首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dibenzothiophene (DBT) degradation activity of recombinant Rhodococcus sp. T09/pRKPP was increased by about 3.5-fold by introduction of the NAD(P)H/FMN oxidoreductase gene (dszD), while DBT desulfurization activity remained the same with production of dibenzo[1,2]oxathiin-6-oxide, which was caused by insufficient activity of the last desulfurization step involving a desulfinase. Introduction of an additional dsz operon resulted in a 3.3-fold increase DBT desulfurization activity (31 mol g dry cell–1 h–1) compared with that of T09/pRKPP (9.5 mol g dry cell–1 h–1). Furthermore, optimization of DBT at 25 mg l–1 and glucose at 10 g l–1, increased the total DBT desulfurization activity 2- to 3-fold due to increases in the DBT desulfurizing specific activity and the final cell concentration.  相似文献   

2.
A new dibenzothiophene (DBT) desulfurizing bacterium was isolated from oil-contaminated soils in Iran. HPLC analysis and PCR-based detection of the presence of the DBT desulfurization genes (dszA, dszB and dszC) indicate that this strain converts DBT to 2-hydroxybiphenyl (2-HBP) via the 4S pathway. The strain, identified as Rhodococcus erythropolis SHT87, can utilize DBT, dibenzothiophene sulfone, thiophene, 2-methylthiophene and dimethylsulfoxide as a sole sulfur source for growth at 30 °C.The maximum specific desulfurization activity of strain SHT87 resting cells in aqueous and biphasic organic–aqueous systems at 30 °C was determined to be 0.36 and 0.47 μmol 2-HBP min−1 (g dry cell)−1, respectively. Three mM DBT was completely metabolized by SHT87 resting cells in the aqueous and biphasic systems within 10 h. The rate and the extent of the desulfurization reaction by strain SHT87 suggest that this strain can be used for the biodesulfurization of diesel oils.  相似文献   

3.
Enhancement of the desulfurization activities of Paenibacillus strains 32O-W and 32O-Y were investigated using dibenzothiophene (DBT) and DBT sulfone (DBTS) as sources of sulphur in growth experiments. Strains 32O-W, 32O-Y and their co-culture (32O-W plus 32O-Y), and Vitreoscilla hemoglobin (VHb) expressing recombinant strain 32O-Yvgb and its co-culture with strain 32O-W were grown at varying concentrations (0·1–2 mmol l−1) of DBT or DBTS for 96 h, and desulfurization measured by production of 2-hydroxybiphenyl (2-HBP) and disappearance of DBT or DBTS. Of the four cultures grown with DBT as sulphur source, the best growth occurred for the 32O-Yvgb plus 32O-W co-culture at 0·1 and 0·5 mmol l−1 DBT. Although the presence of vgb provided no consistent advantage regarding growth on DBTS, strain 32O-W, as predicted by previous work, was shown to contain a partial 4S desulfurization pathway allowing it to metabolize this 4S pathway intermediate.  相似文献   

4.

The potential of Ralstonia eutropha as a biocatalyst for desulfurization of dibenzothiophene (DBT) was studied in growing and resting cell conditions. The results of both conditions showed that sulfur was removed from DBT which accompanied by the formation of 2-hydroxybiphenyl (2-HBP). In growing cell experiments, glucose was used as an energy supplying substrate in initial concentrations of 55 mM (energy-limited) and 111 mM (energy-sufficient). The growing cell behaviors were quantitatively described using the logistic equation and maintenance concept. The results indicated that 2-HBP production was higher for the energy-sufficient cultures, while the values of the specific growth rate and the maintenance coefficient for these media were lower than those of the energy-limited cultures. Additionally, the kinetic studies showed that the half-saturation constant for the energy-limited cultures was 2 times higher than the energy-sufficient ones where the inhibition constant (0.08 mM) and the maximum specific DBT desulfurization rate (0.002 mmol gcell −1 h−1) were almost constant. By defining desulfurizing capacity (D DBT) including both the biomass concentration and time to reach a particular percentage of DBT conversion, the best condition for desulfurizing cell was determined at 23% gcell L−1 h−1 which corresponded with the resting cells that were harvested at the mid-exponential growth phase.

