首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plant seed oil bodies comprise a matrix of triacylglycerols surrounded by a monolayer of phospholipids embedded with abundant oleosins and some minor proteins. Three minor proteins, temporarily termed Sops 1-3, have been identified in sesame oil bodies. A cDNA sequence of Sop1 was obtained by PCR cloning using degenerate primers derived from two partial amino acid sequences, and subsequently confirmed via immunological recognition of its over-expressed protein in Escherichia coli. Alignment with four published homologous sequences suggests Sop1 as a putative calcium-binding protein. Immunological cross-recognition implies that this protein, tentatively named caleosin, exists in diverse seed oil bodies. Caleosin migrated faster in SDS-PAGE when incubated with Ca2+. A single copy of caleosin gene was found in sesame genome based on Southern hybridization. Northern hybridization revealed that both caleosin and oleosin genes were concurrently transcribed in maturing seeds where oil bodies are actively assembled. Hydropathy plot and secondary structure analysis suggest that caleosin comprises three structural domains, i.e., an N-terminal hydrophilic calcium-binding domain, a central hydrophobic anchoring domain, and a C-terminal hydrophilic phosphorylation domain. Compared with oleosin, a conserved proline knot-like motif is located in the central hydrophobic domain of caleosin and assumed to involve in protein assembly onto oil bodies.  相似文献   

2.
Oil bodies of sesame seeds comprise a triacylglycerol matrix, which is surrounded by a monolayer of phospholipids embedded with unique proteins, mainly structural proteins termed oleosins. Artificial oil bodies were successfully reconstituted with various compositions of triacylglycerols, phospholipids, and oil-body proteins. The sizes of reconstituted oil bodies displayed a normal distribution with an average size proportional to the ratio of triacylglycerols to oil-body proteins. Both thermostability and structural stability of reconstituted oil bodies decreased as their sizes increased, and vice versa. Proteinase K digestion indicated that oleosins anchored both native and reconstituted oil bodies via their central hydrophobic domains. The stability of reconstituted oil bodies, as well as the purified ones from sesame seeds, could be substantially enhanced after their surface proteins were cross-linked by glutaraldehyde or genipin.  相似文献   

3.
Oleosins are structural proteins sheltering the oil bodies of plant seeds. Two isoform classes termed H- and L-oleosin are present in diverse angiosperms. Two H-oleosins and one L-oleosin were identified in sesame oil bodies from the protein sequences deduced from their corresponding cDNA clones. Sequence analysis showed that the main difference between the H- and L-isoforms is an insertion of 18 residues in the C-terminal domain of H-oleosins. H-oleosin, presumably derived from L-oleosin, was duplicated independently in several species. All known oleosins can be classified as one of these two isoforms. Single copy or a low copy number was detected by Southern hybridization for each of the three oleosin genes in the sesame genome. Northern hybridization showed that the three oleosin genes were transcribed in maturing seeds where oil bodies are being assembled. Artificial oil bodies were reconstituted with triacylglycerol, phospholipid, and sesame oleosin isoforms. The results indicated that reconstituted oil bodies could be stabilized by both isoforms, but L-oleosin gave slightly more structural stability than H-oleosin.  相似文献   

4.
Two distinct steroleosins are present in seed oil bodies.   总被引:4,自引:0,他引:4  
In addition to oleosin isoforms, three minor proteins, Sop1, 2 and 3 are present in sesame oil bodies. Genes encoding Sop1 and Sop2, named caleosin and steroleosin for their calcium and sterol-binding capacity, respectively, have been cloned recently. Blast sequence analysis of the first 32 N-terminal residues revealed that Sop3 was presumably a steroleosin-like protein homologous to Sop2. A putative cDNA clone of Sop3 was obtained by PCR, and subsequently confirmed by immunological recognition with antibodies against its over-expressed protein in Escherichia coli. Although Sop2 and Sop3, tentatively named steroleosin-A and -B, were found homologous, they could not be cross-recognized immunologically. Sequence comparison showed that these two steroleosins possessed a conserved NADP+ binding subdomain but a diverse sterol-binding subdomain of different size. Both steroleosins were progressively accumulated in maturing seeds but with different cumulating patterns. Dehydrogenase activity detected in their expressed proteins indicated that steroleosin-B might comparably possess a broader sterol selectivity and higher NADP+ specificity than steroleosin-A. Immunological cross-recognition implies that steroleosin-B is present in seed oil bodies of diverse species. A structural model of an oil-body was drawn with all its known essential constituents, and secondary structure organizations of the three classes of oil-body proteins were compared.  相似文献   

