首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
In plant cells, plastids divide by binary fission involving a complex pathway of events. Although there are clear similarities between bacterial and plastid division, limited information exists regarding the mechanism of plastid division in higher plants. Here we demonstrate that AtMinE1, an Arabidopsis homologue of the bacterial MinE topological specificity factor, is an essential integral component of the plastid division machinery. In prokaryotes MinE imparts topological specificity during cell division by blocking division apparatus assembly at sites other than midcell. We demonstrate that overexpression of AtMinE1 in E. coli results in loss of topological specificity and minicell formation suggesting evolutionary conservation of MinE mode of action. We further show that AtMinE1 can indeed act as a topological specificity factor during plastid division revealing that AtMinE1 overexpression in Arabidopsis seedlings results in division site misplacement giving rise to multiple constrictions along the length of plastids. In agreement with cell division studies in bacteria, AtMinE1 and AtMinD1 show distinct intraplastidic localisation patterns suggestive of dynamic localisation behaviour. Taken together our findings demonstrate that AtMinE1 is an evolutionary conserved topological specificity factor, most probably acting in concert with AtMinD1, required for correct plastid division in Arabidopsis.  相似文献   

2.
3.
Bacteria and plastids divide symmetrically through binary fission by accurately placing the division site at midpoint, a process initiated by FtsZ polymerization, which forms a Z-ring. In Escherichia coli precise Z-ring placement at midcell depends on controlled oscillatory behavior of MinD and MinE: In the presence of ATP MinD interacts with the FtsZ inhibitor MinC and migrates to the membrane where the MinD-MinC complex recruits MinE, followed by MinD-mediated ATP hydrolysis and membrane release. Although correct Z-ring placement during Arabidopsis plastid division depends on the precise localization of the bacterial homologs AtMinD1 and AtMinE1, the underlying mechanism of this process remains unknown. Here we have shown that AtMinD1 is a Ca2+-dependent ATPase and through mutation analysis demonstrated the physiological importance of this activity where loss of ATP hydrolysis results in protein mislocalization within plastids. The observed mislocalization is not due to disrupted AtMinD1 dimerization, however; the active site AtMinD1(K72A) mutant is unable to interact with the topological specificity factor AtMinE1. We have shown that AtMinE1, but not E. coli MinE, stimulates AtMinD1-mediated ATP hydrolysis, but in contrast to prokaryotes stimulation occurs in the absence of membrane lipids. Although AtMinD1 appears highly evolutionarily conserved, we found that important biochemical and cell biological properties have diverged. We propose that correct intraplastidic AtMinD1 localization is dependent on AtMinE1-stimulated, Ca2+-dependent AtMinD1 ATP hydrolysis, ultimately ensuring precise Z-ring placement and symmetric plastid division.  相似文献   

4.
Yu Y  Steinmetz A  Meyer D  Brown S  Shen WH 《The Plant cell》2003,15(12):2763-2777
Although most of the components of the cell cycle machinery are conserved in all eukaryotes, plants differ strikingly from animals by the absence of a homolog of E-type cyclin, an important regulator involved in G1/S-checkpoint control in animals. By contrast, plants contain a complex range of A-type cyclins, with no fewer than 10 members in Arabidopsis. We previously identified the tobacco A-type cyclin Nicta;CYCA3;2 as an early G1/S-activated gene. Here, we show that antisense expression of Nicta;CYCA3;2 in tobacco plants induces defects in embryo formation and impairs callus formation from leaf explants. The green fluorescent protein (GFP)-Nicta;CYCA3;2 fusion protein was localized in the nucleoplasm. Transgenic tobacco plants overproducing GFP-Nicta;CYCA3;2 could not be regenerated from leaf disc transformation, whereas some transgenic Arabidopsis plants were obtained by the floral-dip transformation method. Arabidopsis plants that overproduce GFP-Nicta;CYCA3;2 showed reduced cell differentiation and endoreplication and a dramatically modified morphology. Calli regenerated from leaf explants of these transgenic Arabidopsis plants were defective in shoot and root regeneration. We propose that Nicta;CYCA3;2 has important functions, analogous to those of cyclin E in animals, in the control of plant cell division and differentiation.  相似文献   

