho proteins. In the present study, we made a monoclonal antibody against rho GDI and studied its tissue distribution in rat and its subcellular distribution in rat cerebrum by use of this antibody. rho GDI was found in most rat tissues as described for the rho proteins. In rat cerebrum, rho GDI was mostly found in the cytosol of neuron body and synaptosome. In synaptosome, it was mainly found in the synaptic cytosol.  相似文献   

8.
Evidence is accumulating that smg p25A, a small GTP-binding protein, may be involved in the regulated secretory processes of mammalian cells. The SEC4 protein is known to be required for constitutive secretion in yeast cells. We show here that the mammalian GDP dissociation inhibitor (GDI), which was identified by its action on smg p25A, is active on the yeast SEC4 protein in inhibiting the GDP/GTP exchange reaction and is capable of forming a complex with the GDP-bound form of the SEC4 protein but not with the GTP-bound form. These results together with our previous findings that smg p25A GDI is found in mammalian cells with both regulated and constitutive secretion types suggest that smg p25A GDI plays a role in both regulated and constitutive secretory processes, although smg p25A itself may be involved only in regulated secretory processes. These results also suggest that a GDI for the SEC4 protein is present in yeast cells.  相似文献   

9.
Limited proteolysis with trypsin of smg p21B, a ras p21-like small GTP-binding protein having the same putative effector domain as ras p21s, produced the N-terminal fragment and the C-terminal tail of Lys-Lys-Ser-Ser-geranylgeranyl-Cys methyl ester. The Mr values of the intact smg p21B, the N-terminal fragment, and the C-terminal tail were estimated to be about 22,000, 20,500, and less than 1,000, respectively, by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Both the GDP- and GTP-bound forms of the intact smg p21B bound to various membranes and phosphatidylserine-linked Affi-Gel. However, both the GDP- and GTP-bound forms of the N-terminal fragment failed to bind to membranes and phosphatidylserine-linked Affi-Gel. In contrast, the C-terminal tail bound to membranes and phosphatidylserine-linked Affi-Gel. The N-terminal fragment contained a GDP/GTP-binding and GTPase domain and exhibited these two activities, but the C-terminal tail did not show any such activity. A GTPase-activating protein for smg p21 stimulated the GTPase activity of both the intact smg p21B and the N-terminal fragment. In contrast, a GDP/GTP exchange protein for smg p21, named GDP dissociation stimulator, stimulated the GDP/GTP exchange reaction of the intact smg p21B but not that of the N-terminal fragment. These results indicate 1) that smg p21B is composed of at least two functionally different domains, the N-terminal GDP/GTP-binding and GTPase domain and the C-terminal membrane-binding domain, 2) that smg p21B binds to membranes through its C-terminal hydrophobic and basic domain, and 3) that this C-terminal domain is also essential for the smg p21 GDP dissociation stimulator action but not for the smg p21 GTPase-activating protein action.  相似文献   

10.
We have recently purified from bovine brain cytosol to near homogeneity a GDP/GTP exchange protein for smg p25A, named smg p25A GDI, that inhibits the dissociation of GDP from and the subsequent binding of GTP to smg p25A. In the present study, we made an antiserum against smg p25A GDI and studied its tissue distribution in rat and its subcellular distribution in rat cerebrum by use of this antiserum. smg p25A GDI was found in secretory cells with both regulated and constitutive secretion types. Since smg p25A was previously found in only secretory cells with a regulated secretion type, this result suggests that small GTP-binding proteins different from smg p25A but recognized by smg p25A GDI are present in secretory cells with a constitutive secretion type, and that smg p25A GDI is involved in both regulated and constitutive secretory processes. In subcellular fractionation analysis of rat cerebrum, smg p25A GDI was mostly found in the cytosol fraction of neuron body and synaptosome. In synaptosome, it was mainly found in the synaptic cytosol.  相似文献   