5.
Steroleosin, a sterol-binding dehydrogenase in seed oil bodies   总被引:8,自引:0,他引:8  
Lin LJ  Tai SS  Peng CC  Tzen JT 《Plant physiology》2002,128(4):1200-1211
Besides abundant oleosin, three minor proteins, Sop 1, 2, and 3, are present in sesame (Sesamum indicum) oil bodies. The gene encoding Sop1, named caleosin for its calcium-binding capacity, has recently been cloned. In this study, Sop2 gene was obtained by immunoscreening, and it was subsequently confirmed by amino acid partial sequencing and immunological recognition of its overexpressed protein in Escherichia coli. Immunological cross recognition implies that Sop2 exists in seed oil bodies of diverse species. Along with oleosin and caleosin genes, Sop2 gene was transcribed in maturing seeds where oil bodies are actively assembled. Sequence analysis reveals that Sop2, tentatively named steroleosin, possesses a hydrophobic anchoring segment preceding a soluble domain homologous to sterol-binding dehydrogenases/reductases involved in signal transduction in diverse organisms. Three-dimensional structure of the soluble domain was predicted via homology modeling. The structure forms a seven-stranded parallel beta-sheet with the active site, S-(12X)-Y-(3X)-K, between an NADPH and a sterol-binding subdomain. Sterol-coupling dehydrogenase activity was demonstrated in the overexpressed soluble domain of steroleosin as well as in purified oil bodies. Southern hybridization suggests that one steroleosin gene and certain homologous genes may be present in the sesame genome. Comparably, eight hypothetical steroleosin-like proteins are present in the Arabidopsis genome with a conserved NADPH-binding subdomain, but a divergent sterol-binding subdomain. It is indicated that steroleosin-like proteins may represent a class of dehydrogenases/reductases that are involved in plant signal transduction regulated by various sterols.  相似文献   

6.
In order to clarify further the physiological role of oleosins in seed development, we characterized the oil-body proteins of several oilseeds exhibiting a range of desiccation sensitivities from the recalcitrant (Theobroma cacao L., Quercus rubra L.), intermediate (Coffea arabica L., Azadirachta indica A. Juss.) and orthodox categories (Sterculia setigera Del., Brassica napus L.). The estimated ratio of putative oleosins to lipid in oil bodies of Q. rubra was less than 5% of the equivalent values for rapeseed oil bodies. No oleosin was detected in T. cacao oil bodies. In A. indica cotyledons, oil bodies contained very low amounts of putative oleosins. Oil bodies both from C. arabica and S. setigera exhibited a similar ratio of putative oleosins to lipid as found in rapeseed. In C. arabica seeds, the central domain of an oleosin was partially sequenced. Using a low temperature field-emission scanning electron microscope, the structural stability of oil bodies was investigated in seeds after drying, storage in cold conditions and rehydration. Despite the absence or relative dearth of oleosins in desiccation-sensitive, recalcitrant oilseeds, oil bodies remained relatively stable after slow or fast drying. In A. indica seeds exposed to a lethal cold storage treatment, no significant change in oil-body sizes was observed. In contrast, during imbibition of artificially dried seeds containing low amounts of putative oleosins, the oil bodies fused to form large droplets, resulting in the loss of cellular integrity. No damage to the oil bodies occurred in imbibed seeds of Q. rubra, C. arabica and S. setigera. Thus the rehydration phase appears to be detrimental to the stability of oil bodies when these are present in large amounts and are lacking oleosins. We therefore suggest that one of the functions of oleosins in oilseed development may be to stabilize oil bodies during seed imbibition prior to germination. Received: 22 April 1997 / Accepted: 5 June 1997  相似文献   