  相似文献   

5.
Strains DBVPG 6662 and DBVPG 6739 of Rhodosporidium toruloides, a basidiomycete yeast, grew on thiosulfate as a sulfur source and glucose (2 g liter−1 or 10.75 mM) as a carbon source. DBVPG 6662 has a defective sulfate transport system, whereas DBVPG 6739 barely grew on sulfate. They were compared for the ability to use dibenzothiophene (DBT) and related organic sulfur compounds as sulfur sources. In the presence of glucose as a carbon source and DBT as a sulfur source, strain DBVPG 6662 grew better than DBVPG 6739. In the presence of thiosulfate as a sulfur source, the two yeast strains did not use DBT, DBT-sulfone, benzenesulfonic acid, biphenyl, and fluorene. When the two strains were grown in the presence of glucose, strain DBVPG 6662 transformed 27% of the DBT present (10 μM) at a rate of 0.023 μmol liter−1 h−1 in 36 h. Traces of 2,2′-dihydroxylated biphenyl were transiently accumulated under these conditions. When the same strain was grown on glucose in the presence of a higher concentration of DBT (0.5 g liter−1), mainly in an insoluble form, the whole surface of the DBT crystals was colonized by a thick mycelium. This adherent structure was imaged by confocal microscopy with fluorescent concanavalin A, a lectin that specifically binds glucose and mannose residues. When DBVPG 6662 was grown on glucose in the presence of a commercial emulsion of bitumen, i.e., orimulsion, 68% of the benzo- and dibenzothiophenes and DBTs was removed after 15 days of incubation. The fungus adhered by hyphae to orimulsion droplets. When cultivated in the presence of commercial emulsifier-free fuel oil containing alkylated benzothiophenes and DBTs and having a composition similar to that of orimulsion, strain DBVPG 6662 removed only 11% of the total organic sulfur that occurs in the medium and did not adhere to the oil droplets. These results indicate that strain DBVPG 6662 is able to utilize the organic sulfur of DBT and a large variety of thiophenic compounds that occur extensively in commercial fuel oils by physically adhering to the organic sulfur source.  相似文献   

6.
Gordonia alkanivorans strain 1B is able to desulfurize dibenzothiophene (DBT) to 2-hydroxybiphenyl (2-HBP), the final product of the 4S pathway. However, both the cell growth and the rate of desulfurization can be largely affected by the nutrient composition of the growth medium due to cofactor requirements of many enzymes involved in the biochemical pathways. In this work, the effect of several metal ions on the growth and DBT desulfurization by G. alkanivorans was studied. From all the metal ions tested, only the absence of zinc significantly affected the cell growth and the desulfurization rate. By increasing the concentration of Zn from 1 to 10 mg L−1, 2-HBP productivity was improved by 26%. The absence of Zn2+, when sulfate was also used as the only sulfur source, did not cause any difference in the bacterial growth. Resting cells grown in the presence of Zn2+ exhibited a 2-HBP specific productivity of 2.29 μmol g−1 (DCW) h−1, 7.6-fold higher than the specific productivity obtained by resting cells grown in the absence of Zn2+ (0.30 μmol g−1 (DCW) h−1). These data suggests that zinc might have a key physiological role in the metabolism of DBT desulfurization.  相似文献   

7.
A mutation (K38R) which specifically eliminates kinase activity was created in the Drosophila melanogaster ckI gene (doubletime [dbt]). In vitro, DBT protein carrying the K38R mutation (DBTK/R) interacted with Period protein (PER) but lacked kinase activity. In cell culture and in flies, DBTK/R antagonized the phosphorylation and degradation of PER, and it damped the oscillation of PER in vivo. Overexpression of short-period, long-period, or wild-type DBT in flies produced the same circadian periods produced by the corresponding alleles of the endogenous gene. These mutations therefore dictate an altered “set point” for period length that is not altered by overexpression. Overexpression of the DBTK/R produced effects proportional to the titration of endogenous DBT, with long circadian periods at lower expression levels and arrhythmicity at higher levels. This first analysis of adult flies with a virtual lack of DBT activity demonstrates that DBT's kinase activity is necessary for normal circadian rhythms and that a general reduction of DBT kinase activity does not produce short periods.  相似文献   