11.
Novel regulatory proteins for smg p21A and -B, ras p21-like GTP-binding proteins (G proteins) having the same putative effector domain as ras p21s, were purified to near homogeneity from bovine brain cytosol and characterized. These regulatory proteins, designated as GDP dissociation stimulator (GDS) 1 and -2, stimulated the dissociation of both [3H]GDP and [35S] guanosine 5'-(3-O-thio)triphosphate (GTP gamma S) from smg p21s to the same extent. smg p21 GDS1 and -2 also stimulated the binding of [35S]GTP gamma S to the GDP-bound form of smg p21s but not that to the guanine nucleotide-free form. These actions of smg p21 GDS1 and -2 were specific for smg p21s and inactive for other ras p21/ras p21-like G proteins including c-Ha-ras p21, rhoB p20, and smg p25A. Neither smg p21 GDS1 nor -2 stimulated the GTPase activity of smg p21s and by itself showed [35S]GTP gamma S-binding or GTPase activity. smg p21 GDS1 and -2 showed very similar physical and kinetic properties and were indistinguishable by peptide map analysis. The Mr values of smg p21 GDS1 and -2 were estimated to be about 53,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and from the S values, indicating that smg p21 GDS1 and -2 are composed of a single polypeptide without a subunit structure. smg p21 GDS1 and -2 were distinguishable from GTPase activating proteins (GAPs) for the ras and rho proteins, and smg p21B, and GDP dissociation inhibitors for smg p25A and the rho proteins previously identified in bovine brain cytosol. These results indicate that bovine brain contains regulatory proteins for smg p21s that stimulate the dissociation of GDP from and thereby the subsequent binding of GTP to smg p21s in addition to smg p21 GAP. It is likely that the conversion from the GDP-bound inactive form of smg p21s to the GTP-bound active form is regulated by smg p21 GDS and that its reverse reaction is regulated by smg p21 GAP.  相似文献   

12.
Vav functions as a specific GDP/GTP nucleotide exchange factor which is regulated by tyrosine phosphorylation in the hematopoietic system. Loss of the amino-terminus sequences of Vav was sufficient to control its transforming potential and its function in T cells. We report here the identification of the hematopoietic GDP dissociation inhibitor protein, Ly-GDI, as a protein that interacts with the amino-terminus of Vav. Further analysis confirmed that Vav and Ly-GDI interact both in in vitro and in in vivo assays. This association is maximal only when the amino region of Vav is intact and requires an intact carboxy-terminus of Ly-GDI. The interaction between Vav and Ly-GDI is not dependent on the tyrosine phosphorylation status of Vav. In addition, Rho-GDI, the highly homologous protein to Ly-GDI, associates with Vav as well. The contribution of the interaction between Vav and GDIs, proteins that are involved in the GDP/GTP exchange processes, to the biological function of Vav is further discussed.  相似文献   

13.
smg p21B, a member of the ras p21-like small GTP-binding protein superfamily, undergoes post-translational modifications, which are geranylgeranylation of the cysteine residue in the C-terminal region followed by removal of the three C-terminal amino acids (QLL) and the subsequent carboxyl methylation of the exposed prenylated cysteine residue. smg p21B has a polybasic region upstream of the prenylated cysteine residue. We have previously proposed that these C-terminal structures of smg p21B are essential for the action of its stimulatory GDP/GTP exchange protein, named GDP dissociation stimulator (GDS). We studied here which structure of the C-terminal region of smg p21B is important for its interaction with smg p21 GDS. For this purpose, we synthesized a peptide according to the C-terminal structure of smg p21B, which was PGKARKKSSC-geranylgeranyl-carboxyl methyl, and its variously modified peptides and examined their ability to interact with smg p21 GDS and to interfere with the smg p21 GDS action to stimulate the GDP/GTP exchange reaction of smg p21B. The results indicate that the phosphorylated form of PGKARKKSSC-geranylgeranyl stoichiometrically interacts with smg p21 GDS, that the presence of the geranylgeranyl moiety is essential for, but not sufficient for, the smg p21 GDS action, and that the presence of the methyl moiety, removal of the three C-terminal amino acids, and the presence of the polybasic amino acids also affect the smg p21 GDS action. It is likely that all the steps of the post-translational processing and presence of the polybasic region in the C-terminal region of smg p21B are related to its interaction with smg p21 GDS.  相似文献   

14.
The RHO1 gene encodes a homolog of the mammalian RhoA small GTP binding protein in the yeast Saccharomyces cerevisiae. Rho1p is localized at the growth site and is required for bud formation. Multicopy suppressors of a temperature-sensitive, dominant negative mutant allele of RHO1, RHO1(G22S, D125N), were isolated and named ROM (RHO1 multicopy suppressor). Rom1p and Rom2p were found to contain a DH (Dbl homologous) domain and a PH (pleckstrin homologous) domain, both of which are conserved among the GDP/GTP exchange proteins (GEPs) for the Rho family small GTP binding proteins. Disruption of ROM2 resulted in a temperature-sensitive growth phenotype, whereas disruption of both ROM1 and ROM2 resulted in lethality. The phenotypes of deltarom1deltarom2 cells were similar to those of deltarho1 cells, including growth arrest with a small bud and cell lysis. Moreover, the temperature-sensitive growth phenotype of deltarom2 was suppressed by overexpression of RHO1 or RHO2, but not of CDC42. The glutathione-S-transferase (GST) fusion protein containing the DH domain of Rom2p showed the lipid-modified Rholp-specific GDP/GTP exchange activity which was sensitive to Rho GDP dissociation inhibitor. These results indicate that Rom1p and Rom2p are GEPs that activate Rho1p in S.cerevisiae.  相似文献   