7.
In seeds, the subcellular storage oil bodies have a matrix of oils (triacylglycerols) surrounded by a layer of phospholipids embedded with abundant structural proteins called oleosins. We used two maize (Zea mays L.) strains having diverse kernel (seed) oil contents to study the effects of varying the oil and oleosin contents on the structure of the oil bodies. Illinois High Oils (IHO, 15% w/w oils) and Illinois Low Oils (ILO, 0.5%) maize kernels were the products of breeding for diverse oil contents for about 100 generations. In both maize strains, although the genes for oil synthesis had apparently been modified drastically, the genes encoding oleosins appeared to be unaltered, as revealed by Southern blot analyses of the three oleosin genes and sodium dodecyl sulfate-polyacrylamide gel electrophoresis with immunoblotting of the oleosins. In addition, both strains contained the same three oleosin isoforms of a defined proportion, and both accumulated oils and oleosins coordinately. Oleosins in both strains were restricted to the oil bodies, as shown by analyses of the various subcellular fractions separated by sucrosedensity-gradient centrifugation. Electron microscopy of the embryos and the isolated organelles revealed that the oil bodies in IHO were larger and had a spherical shape, whereas those in ILO were smaller and had irregular shapes. We conclude that in seeds, oleosin genes are expressed independent of the oil contents, and the size and shape of the oil bodies are dictated by the ratio of oils to oleosins synthesized during seed maturation. The extensive breeding for diverse oil contents has not altered the apparent mechanism of oil-body synthesis and the occurrence of hetero-dimer or -multimer of oleosin isoforms on the oil bodies.Abbreviations IHO Illinois High Oils - ILO Illinois Low Oils This work was supported by a USDA NRICGP grant. We thank Dr. J.W. Dudley of the University of Illinois for the IHO and ILO maize kernels, and Dr. W. Thomson for discussion on the stereological method.  相似文献   

8.
Surface structure and properties of plant seed oil bodies   总被引:25,自引:0,他引:25       下载免费PDF全文
Storage triacylglycerols (TAG) in plant seeds are present in small discrete intracellular organelles called oil bodies. An oil body has a matrix of TAG, which is surrounded by phospholipids (PL) and alkaline proteins, termed oleosins. Oil bodies isolated from mature maize (Zea mays) embryos maintained their discreteness, but coalesced after treatment with trypsin but not with phospholipase A2 or C. Phospholipase A2 or C exerted its activity on oil bodies only after the exposed portion of oleosins had been removed by trypsin. Attempts were made to reconstitute oil bodies from their constituents. TAG, either extracted from oil bodies or of a 1:2 molar mixture of triolein and trilinolein, in a dilute buffer were sonicated to produce droplets of sizes similar to those of oil bodies; these droplets were unstable and coalesced rapidly. Addition of oil body PL or dioleoyl phosphatidylcholine, with or without charged stearylamine/stearic acid, or oleosins, to the medium before sonication provided limited stabilization effects to the TAG droplets. High stability was achieved only when the TAG were sonicated with both oil body PL (or dioleoyl phosphatidylcholine) and oleosins of proportions similar to or higher than those in the native oil bodies. These stabilized droplets were similar to the isolated oil bodies in chemical properties, and can be considered as reconstituted oil bodies. Reconstituted oil bodies were also produced from TAG of a 1:2 molar mixture of triolein and trilinolein, dioleoyl phosphatidylcholine, and oleosins from rice (Oryza sativa), wheat (Triticum aestivum), rapeseed (Brassica napus), soybean (Glycine max), or jojoba (Simmondsia chinensis). It is concluded that both oleosins and PL are required to stabilize the oil bodies and that oleosins prevent oil bodies from coalescing by providing steric hindrance. A structural model of an oil body is presented. The current findings on seed oil bodies could be extended to the intracellular storage lipid particles present in diverse organisms.  相似文献   

9.
10.
Oil bodies of plant seeds contain a matrix of triacylglycerolssurrounded by a monolayer of phospholipids embedded with alkalineproteins termed oleosins. Triacylglycerols and two oleosin isoformsof 17 and 15 kDa were exclusively accumulated in oil bodiesof developing sesame seeds. During seed development, 17 kDaoleosin emerged later than 15 kDa oleosin, but it was subsequentlyfound to be the most abundant protein in mature oil bodies.Phosphotidylcholine, the major phospholipid in oil bodies, wasamassed in microsomes during the formation of oil bodies. Priorto the formation of these oil bodies, a few oil droplets ofsmaller size were observed both in vivo and in vitro. Theseoil droplets were unstable, presumably due to the lack of sterichindrance shielded by the oleosins. The temporary maintenanceof these droplets as small entities seemed to be achieved byphospholipids, presumably wrapped in ER. Oil bodies assembledin late developing stages possessed a higher ratio of oleosin17 kDa over oleosin 15 kDa and were utilized earlier duringgermination. It seems that the proportion of oleosin 17 kDaon the surface of oil bodies is related to the priority of theirutilization. (Received July 16, 1997; Accepted October 27, 1997)  相似文献   

