首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
2.
3.
4.
5.
6.
7.
Domestic dog breeds have undergone intense selection for a variety of morphologic features, including size. Among small-dog breeds, defined as those averaging less than?~15 in. at the withers, there remains still considerable variation in body size. Yet essentially all such dogs are fixed for the same allele at the insulin-like growth factor 1 gene, which we and others previously found to be a size locus of large effect. In this study we sought to identify additional genes that contribute to tiny size in dogs using an association scan with the single nucleotide polymorphism (SNP) dataset CanMap, in which 915 purebred dogs were genotyped at 60,968 SNP markers. Our strongest association for tiny size (defined as breed-average height not more than 10 in. at the withers) was on canine chromosome 3 (p?=?1.9?×?10?70). Fine mapping revealed a nonsynonymous SNP at chr3:44,706,389 that changes a highly conserved arginine at amino acid 204 to histidine in the insulin-like growth factor 1 receptor (IGF1R). This mutation is predicted to prevent formation of several hydrogen bonds within the cysteine-rich domain of the receptor??s ligand-binding extracellular subunit. Nine of 13 tiny dog breeds carry the mutation and many dogs are homozygous for it. This work underscores the central importance of the IGF1 pathway in controlling the tremendous size diversity of dogs.  相似文献   

8.

Domestic dog breeds have undergone intense selection for a variety of morphologic features, including size. Among small-dog breeds, defined as those averaging less than ~15 in. at the withers, there remains still considerable variation in body size. Yet essentially all such dogs are fixed for the same allele at the insulin-like growth factor 1 gene, which we and others previously found to be a size locus of large effect. In this study we sought to identify additional genes that contribute to tiny size in dogs using an association scan with the single nucleotide polymorphism (SNP) dataset CanMap, in which 915 purebred dogs were genotyped at 60,968 SNP markers. Our strongest association for tiny size (defined as breed-average height not more than 10 in. at the withers) was on canine chromosome 3 (p = 1.9 × 10−70). Fine mapping revealed a nonsynonymous SNP at chr3:44,706,389 that changes a highly conserved arginine at amino acid 204 to histidine in the insulin-like growth factor 1 receptor (IGF1R). This mutation is predicted to prevent formation of several hydrogen bonds within the cysteine-rich domain of the receptor’s ligand-binding extracellular subunit. Nine of 13 tiny dog breeds carry the mutation and many dogs are homozygous for it. This work underscores the central importance of the IGF1 pathway in controlling the tremendous size diversity of dogs.

  相似文献   

9.
The objective of this study was to determine hepatic expression levels of GHR, IGF1R, IGF1 and IGF2 genes in young growing gilts at different developmental ages (60–210 days) in five pig breeds: Polish Large White (PLW), Polish Landrace (PL), Pulawska (Pul), Duroc (Dur) and Pietrain (Pie). We studied the differences among pig breeds as well as within each breed for pigs in different developmental ages. Obtained results revealed major differences among breeds in hepatic gene expression of porcine GHR, IGF1R, IGF1 and IGF2 genes in different developmental ages. The differences among breeds of GHR expression were significantly higher in PLW, PL at the age of 60, 90, 120 days as compared to Pul, Dur and Pie. In turn, the highest level of IGF1R expression was observed in PL at age of 150, 180 and 210 days, whereas in case of IGF1 the highest level was recorded in Pie gilts at the age of 60 and 90 days. Moreover trait associated study revealed highly significant correlations between hepatic expressions of IGF1R and IGF2 genes and carcass composition traits (P < 0.01) The results of study suggest that porcine GHR, IGF1R, IGF1 and IGF2 genes may be potential candidate genes for postnatal growth and carcass composition traits. Therefore, the implementation of the hepatic expression of GH/IGF genes into the pig breeding and gene assisted selection program in different pig breeds should be considered. However, further population wide study is needed to clarify the hepatic expression association with economic traits, such as body growth, meat quality and carcass composition traits.  相似文献   