8.
Several parameters that influence the dibenzothiophene (DBT) desulfurization by lyophilized cells of Pseudomonas delafieldii R-8 were studied in the presence of dodecane. The aqueous media tested with pH range in 4.6–8.5 made no obvious difference on the desulfurization activity. The rate and extent of desulfurization were strongly dependent on the volume ratio of oil-to-water, DBT concentration and the cell concentration. The specific desulfurization rate of DBT and 4,6-dimethyl DBT (4,6-DMDBT) could reach 11.4 and 9.4 mmol sulfur kg−1 dry cells (DCW) h−1, respectively. The desulfurization pattern of DBT was represented by the Michaelis–Menten equation. The kinetic parameters, the limiting maximal velocity (Vmax) and Michaelis constant (Km), for desulfurization of DBT were calculated.  相似文献   

9.
Drosophila DBT and vertebrate CKIε/δ phosphorylate the period protein (PER) to produce circadian rhythms. While the C termini of these orthologs are not conserved in amino acid sequence, they inhibit activity and become autophosphorylated in the fly and vertebrate kinases. Here, sites of C-terminal autophosphorylation were identified by mass spectrometry and analysis of DBT truncations. Mutation of 6 serines and threonines in the C terminus (DBTC/ala) prevented autophosphorylation-dependent DBT turnover and electrophoretic mobility shifts in S2 cells. Unlike the effect of autophosphorylation on CKIδ, DBT autophosphorylation in S2 cells did not reduce its in vitro activity. Moreover, overexpression of DBTC/ala did not affect circadian behavior differently from wild-type DBT (DBTWT), and neither exhibited daily electrophoretic mobility shifts, suggesting that DBT autophosphorylation is not required for clock function. While DBTWT protected S2 cells and larvae from UV-induced apoptosis and was phosphorylated and degraded by the proteasome, DBTC/ala did not protect and was not degraded. Finally, we show that the HSP-90 cochaperone spaghetti protein (SPAG) antagonizes DBT autophosphorylation in S2 cells. These results suggest that DBT autophosphorylation regulates cell death and suggest a potential mechanism by which the circadian clock might affect apoptosis.  相似文献   

10.
Dibenzothiophene (DBT) monooxygenase (DszC) catalysis, the first and also the key step in the microbial DBT desulfurization, is the conversion of DBT to DBT sulfone (DBTO2). In this study, dszC of a DBT-desulfurizing bacterium Rhodococcus sp. DS-3 was cloned by PCR. The sequence cloned was 99% homologous to Rhodococcus erythropolis IGTS8 that was reported in the Genebank. The gene dszC could be overexpressed effectively after being inserted into plasmid pET28a and transformed into E. coli BL21 strain. The expression amount of DszC was about 20% of total supernatant at low temperature. The soluble DszC in the supernatant was purified by Ni2+ chelating His-Tag resin column and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) to electronics purity. Only one band was detected by Western-blotting, which is for the antibody released in mouse against purified DszC in the expression product of BL21 (DE3, paC5) and Rhodococcus sp. DS-3. The activity of purified DszC was 0.36 U. DszC can utilize the organic compound such as DBT and methyl-DBT, but not DBT derivates such as DBF, which has no sulfur or inorganic sulfur. __________ Translated from Acta Scientiarum Naturalium Universitatis Nankaiensis, 2005, 38(6): 1–6 [译自: 南开大学学报 (自然科学版), 2005, 38(6): 1–6]  相似文献   