11.
Oil bodies of plant seeds contain a triacylglycerol matrix surrounded by a monolayer of phospholipids embedded with alkaline proteins called oleosins. Oil bodies isolated from maize (Zea mays L.) in a medium of pH 7.2 maintained their entities but aggregated when the pH was lowered to 6.8 and 6.2. Aggregation did not lead to coalescence and was reversible with an elevation of the pH. Further decrease of the pH from 6.2 to 5.0 retarded the aggregation. Aggregation at pH 7.2 was induced with 2 mM CaCl2 or MgCl2 but not with NaCl. Aggregation at pH 6.8 was prevented by 10 microM sodium dodecyl sulfate but not with NaCl. We conclude that oil bodies have a negatively charged surface at pH 7.2 and an isoelectric point of about 6.0. This conclusion is supported by isoelectrofocusing results and by theoretical calculation of the positive charges in the oleosins and the negative charges in phosphatidylserine, phosphatidylinositol, and free fatty acids. Apparently, lowering of the pH from 7.2 to 6.2 protonates the histidine residues in the oleosins, and neutralizes the oil bodies. Further decrease of the pH to 5.0 likely protonates the free fatty acids and produces positively charged organelles. Similar charge properties were observed in the oil bodies isolated from rape, flax, and sesame seeds. An analysis of the oleosin secondary structures reveals an N-terminal amphipathic domain, a central hydrophobic anti-parallel beta-strand domain (not found in any other known protein), and a C-terminal amphipathic alpha-helical domain. In the two amphipathic domains, the positively charged residues are orientated toward the interior facing the negative charged lipids, whereas the negatively charged residues are exposed to the exterior. The negatively charged surface is a major factor in maintaining the oil bodies as stable individual entities.  相似文献   

12.
mRNAs encoding putative oleosins have been detected in the tapetum of developing anthers in Brassica and Arabidopsis, but the authentic proteins have not been previously documented. Antibodies against a synthetic 15-residue polypeptide that represents a portion of the putative tapetum oleosins encoded by two cloned Brassica napus genes were raised. Using these antibodies for immunoblotting after SDS-PAGE of the sporophytic extracts of B. napus developing anthers, two oleosins of ~ 48 and 45 kDa were detected. These two oleosins were judged to be the putative oleosins encoded by cloned Brassica genes because of their identical N-terminal sequences. The two oleosins were present in the anthers only during the developmental stage when the tapetum cells were packed with organelles. A fraction of low-density organelles was isolated from the developing anthers by flotation centrifugation. The fraction contained plastoglobule-filled plastids and lipid-containing particles. The structures of these two isolated organelles were similar to those in situ in the tapetum cells. Of subcellular fractions of the anther homogenate, the two oleosins were present exclusively in the low-density organelle fraction. They were absent in the surface fractions of the developing microspores and the mature pollen, although fragmented oleosin molecules were earlier reported to be present on the pollen. By immunocytochemistry, immunogold particles were found largely on the periphery of the plastoglobuli inside the plastids in the tapetum cells. The antibodies also detected oleosins on the surface of storage oil bodies inside the maturing microspores. Apparently, the gametophytic microspore oil-body oleosins share common epitopes at the generally non-conserved C-terminal domain with the sporophytic tapetum oleosins.  相似文献   

13.
Structure and function of seed lipid-body-associated proteins   总被引:1,自引:0,他引:1  
Many organisms among the different kingdoms store reserve lipids in discrete subcellular organelles called lipid bodies. In plants, lipid bodies can be found in seeds but also in fruits (olives, ...), and in leaves (plastoglobules). These organelles protect plant lipid reserves against oxidation and hydrolysis until seed germination and seedling establishment. They can be stabilized by specific structural proteins, namely the oleosins and caleosins, which act as natural emulsifiers. Considering the putative role of some of them in controlling the size of lipid bodies, these proteins may constitute important targets for seed improvement both in term of oil seed yield and optimization of technological processes for extraction of oil and storage proteins. We present here an overview of the data on the structure of these proteins, which are scarce, and sometimes contradictory and on their functional roles.  相似文献   