5.
 植物叶绿体与原核生物分裂机制相似,其中MinE蛋白在细菌分裂过程中具有重要作用. 为了研究植物MinE蛋白在叶绿体分裂过程中的功能及其进化,利用RT PCR技术克隆了水稻叶绿体分裂相关基因OsMinE,并在GenBank登录(No. AY496951).OsMinE基因cDNA全长1 035 bp,其ORF为711 bp,编码236个氨基酸.与原核生物MinE蛋白相比,水稻OsMinE具有明显延伸的N端与C端.其N端102个氨基酸残基为预测的叶绿体导肽序列,C端延伸保守,推测赋予植物MinE蛋白新的功能.植物minE基因结构分析显示,水稻、拟南芥、杨树都仅含有1个内含子,且插入位置及相位相同.这表明,该内含子可能在单子叶、双子叶植物分化前产生.水稻OsMinE基因在大肠杆菌细胞中的表达严重影响了细胞的分裂,初步证明了水稻MinE蛋白与原核细胞MinE蛋白功能类似.水稻OsMinE基因的克隆为进一步研究叶绿体的分裂机制奠定了基础.  相似文献   

6.
细胞或质体中部正确分裂位点的选择是MinD蛋白与其他Min蛋白(MinC/E)相互作用的结果,MinD蛋白在原核细胞以及植物叶绿体的分裂过程中发挥着重要的作用。细胞中MinD蛋白浓度的明显升高可影响正常细胞的分裂过程而产生丝状体细胞。为了研究叶绿体分裂蛋白CrMinD的保守功能,构建了衣藻CrMinD-gfp的原核表达重组质粒进行了原核功能验证。试验结果表明,衣藻CrMinD蛋白的过量表达严重影响了大肠杆菌的分裂,其在原核细胞中运动和定位与用GFP标记的原核细胞MinD蛋白具有相似性。更进一步证明了叶绿体分裂同源物CrMinD蛋白与原核细胞MinD蛋白有着相似的功能,是一个进化上功能保守的蛋白。同时,这一结果也为研究植物细胞中质体的分裂机制奠定了一定的基础。  相似文献   

7.
用RT-PCR技术从小立碗藓中(Physcomitrella patens)克隆了核编码的MinE基因,命名为PpMinE,并克隆了该基因的基因组DNA。序列比对显示该基因编码的蛋白质与真细菌和绿藻叶绿体编码的MinE蛋白具有较高的相似性。pMinE-EGFP融合蛋白在烟草中的瞬时表达证明该蛋白定位于叶绿体内。在大肠杆菌中过量表达PpMinE导致细胞不正常分裂,产生无染色体的小细胞,这表明MinE的功能在进化上是保守的。在系统发育树中,PpMinE和高等陆生植物有较近的亲缘关系。在已知的陆生植物的叶绿体基因组中没有找到MinE的同源蛋白,这暗示在进化过程中MinE从叶绿体到细胞核的水平转移可能发生在陆生植物发生以前。  相似文献   