11.
The conversion of the heterocycle dibenzothiophene (DBT) by the agaric basidiomycetes Agrocybe aegerita and Coprinellus radians was studied in vivo and in vitro with whole cells and with purified extracellular peroxygenases, respectively. A. aegerita oxidized DBT (110 μM) by 100% within 16 days into eight different metabolites. Among the latter were mainly S-oxidation products (DBT sulfoxide, DBT sulfone) and in lower amounts, ring-hydroxylation compounds (e.g., 2-hydroxy-DBT). C. radians converted about 60% of DBT into DBT sulfoxide and DBT sulfone as the sole metabolites. In vitro tests with purified peroxygenases were performed to compare the product pattern with the metabolites formed in vivo. Using ascorbic acid as radical scavenger, a total of 19 and seven oxygenation products were detected after DBT conversion by the peroxygenases of A. aegerita (AaP) and C. radians (CrP), respectively. Whereas ring hydroxylation was favored over S-oxidation by AaP (again 2-hydroxy-DBT was identified), CrP formed DBT sulfoxide as major product. This finding suggests that fungal peroxygenases can considerably differ in their catalytic properties. Using H2 18O2, the origin of oxygen was proved to be the peroxide. Based on these results, we propose that extracellular peroxygenases may be involved in the oxidation of heterocycles by fungi also under natural conditions.  相似文献   

12.
Ma T  Li G  Li J  Liang F  Liu R 《Biotechnology letters》2006,28(14):1095-1100
The desulfurization (dsz) genes from Rhodococcus erythropolis DS-3 were successfully integrated into the chromosomes of Bacillus subtilis ATCC 21332 and UV1 using an integration vector pDGSDN, yielding two recombinant strains, B. subtilis M29 and M28 in which the integrated dsz genes were expressed efficiently under the promoter, Pspac. The dibenzothiophene (DBT) desulfurization efficiency of M29 was 16.2 mg DBT l−1 h−1 at 36 h, significantly higher than that of R. erythropolis DS−3 and B. subtilis M28 and also showed no product inhibition. The interfacial tension of the supernatant fermented by M29 varied from 48 mN m−1 to 4.2 mN m−1, lower than that of the recombinant strain, M28, reveals that the biosurfactant secreted from M29 may have an important function in the DBT desulfurization process.  相似文献   

13.
A dibenzothiophene (DBT)-degrading bacterium, Rhodococcus erythropolis D-1, which utilized DBT as a sole source of sulfur, was isolated from soil. DBT was metabolized to 2-hydroxybiphenyl (2-HBP) by the strain, and 2-HBP was almost stoichiometrically accumulated as the dead-end metabolite of DBT degradation. DBT degradation by this strain was shown to proceed as DBT → DBT sulfone → 2-HBP. DBT at an initial concentration of 0.125 mM was completely degraded within 2 days of cultivation. DBT at up to 2.2 mM was rapidly degraded by resting cells within only 150 min. It was thought this strain had a higher DBT-desulfurizing ability than other microorganisms reported previously.  相似文献   

14.
Li W  Wang MD  Chen H  Chen JM  Shi Y 《Biotechnology letters》2006,28(15):1175-1179
A new isolate, identified as Gordonia sp. ZD-7 by 16S rDNA sequence analysis, grew in n-hexadecane containing dibenzothiophene (DBT) which was degraded from 2.8 mM to 0.2 mM within 48 h. Biodesulfurization could be repeatedly performed for more than 190 h, with average desulfurization rates of 5 mmol DBT kg cells (dry wt)−1 h−1.  相似文献   

15.
Lin X  Liu H  Zhu F  Wei X  Li Q  Luo M 《Biotechnology letters》2012,34(6):1029-1032
A 700 ml membrane-aerated, stirred glass reactor equipped with four vertical baffles was constructed. Biodesulfurization of model oil (n-dodecane containing dibenzothiophene—DBT) and hydrodesulfurized diesel was carried out using Pseudomonas delafieldii strain R-8. Microbubble aeration gave an activity of 1.3 mg DBT removed g−1 h−1 and 277 μg sulfur g−1 h−1 for model oil and hydrodesulfurized diesel, respectively. These values were 1.9- and 1.6-times higher than using a traditional bubble aeration process. This is a promising method for the biodesulfurization of petroleum feedstocks.  相似文献   