14.
Hua Ling 《Biologia》2007,62(2):119-123
For the production of recombinant proteins, product purification is potentially difficult and expensive. Plant oleosins are capable of anchoring onto the surface of natural or artificial oil bodies. The oleosin fusion expression systems allow products to be extracted with oil bodies. In vivo, oleosin fusions are produced and directly localized to natural oil bodies in transgenic plant seeds. Via the oleosin fusion technology the thrombin inhibitor hirudin has been successfully produced and commercially used in Canada. In vitro, artificial oil bodies have been used as “carriers” for the recombinant proteins expressed in transformed microbes. In this article, plant oleosins, strategies and limitations of the oleosin fusion expression systems are summarized, alongside with progress and applications. The oleosin fusion expression systems reveal an available way to produce recombinant biopharmaceuticals at large scale.  相似文献   

15.
Till now, only scattered data are available in the literature, which describes the protein content of plant oil bodies. Especially, the proteins closely associated with the model plant Arabidopsis thaliana oil bodies have never been previously purified and characterized. Oil bodies have been purified using flotation techniques, combined with incubations under high salt concentration, in the presence of detergents and urea in order to remove non-specifically trapped proteins. The identity and integrity of the oil bodies have been characterized. Oil bodies exhibited hydrodynamic diameters close to 2.6 μm, and a ratio fatty acid-protein content near 20. The proteins composing these organelles were extracted, separated by SDS-PAGE, digested by trypsin, and their peptides were subsequently analyzed by nano-chromatography–mass spectrometry (nano-LC–MS/MS). This led to the identification of a limited number of proteins: four different oleosins, ATS1, a protein homologous to calcium binding protein, a 11-β-hydroxysteroid dehydrogenase-like protein, a probable aquaporin and a glycosylphosphatidylinositol-anchored protein with no known function. The two last proteins were till now never identified in plant oil bodies. Structural proteins (oleosins) represented up to 79% of oil body proteins and the 18.5 kDa oleosin was the most abundant among them.  相似文献   

16.
Two genomic clones, encoding isoforms A and B of the 24 kDa soybean oleosin and containing 5 kbp and 1 kbp, respectively, of promoter sequence, were inserted separately into rapeseed plants. T2 seeds from five independent transgenic lines, three expressing isoform A and two expressing isoform B, each containing one or two copies of the transgene, were analysed in detail. In all five lines, the soybean transgenes exhibited the same patterns of mRNA and protein accumulation as the resident rapeseed oleosins, i.e. their expression was absolutely seed-specific and peaked at the mid-late stages of cotyledon development. The 24 kDa soybean oleosin was targeted to and stably integrated into oil bodies, despite the absence of a soybean partner isoform. The soybean protein accumulated in young embryos mainly as a 23 kDa polypeptide, whereas a 24 kDa protein predominated later in development. The ratio of rapeseed:soybean oleosin in the transgenic plants was about 5:1 to 6:1, as determined by SDS-PAGE and densitometry. Accumulation of these relatively high levels of soybean oleosin protein did not affect the amount of endogenous rapeseed oleosin. Immunoblotting studies showed that about 95% of the recombinant soybean 24 kDa oleosin (and the endogenous 19 kDa rapeseed oleosin) was targeted to oil bodies, with the remainder associated with the microsomal fraction. Sucrose density-gradient centrifugation showed that the oleosins were associated with a membrane fraction of buoyant density 1.10–1.14 g ml?1, which partially overlapped with several endoplasmic reticulum (ER) markers. Unlike oleosins associated with oil bodies, none of the membrane-associated oleosins could be immunoprecipitated in the presence of protein A-Sepharose, indicating a possible conformational difference between the two pools of oleosin. Complementary electron microscopy-immunocytochemical studies of transgenic rapeseed revealed that all oil bodies examined could be labelled with both the soybean or rapeseed anti-oleosin antibodies, indicating that each oil body contained a mixed population of soybean and rapeseed oleosins. A small but significant proportion of both soybean and rapeseed oleosins was located on ER membranes in the vicinity of oil bodies, but none were detected on the bulk ER cisternae. This is the first report of apparent targeting of oleosins via ER to oil bodies in vivo and of possible associated conformational/ processing changes in the protein. Although oil-body formation per se can occur independently of oleosins, it is proposed that the relative net amounts of oleosin and oil accumulated during the course of seed development are a major determinant of oil-body size in desiccation-tolerant seeds.  相似文献   