8.
FtsZ ring formation at the chloroplast division site in plants   总被引:15,自引:0,他引:15  
Among the events that accompanied the evolution of chloroplasts from their endosymbiotic ancestors was the host cell recruitment of the prokaryotic cell division protein FtsZ to function in chloroplast division. FtsZ, a structural homologue of tubulin, mediates cell division in bacteria by assembling into a ring at the midcell division site. In higher plants, two nuclear-encoded forms of FtsZ, FtsZ1 and FtsZ2, play essential and functionally distinct roles in chloroplast division, but whether this involves ring formation at the division site has not been determined previously. Using immunofluorescence microscopy and expression of green fluorescent protein fusion proteins in Arabidopsis thaliana, we demonstrate here that FtsZ1 and FtsZ2 localize to coaligned rings at the chloroplast midpoint. Antibodies specific for recognition of FtsZ1 or FtsZ2 proteins in Arabidopsis also recognize related polypeptides and detect midplastid rings in pea and tobacco, suggesting that midplastid ring formation by FtsZ1 and FtsZ2 is universal among flowering plants. Perturbation in the level of either protein in transgenic plants is accompanied by plastid division defects and assembly of FtsZ1 and FtsZ2 into filaments and filament networks not observed in wild-type, suggesting that previously described FtsZ-containing cytoskeletal-like networks in chloroplasts may be artifacts of FtsZ overexpression.  相似文献   

9.
Secondary xylem is composed of daughter cells produced by the vascular cambium in the stem. Cell proliferation of the secondary xylem is the result of long-range cell division in the vascular cambium. Most xylem cells have a thickened secondary cell wall, representing a large amount of biomass storage. Therefore, regulation of cell division in the vascular cambium and differentiation into secondary xylem is important for biomass production. Cell division is regulated by cell cycle regulators. In this study, we confirm that cell cycle regulators influence cell division in the vascular cambium in tobacco. We produced transgenic tobacco that expresses Arabidopsis thaliana cyclin D2;1 (AtcycD2;1) and AtE2Fa-DPa under the control of the CaMV35S promoter. Each gene is a positive regulator of the cell cycle, and is known to influence the transition from G1 phase to S phase. AtcycD2;1-overexpressing tobacco had more secondary xylem cells when compared with control plants. In order to evaluate cell division activity in the vascular cambium, we prepared a Populus trichocarpa cycB1;1 (PtcycB1;1) promoter containing a destruction box motif for ubiquitination and a β-glucuronidase-encoding gene (PtcycB1;1pro:GUS). In transgenic tobacco containing PtcycB1;1pro:GUS, GUS staining was specifically observed in meristem tissues, such as the root apical meristem and vascular cambium. In addition, mitosis-monitoring plants containing AtcycD2;1 had stronger GUS staining in the cambium when compared with control plants. Our results indicated that overexpression of AtcycD enhances cell division in the vascular cambium and increases secondary xylem differentiation in tobacco. Key message We succeeded in inducing cell proliferation of cambium and enlargement of secondary xylem region by AtcycD overexpression. We also evaluated mitotic activity in cambium using cyclin-GUS fusion protein from poplar.  相似文献   

10.
Potassium (K+) channels play multiple roles in higher plants, and have been characterized electrophysiologically in various subcellular membranes. The K+ channel AtKCO1 from Arabidopsis thaliana is the prototype of a new family of plant K+ channels. In a previous study the protein has been functionally characterized after heterologous expression in Baculovirus-infected insect cells. In order to obtain further information on the physiological function of AtKCO1, the gene expression pattern and subcellular localization of the protein in plants were investigated. The regulatory function of the 5' region of the AtKCO1 gene was examined in transgenic A. thaliana plants carrying beta-glucuronidase (GUS) fusion constructs. Our analysis demonstrates that the AtKCO1 promoter is active in various tissues and cell types, and the highest GUS activity could be detected in mitotically active tissues of the plant. Promoter activity was strongly dependent on the presence of a 5' leader intron. The same overall structure was identified in two genes encoding AtKCO1-like K+ channels from Solanum tuberosum (StKCO1alpha and StKCO1beta). To investigate the subcellular localization of AtKCO1, the channel protein, as well as a fusion protein of AtKCO1 with green fluorescence protein (GFP), were expressed in transgenic tobacco BY2 cells. In sucrose density gradients, both proteins co-fractionate with tonoplast markers (Nt-TIPa, vATPase). In fluorescence images from transgenic AtKCO1-GFP BY2 cells fluorescence was exclusively detected in the tonoplast. Thus AtKCO1 is the first cloned K+ channel demonstrated to be a vacuolar K+ channel.  相似文献   