15.
Ras-related small GTP-binding proteins (SMGs) exist in a cytosolic and a membrane-bound pool. The mechanism regulating the intracellular distribution of SMGs remains to be elucidated. We have, therefore, investigated the properties of SMGs expressed in cells of the insulin-secreting lines RINm5F and HIT-T15. Phase-partitioning analysis revealed that smg25A/rab3A as well as all the SMGs in the 23-27 kDa range, labeled by radioactive GTP after blotting, were hydrophobic, regardless of their subcellular distribution. In contrast, the cytosolic forms of ADP ribosylation factor, rho, and CDC42 were hydrophilic. The cytosolic pool of the 23-27-kDa group, including smg25A/rab3A, sedimented in a sucrose density gradient as complexes with an apparent M(r) of about 80,000, whereas rho and CDC42 were recovered in 45-kDa complexes. ARF, however, was uncomplexed (M(r) close to 20,000). The 80-kDa aggregates were likely to be formed by 1:1 complexes with the regulatory protein smg25/GDP dissociation inhibitor (smg25/GDI). In fact, pure smg25/GDI by sucrose gradient exhibited a molecular mass of 55 kDa, but cosedimented with the 80-kDa complexes in cytosolic extracts of insulin-secreting cells. Moreover, purified smg25/GDI was able to extract the SMGs of the 23-27-kDa group from the membranes. Similarly, in cytosolic extracts, rho/GDI cosedimented with the 45-kDa aggregates. Blocking the synthesis of isoprenoid groups with lovastatin resulted in the appearance in the cytosol of SMGs that were hydrophilic. These SMGs were found to sediment with an apparent M(r) close to 25,000 and to be unable to form complexes with smg25/GDI. Lovastatin treatment also caused the accumulation of the noncomplexed form of CDC42 but not of rho proteins. We propose that 1) except for ARF, all the SMGs detected in the cytosol of insulin-secreting cells are associated in 1:1 complexes with their regulatory proteins; 2) the different SMGs can be subdivided into functional groups according to the regulatory protein bound to them; 3) the formation of the 80-kDa complexes with smg25/GDI and of the CDC42 complexes with rho/GDI necessitate the correct carboxyl-terminal post-translational modification of the SMGs.  相似文献   

16.
We have recently purified from bovine brain cytosol a novel type of regulatory protein for smg p25A, named smg p25A GDP dissociation inhibitor (GDI), that regulates the GDP/GTP exchange reaction of smg p25A by inhibiting the dissociation of GDP from and thereby the subsequent binding of GTP to it. This smg p25A GDI is inactive for other ras p21/ras p21-like small GTP-binding proteins (G proteins) including c-Ha-ras p21, smg p21, rhoA p21 and rhoB p20. In human platelet membranes, smg p25A was not detected but a G protein with an apparent Mr value of 24,000 (24KG) was recognized by smg p25A GDI and the dissociation of GDP from and the binding of GTP to 24KG were inhibited by smg p25A GDI. The doses of smg p25A GDI necessary for these activities for both 24KG and smg p25A were the same. This 24KG was not recognized by an anti-smg p25A monoclonal antibody. The GDI activity for human platelet 24KG and smg p25A was detected in human platelet cytosol. This human platelet GDI was recognized by an anti-smg p25A GDI polyclonal antibody. These results indicate that there is a 24KG-24KG GDI system similar to a smg p25A-smg p25A GDI system in human platelets.  相似文献   