10.
11.
12.
We have produced and characterized the binding properties of three structural analogs of human insulin-like growth factor I (hIGF-I). These analogs are [1-62]hIGF-I, an analog lacking the carboxyl-terminal 8-amino acid D region of hIGF-I; [1-27, Gly4, 38-70]hIGF-I, an analog in which residues 28-37 of the C region of hIGF-I are replaced by a 4-reside glycine bridge; and [1-27,Gly4,38-62]hIGF-I, an analog with the C region glycine replacement and a D region deletion. The removal of the D region of hIGF-I has little effect on binding to the type 1 and type 2 insulin-like growth factor (IGF) receptors. [1-62]hIGF-I has 2-fold higher affinity for the insulin receptor and 4-fold higher affinity for IGF serum-binding proteins. The replacement of the C region of hIGF-I with a four-glycine span results in a 30-fold loss of affinity for the type 1 IGF receptor. However this analog has near normal affinity for the type 2 IGF receptor, the insulin receptor, and IGF serum-binding proteins. Incorporating the C region glycine replacement and the D region deletion into one analog does not affect binding to either the type 2 receptor or to IGF serum-binding proteins. As predicted from the single deletion analogs [1-27,Gly4,38-62]hIGF-I has reduced affinity for the type 1 IGF receptor (approximately 40-fold) and increased affinity for the insulin receptor (5-fold). These data indicate that determinants in the C region of hIGF-I are involved in maintaining high affinity binding to the type 1 IGF receptor and that neither the C region nor the D region are required for high affinity binding to the type 2 IGF receptor or to IGF serum-binding proteins.  相似文献   

13.
Insulin-like growth factor 1 receptor ( IGF1R ) is essential for the signalling of growth. In this study, we performed single nucleotide polymorphism (SNP) detection in the Japanese quail IGF1R coding region and an association study between SNPs and body weight in two lines (SS and LL) selected for large and small body weight. Of 21 SNPs obtained, a SNP at position AB292766:c.2293G>A led to the replacement of a valine with an isoleucine (V765I). The two lines were fixed for alternate alleles, with allele encoding valine fixed in the LL line. A significant effect of the SNP genotype was found on 10-week body weight ( P  < 0.01) and on 4- to 10-week and 6- to 10-week average daily gain ( P  < 0.05) in the F2 family obtained from lines LL and SS. In six populations maintained in Japan or France, the frequency of allele encoding valine was higher than the allele encoding isoleucine.  相似文献   

14.
Insulin-like growth factor binding proteins (IGFBP) can inhibit or accentuate the mitogenic activities of insulin-like growth factor 1 (IGF-1) depending upon the experimental model employed. Inhibitory effects may be attributed to sequestration of IGF-1 onto IGFBP rather than the type I IGF receptor. We have demonstrated that the presence of IGFBP in a simple equilibrium binding assay significantly reduces the total amount of IGF-1 bound to the type I IGF receptor and increases the IC50 for IGF-1 binding. On the basis of such an experiment, performed at equilibrium, IGFBP should reduce the mitogenic activity of IGF-1. Recent work has demonstrated an inverse correlation between the dissociation rate of insulin-like molecules from their receptors and their mitogenic activity. It has also been suggested that the increased rate of dissociation of insulin and IGF-1 from their receptors at increased ligand concentrations serves as a ‘dampening’ mechanism to decrease mitogenic signalling. We have demonstrated increased rates of dissociation of IGF-1 from the type I IGF receptor with increasing concentrations of IGF-1. Furthermore, IGFBP-3 inhibits the acceleration of dissociation rates due to increased IGF-1 levels. Thus, under receptor saturating conditions IGFBP-3 may act to increase mitogenesis by increasing the residence time of individual molecules of IGF-1 upon the type I IGF receptor.  相似文献   

15.
16.
17.
18.
Active search for candidate genes whose polymorphisms are associated with human cognitive functions has been in progress in the past years. The study focused on the role that the insulin-like growth factor II (IGF2) gene may play in the variation of cognitive processes related to executive functions. The ApaI polymorphism of the IGF2 gene was tested for association with selective attention during visual search, working memory/mental control, and semantic verbal fluency in a group of 182 healthy individuals. The ApaI polymorphism was associated with the general cognitive index and selective attention measure. Carriers of genotype AA displayed higher values of the two parameters than carriers of genotype GG. It was assumed that the ApaI polymorphism of the IGF2 gene influences the human cognitive functions, acting possibly via modulation of the IGF-II level in the central nervous system.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号