11.
The division of plastids is critical for viability in photosynthetic eukaryotes, but the mechanisms associated with this process are still poorly understood. We previously identified a nuclear gene from Arabidopsis encoding a chloroplast-localized homolog of the bacterial cell division protein FtsZ, an essential cytoskeletal component of the prokaryotic cell division apparatus. Here, we report the identification of a second nuclear-encoded FtsZ-type protein from Arabidopsis that does not contain a chloroplast targeting sequence or other obvious sorting signals and is not imported into isolated chloroplasts, which strongly suggests that it is localized in the cytosol. We further demonstrate using antisense technology that inhibiting expression of either Arabidopsis FtsZ gene (AtFtsZ1-1 or AtFtsZ2-1) in transgenic plants reduces the number of chloroplasts in mature leaf cells from 100 to one, indicating that both genes are essential for division of higher plant chloroplasts but that each plays a distinct role in the process. Analysis of currently available plant FtsZ sequences further suggests that two functionally divergent FtsZ gene families encoding differentially localized products participate in chloroplast division. Our results provide evidence that both chloroplastic and cytosolic forms of FtsZ are involved in chloroplast division in higher plants and imply that important differences exist between chloroplasts and prokaryotes with regard to the roles played by FtsZ proteins in the division process.  相似文献   

12.
Lim HM  Cho JI  Lee S  Cho MH  Bhoo SH  An G  Hahn TR  Jeon JS 《Plant cell reports》2007,26(5):683-692
Arabidopsis harbors two alpha and two beta genes of pyrophosphate:fructose-6-phosphate 1-phosphotransferase (PFP). The spatial expression patterns of the two AtPFPalpha genes were analyzed using transgenic plants containing a promoter::ss-glucuronidase (GUS) fusion construct. Whereas the AtPFPalpha1 promoter was found to be ubiquitously active in all tissues, the AtPFPalpha2 promoter is preferentially expressed in specific heterotrophic regions of the Arabidopsis plant such as the trichomes of leaves, cotyledon veins, roots, and the stamen and gynoecium of the flowers. Serial deletion analysis of the AtPFPalpha2 promoter identified a key regulatory element from nucleotides -194 to -175, CGAAAAAGGTAAGGGTATAT, which we have termed PFPalpha2 and which is essential for AtPFPalpha2 gene expression. Using a GUS fusion construct driven by this 20-bp sequence in conjunction with a -46 CaMV35S minimal promoter, we also demonstrate that PFPalpha2 is sufficient for normal AtPFPalpha2 expression. Hence, this element can not only be used to isolate essential DNA-binding protein(s) that control the expression of the carbon metabolic enzyme AtPFPalpha2, but has also the potential to be utilized in the production of useful compounds in a specific organ such as the leaf trichomes.  相似文献   

13.
The Arabidopsis LSD1 and LOL1 proteins both contain three conserved zinc finger domains and have antagonistic effects on plant programmed cell death (PCD). In this study, a rice (Oryza sativa) functional homolog of LSD1, designated OsLSD1, was identified. The expression of OsLSD1 was light-induced or dark-suppressed. Overexpression of OsLSD1 driven by the cauliflower mosaic virus 35S promoter accelerated callus differentiation in transformed rice tissues and increased chlorophyll b content in transgenic rice plants. Antisense transgenic rice plants exhibited lesion mimic phenotype, increased expression of PR-1 mRNA, and an accelerated hypersensitive response when inoculated with avirulent isolates of blast fungus. Both sense and antisense transgenic rice plants conferred significantly enhanced resistance against a virulent isolate of blast fungus. Moreover, ectopic overexpression of OsLSD1 in transgenic tobacco (Nicotiana tabacum) enhanced the tolerance to fumonisins B1 (FB1), a PCD-eliciting toxin. OsLSD1 green fluorescent protein fusion protein was located in the nucleus of tobacco cells. Our results suggest that OsLSD1 plays a negative role in regulating plant PCD, whereas it plays a positive role in callus differentiation.  相似文献   