16.
Summary Tributyltin (TBT) and its degradation products dibutyltin (DBT), monobutyltin (MBT) and SnIV were toxic toPseudomonas fluorescens SHC-6 andSerratia sp. Gil-1 with EC50 values in the range of 10–3 to 10–4M. These four compounds were negative chemotactic agents forP. fluorescens, and the butyltins were negatively chemotactic forSerratia sp. at concentrations over four orders of magnitude lower than the EC50 values.l-Aspartate was a positive chemotactic agent for both organisms. TBT, DBT and MBT negated the effect ofl-aspartate onP. fluorescens but not onSerratia sp. Thus, TBT has the potential to affect microbial populations at concentrations much lower than those which prevent growth, and degradation of TBT does not always detoxify it. SnCl4 was less toxic than TBT or DBT to these organisms and it was not chemotactic forSerratia sp. Gil-1. Tributylamine and tributylphosphate were less than 1/10th as toxic as TBT and they did not have a chemotactic effect on either organism at concentrations at which TBT had a significant effect. Therefore, both the Sn-and butyl-moieties contribute to the toxic and chemotactic properties of TBT.  相似文献   

17.
Desulfurization of dibenzothiophene (DBT) and alkylated DBT derivatives present in transport fuel through specific cleavage of carbon-sulfur (C-S) bonds by a newly isolated bacterium Chelatococcus sp. is reported for the first time. Gas chromatography-mass spectrometry (GC-MS) analysis of the products of DBT degradation by Chelatococcus sp. showed the transient formation of 2-hydroxybiphenyl (2-HBP) which was subsequently converted to 2-methoxybiphenyl (2-MBP) by methylation at the hydroxyl group of 2-HBP. The relative ratio of 2-HBP and 2-MBP formed after 96 h of bacterial growth was determined at 4:1 suggesting partial conversion of 2-HBP or rapid degradation of 2-MBP. Nevertheless, the enzyme involved in this conversion process remains to be identified. This production of 2-MBP rather than 2-HBP from DBT desulfurization has a significant metabolic advantage for enhancing the growth and sulfur utilization from DBT by Chelatococcus sp. and it also reduces the environmental pollution by 2-HBP. Furthermore, desulfurization of DBT derivatives such as 4-M-DBT and 4, 6-DM-DBT by Chelatococcus sp. resulted in formation of 2-hydroxy-3-methyl-biphenyl and 2-hydroxy –3, 3/- dimethyl-biphenyl, respectively as end product. The GC and X-ray fluorescence studies revealed that Chelatococcus sp. after 24 h of treatment at 37°C reduced the total sulfur content of diesel fuel by 12% by per gram resting cells, without compromising the quality of fuel. The LC-MS/MS analysis of tryptic digested intracellular proteins of Chelatococcus sp. when grown in DBT demonstrated the biosynthesis of 4S pathway desulfurizing enzymes viz. monoxygenases (DszC, DszA), desulfinase (DszB), and an NADH-dependent flavin reductase (DszD). Besides, several other intracellular proteins of Chelatococcus sp. having diverse biological functions were also identified by LC-MS/MS analysis. Many of these enzymes are directly involved with desulfurization process whereas the other enzymes/proteins support growth of bacteria at an expense of DBT. These combined results suggest that Chelatococcus sp. prefers sulfur-specific extended 4S pathway for deep-desulphurization which may have an advantage for its intended future application as a promising biodesulfurizing agent.  相似文献   