17.
smg p25A is a ras p21-like small GTP-binding protein which is implicated in the regulated secretory processes. We have recently found that bovine brain smg p25A is geranylgeranylated at its C-terminal region. In this study, we examined the function(s) of the C-terminal region of smg p25A. Limited proteolysis of bovine brain smg p25A with Achromobacter protease I produced an N-terminal fragment and a C-terminal tail. The Mrs of intact smg p25A, the N-terminal fragment, and the C-terminal tail were estimated to be about 24,000, 20,000, and less than 2,000, respectively, by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The N-terminal fragment contained the consensus amino acid sequences for GDP/GTP-binding and GTPase activities and showed these activities with kinetic properties similar to those of the intact protein but did not bind to plasma membranes or phosphatidylserine-linked Affigel under conditions in which the intact protein bound to them. The C-terminal tail neither contained the consensus amino acid sequences for GDP/GTP-binding and GTPase activities nor bound to plasma membranes or phosphatidylserine-linked Affigel. The GDP/GTP exchange protein specific for smg p25A, named GDP dissociation inhibitor (GDI), made a complex with the GDP-bound form of the intact smg p25A at a molar ratio of 1:1 and thereby inhibited its GDP/GTP exchange reaction but neither made a complex with the N-terminal fragment or the C-terminal tail nor affected the GDP/GTP exchange reaction of the N-terminal fragment. We expressed smg p25A in Escherichia coli and purified it to near homogeneity. This bacterial protein was not geranylgeranylated. Bacterial smg p25A did not bind to plasma membranes or phosphatidylserine-linked Affigel. smg p25A GDI neither made a complex with bacterial smg p25A nor affected its GDP/GTP exchange reaction. These results suggest that the N-terminal region of smg p25A has GDP/GTP-binding and GTPase activities but lacks the ability to interact with membranes and smg p25A GDI, that the C-terminal region of smg p25A plays important roles in its interaction with membranes and smg p25A GDI, and that some modifications of the C-terminal region, such as geranylgeranylation, which are absent in bacterial smg p25A, are important for these interactions.  相似文献   

18.
We have previously purified a GDP/GTP exchange protein for smg p21A and -B, members of a ras p21/ras p21-like small GTP-binding protein superfamily. This regulatory protein, named smg p21 GDP dissociation stimulator (GDS), stimulates the dissociation of both GDP and GTP from and the subsequent binding of both GDP and GTP to smg p21s. We show here that smg p21 GDS forms a complex with both the GDP- and GTP-bound forms of smg p21B at a molar ratio of about 1:1. Both the GDP- and GTP-bound forms of smg p21B bound to membranes. smg p21 GDS inhibited this binding and moreover induced the dissociation of the prebound smg p21B from the membranes. These results indicate that smg p21 GDS stoichiometrically interacts with smg p21B and thereby regulates its GDP/GTP exchange reaction and its translocation between membranes and cytoplasm.  相似文献   

19.
A novel Galpha binding consensus sequence, termed G-protein regulatory (GPR) or GoLoco motif, has been identified in a growing number of proteins, which are thought to modulate G-protein signaling. Alternative roles of GPR proteins as nucleotide exchange factors or as GDP dissociation inhibitors for Galpha have been proposed. We investigated the modulation of the GDP/GTP exchange of Gialpha(1), Goalpha, and Gsalpha by three proteins containing GPR motifs (GPR proteins), LGN-585-642, Pcp2, and RapIGAPII-23-131, to elucidate the mechanisms of GPR protein function. The GPR proteins displayed similar patterns of interaction with Gialpha(1) with the following order of affinities: Gialpha(1)GDP > Gialpha(1)GDPAlF(4)(-) > or = Gialpha(1)GTPgammaS. No detectable binding of the GPR proteins to Gsalpha was observed. LGN-585-642, Pcp2, and RapIGAPII-23-131 inhibited the rates of spontaneous GTPgammaS binding and blocked GDP release from Gialpha(1) and Goalpha. The inhibitory effects of the GPR proteins on Gialpha(1) were significantly more potent, indicating that Gi might be a preferred target for these modulators. Our results suggest that GPR proteins are potent GDP dissociation inhibitors for Gialpha-like Galpha subunits in vitro, and in this capacity they may inhibit GPCR/Gi protein signaling in vivo.  相似文献   

20.
《FEBS letters》1994,350(2-3):333-336
The kinetic properties of MSS4 are studied in comparison with those of Rab3A GRF. MSS4 stimulates the dissociation of [3H]GDP from the lipid-modified and lipid-unmodified forms of Rab3A to the same extent, although Rab3A GRF is more effective on the lipid-modified form than on the lipid-unmodified form. Both MSS4 and Rab3A GRF are inactive on other Rab/Sec/Ypt family members including at least Rab2, Rab5, and Rab11. Rab GDI inhibits the MSS4 and Rab3A GRF effects on the lipid-modified form of Rab3A, but the doses of Rab GDI necessary for this inhibitory effect on Rab3A GRF are lower than those on MSS4. Moreover, Rab GDI slightly inhibits the Rab3A GRF effect on the lipid-unmodified form of Rab3A, but does not affect the MSS4 effect on the lipid-unmodified form of Rab3A. These results suggest that MSS4 and Rab3A GRF are different GDP/GTP exchange proteins for Rab3A.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号