14.
For the effective recycling of nutrients, vascular plants transport pooled inorganic ions and metabolites through the sieve tube. A novel sulfate transporter gene, Sultr1;3, was identified as an essential member contributing to this process for redistribution of sulfur source in Arabidopsis. Sultr1;3 belonged to the family of high-affinity sulfate transporters, and was able to complement the yeast sulfate transporter mutant. The fusion protein of Sultr1;3 and green fluorescent protein was expressed by the Sultr1;3 promoter in transgenic plants, which revealed phloem-specific expression of Sultr1;3 in Arabidopsis. Sultr1;3-green fluorescent protein was found in the sieve element-companion cell complexes of the phloem in cotyledons and roots. Limitation of external sulfate caused accumulation of Sultr1;3 mRNA both in leaves and roots. Movement of (35)S-labeled sulfate from cotyledons to the sink organs was restricted in the T-DNA insertion mutant of Sultr1;3. These results provide evidence that Sultr1;3 transporter plays an important role in loading of sulfate to the sieve tube, initiating the source-to-sink translocation of sulfur nutrient in Arabidopsis.  相似文献   

15.
Chloroplast division comprises a sequence of events that facilitatesymmetric binary fission and that involve prokaryotic-like stromaldivision factors such as tubulin-like GTPase FtsZ and the divisionsite regulator MinD. In Arabidopsis, a nuclear-encoded prokaryoticMinE homolog, AtMinE1, has been characterized in terms of itseffects on a dividing or terminal chloroplast state in a limitedseries of leaf tissues. However, the relationship between AtMinE1expression and chloroplast phenotype remains to be fully elucidated.Here, we demonstrate that a T-DNA insertion mutation in AtMinE1results in a severe inhibition of chloroplast division, producingmotile dots and short filaments of FtsZ. In AtMinE1 sense (overexpressor)plants, dividing chloroplasts possess either single or multipleFtsZ rings located at random intervals and showing constrictiondepth, mainly along the chloroplast polarity axis. The AtMinE1sense plants displayed equivalent chloroplast phenotypes toarc11, a loss-of-function mutant of AtMinD1 which forms replicatingmini-chloroplasts. Furthermore, a certain population of FtsZrings formed within developing chloroplasts failed to initiateor progress the membrane constriction of chloroplasts and consequentiallyto complete chloroplast fission in both AtMinE1 sense and arc11/atminD1plants. Our present data thus demonstrate that the chloroplastdivision site placement involves a balance between the opposingactivities of AtMinE1 and AtMinD1, which acts to prevent FtsZring formation anywhere outside of the mid-chloroplast. In addition,the imbalance caused by an AtMinE1 dominance causes multiple,non-synchronous division events at the single chloroplast level,as well as division arrest, which becomes apparent as the chloroplastsmature, in spite of the presence of FtsZ rings.  相似文献   

16.
Interactor/inhibitor 1 of Cdc2 kinase (ICK1) from Arabidopsis thaliana is the first plant cyclin-dependent kinase (CDK) inhibitor, and overexpression of ICK1 inhibits CDK activity, cell division and plant growth in transgenic plants. In this study, ICK1 and deletion mutants were expressed either alone or as green fluorescent protein (GFP) fusion proteins in transgenic Arabidopsis plants. Deletion of the C-terminal 15 or 29 amino acids greatly reduced or completely abolished the effects of ICK1 on the transgenic plants, and recombinant proteins lacking the C-terminal residues lost the ability to bind to CDK complex and the kinase inhibition activity, demonstrating the role of the conserved C-terminal domain in in vivo kinase inhibition. In contrast, the mutant ICK1DeltaN108 with the N-terminal 108 residues deleted had much stronger effects on plants than the full-length ICK1. Analyses demonstrated that this effect was not because of an enhanced ability of ICK1DeltaN108 protein to inhibit CDK activity, but a result of a much higher level of ICK1DeltaN108 protein in the plants, indicating that the N-terminal domain contains a sequence or element increasing protein instability in vivo. Furthermore, GFP-ICK1 protein was restricted to the nuclei in roots of transgenic plants, even with the C-terminal or the N-terminal domain deleted, suggesting that a sequence in the central domain of ICK1 is responsible for nuclear localization. These results provide mechanistic understanding about the function and regulation of this cell cycle regulator in plants.  相似文献   