18.
Evaluation of the assimilation pathway and depuration time of a given pollutant by aquatic species is important to understand the dynamics of this substance in the biota, and to search for potential ecological indicators. In the present study, the uptake pathway and depuration time and rate of the pollutant tributyltin (TBT) were investigated in the omnivorous hermit crab (Clibanarius vittatus). The assimilation and uptake pathway were investigated using hermit crabs collected in an area free of TBT. The crabs were held in the laboratory for 45 days, under one of four treatments: procedural control (PC) - water and food without TBT; T1 - water with and food without TBT; T2 - water without and food with TBT; and T3 - water and food with TBT. To determine the depuration time, the crabs were collected in a contaminated area, maintained in the laboratory with clean water, and removed every 15 days for 120 days. The concentrations of TBT and DBT (dibutyltin) were determined by chromatographic analysis. The TBT was taken up by the crabs mainly via food, and the presence of DBT in crab tissues was hypothesized to result from internal TBT degradation. TBT (as well as DBT) was depurated rapidly by C. vittatus. After approximately 30 days, the initial concentration of 111 ± 36 ng Sn g−1 w. w. decreased to 3 ± 3 ng Sn g−1 w. w., and after 75 days the TBT concentration was below the detection limit. The same pattern was recorded for DBT, which showed a higher depuration rate than TBT. The rapid TBT and DBT depuration is useful information, since C. vittatus and possibly other hermit crabs may be used as indicators of recent or recycled environmental contamination.  相似文献   

19.
Dibenzothiophene (DBT) biodesulfurisation (BDS) route using a genetically modified organism, Pseudomonas putida CECT 5279, is studied. Tests of BDS with whole cells and with homogenized cells are carried out by taking samples of the cells during growth. The influence of the growth phases in the evolution of the intermediates of the 4S DBT desulfurising route is shown.Conversions of the five key compounds of the 4S route (DBT, DBTO, DBTO2, HBPS and HBP) are measured. DBT conversion values are maximal with cells obtained after 30 h of growth time. HBP conversion values do not coincide with DBT conversion values, the maximum HBP production is obtained with cells grown for 10 h. A greater intermediate DBTO and DBTO2 accumulation in broth is produced with cells obtained at 5 and 10 h of growth time. Nevertheless, the accumulation in broth of HBPS, another intermediate, is considerably lower than that observed with cells obtained at 23, 30 and 45 h of growth time.Also, the concentration of the reducing equivalents (NADH and FMNH2) and flavin-oxido-reductase activity inside the cells is measured. This showed that the concentration of the reducing equivalents and the activity of the HpaC enzyme in the P. putida cytoplasm do not limit BDS rate.The influence of 4S compound transport across cellular membrane is studied by comparison of results obtained by resting cell assays (whole cells) and with homogenized cells assays (disrupted cells). The results show that there is no accumulation of any compound inside the cells, and that the transport rate across the cellular membrane does not limit the overall biodesulfurisation rate.  相似文献   

20.
The interactions between dibenzothiophene (DBT) and N-butyl-N-methylimidazolium tetrafluoroborate ([BMIM][BF4]), N-butyl-N-methylmorpholinium tetrafluoroborate ([Bmmorpholinium][BF4]), N-butyl-N-methylpiperdinium tetrafluoroborate ([BMPiper][BF4]), N-butyl-N-methylpyrrolidinium tetrafluoroborate ([BMPyrro][BF4]), and N-butylpyridinium tetrafluoroborate ([BPY][BF4]) were investigated using density functional theory approach. Geometric, electron, and topological properties were analyzed using natural bond orbital, atoms in molecules theory, and noncovalent interaction methods in order to understand intermolecular interactions between DBT and ionic liquids. The result shows that hydrogen bond and van der Waals interactions are widespread in all the ionic liquids-DBT systems. Ion-π interactions between DBT and cation or anion are also observed, while π+-π interactions are only found in the [BMIM][BF4]-DBT and [BPY][BF4]-DBT systems. The order of interaction energy is [BPY][BF4]-DBT > [BMIM][BF4]-DBT >> [BMPiper][BF4]-DBT > [BMPyrro][BF4]-DBT > [BMmorpholinum][BF4]-DBT. The energies between DBT and the two ionic liquids containing aromatic cations are significantly higher.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号