17.
Plant nuclear genomes encode chloroplast division proteins homologous to the eubacterial cell division protein FtsZ. In higher plants, FtsZ genes constitute a small gene family that consists of two subgroups, FtsZ1 and FtsZ2. It was previously hypothesized that members of one family (FtsZ1) targeted chloroplasts, while members of the other family (FtsZ2) localized in the cytoplasm. We determined the full-length cDNA sequences of two FtsZ2 genes from Arabidopsis thaliana (AtFtsZ2-1 and AtFtsZ2-2) and found that the genes encode polypeptides of 478 and 473 amino acids, respectively, and both contain N-terminal extensions beyond what have previously been predicted. The N-terminal regions of both AtFtsZ2-1 and AtFtsZ2-2 were expressed as green fluorescent protein (GFP) fusions under the cauliflower mosaic virus 35S promoter in bombarded tobacco cells. Confocal laser scanning microscopy revealed both fusions exclusively localized to chloroplasts, demonstrating that the N-terminal regions function as chloroplast-targeting signals in vivo. Thus, FtsZ2 proteins function within chloroplasts.  相似文献   

18.
维生素E是一类人体必需的脂溶性抗氧化剂, 具有重要的生理功能。2-甲基-6-叶绿基-1,4-苯醌甲基转移酶(MPBQ MT)是天然维生素E合成途径中的关键酶之一, 催化MPBQ甲基化, 生成DMPBQ。从拟南芥分离了MPBQ MT基因1018bp的启动子序列, 构建了含该启动子和GUS报告基因的植物表达载体, 通过农杆菌介导转化拟南芥, 获得了转基因植株。GUS组织化学染色结果表明, 在MPBQ MT启动子驱动下, 报告基因GUS在拟南芥的茎、叶、花萼、雄蕊、种荚均有表达, 且在茎、叶、种荚中表达量较高, 而在根、花瓣和种子中则没有观察到GUS基因的表达, 表明MPBQ MT基因可能仅在拟南芥幼嫩茎、叶、种荚等绿色组织中特异性高表达。  相似文献   

19.
20.
The type III effector DspA/E is an essential pathogenicity factor of the phytopathogenic bacterium Erwinia amylovora. We showed that DspA/E was required for transient bacterial growth in nonhost Arabidopsis thaliana leaves, as an E. amylovora dspA/E mutant was unable to grow. We expressed DspA/E in A. thaliana transgenic plants under the control of an oestradiol‐inducible promoter, and found that DspA/E expressed in planta restored the growth of a dspA/E mutant. DspA/E expression in these transgenic plants led to the modulation by at least two‐fold of the expression of 384 genes, mostly induced (324 genes). Both induced and repressed genes contained high proportions of defence genes. DspA/E expression ultimately resulted in plant cell death without requiring a functional salicylic acid signalling pathway. Analysis of A. thaliana transgenic seedlings expressing a green fluorescent protein (GFP):DspA/E fusion indicated that the fusion protein could only be detected in a few cells per seedling, suggesting the degradation or absence of accumulation of DspA/E in plant cells. Consistently, we found that DspA/E repressed plant protein synthesis when injected by E. amylovora or when expressed in transgenic plants. Thus, we conclude that DspA/E is toxic to A. thaliana: it promotes modifications, among which the repression of protein synthesis could be determinant in the facilitation of necrosis and bacterial growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号