17.
Oleosins, which are structural proteins on the surface of intracellular oil bodies, have been found in the sporophytic seeds of angiosperms. Here, we report an oleosin from the female gametophyte of gymnosperm Pinus ponderosa Laws, seed and another oleosin from the male gametophyte of Brassica napus L. With the pine seed gametophyte, we identified two putative oleosins of 15 and 10 kDa, which are similar to the oleosins in angiosperm seeds in terms of their presence in the oil bodies in massive quantity. The complete sequence of the cDNA encoding the gametophytic 15-kDa oleosin was obtained, and it has a predicted amino-acid sequence similar to those of oleosins in angiosperm sporophytic seeds. A Brassica napus pollen cDNA sequence, which was reported earlier, would encode an amino-acid sequence somewhat similar to those of seed oleosins. We tested if the dissimilarity signifies a substantially different oleosin in the Brassica male gametophyte or an analytic error. By direct sequencing of a polymerase chain reaction (PCR)-amplified fragment of genomic DNA, we obtained evidence showing that this reported dissimilarity is likely to have arisen from a sequencing error. Our predicted sequence of the Brassica pollen oleosin has all the structural characteristics of seed oleosins. A phylogenic tree of 20 oleosins, including those from sporophytic and gametophytic tissues of angiosperm and gymnosperm, was constructed based on their amino-acid sequences. We discuss the evolution of oleosins, and conclude that oleosins are ancient proteins with multiple lineages whose root cannot be determined at this time.Abbreviations PCR polymerase chain reaction - TAG triacylglycerols This work was supported by USDA grant 91-01439 (AHCH). We thank Dr. Mike Lassner of Calgene, Inc., (Davis, Calif., USA) for providing us with the unpublished jojoba oleosin amino acid sequence.  相似文献   

18.
Lipids,Proteins, and Structure of Seed Oil Bodies from Diverse Species   总被引:31,自引:3,他引:28       下载免费PDF全文
Oil bodies isolated from the mature seeds of rape (Brassica napus L.), mustard (Brassica juncea L.), cotton (Gossypium hirsutum L.), flax (Linus usitatis simum), maize (Zea mays L.), peanut (Arachis hypogaea L.), and sesame (Sesamum indicum L.) had average diameters that were different but within a narrow range (0.6-2.0 [mu]m), as measured from electron micrographs of serial sections. Their contents of triacylglycerols (TAG), phospholipids, and proteins (oleosins) were correlated with their sizes. The correlation fits a formula that describes a spherical particle surrounded by a shell of a monolayer of phospholipids embedded with oleosins. Oil bodies from the various species contained substantial amounts of the uncommon negatively charged phosphatidylserine and phosphatidylinositol, as well as small amounts of free fatty acids. These acidic lipids are assumed to interact with the basic amino acid residues of the oleosins on the surface of the phospholipid layer. Isoelectrofocusing revealed that the oil bodies from the various species had an isoelectric point of 5.7 to 6.6 and thus possessed a negatively charged surface at neutral pH. We conclude that seed oil bodies from diverse species are very similar in structure. In rapeseed during maturation, TAG and oleosins accumulated concomitantly. TAG-synthesizing acyltransferase activities appeared at an earlier stage and peaked during the active period of TAG accumulation. The concomitant accumulation of TAG and oleosins is similar to that reported earlier for maize and soybean, and the finding has an implication for the mode of oil body synthesis during seed maturation.  相似文献   

19.
Oil bodies in seeds of higher plants are surrounded with oleosins. Here we demonstrate a novel role for oleosins in protecting oilseeds against freeze/thaw-induced damage of their cells. We detected four oleosins in oil bodies isolated from seeds of Arabidopsis thaliana , and designated them OLE1, OLE2, OLE3 and OLE4 in decreasing order of abundance in the seeds. For reverse genetics, we isolated oleosin-deficient mutants ( ole1 , ole2 , ole3 and ole4 ) and generated three double mutants ( ole1 ole2 , ole1 ole3 and ole2 ole3 ). Electron microscopy showed an inverse relationship between oil body sizes and total oleosin levels. The double mutant ole1 ole2 , which had the lowest levels of oleosins, had irregular enlarged oil-containing structures throughout the seed cells. Germination rates were positively associated with oleosin levels, suggesting that defects in germination are related to the expansion of oil bodies due to oleosin deficiency. We found that freezing followed by imbibition at 4°C abolished seed germination of single mutants ( ole1 , ole2 and ole3 ), which germinated normally without freezing treatment. The treatment accelerated the fusion of oil bodies and the abnormal-positioning and deformation of nuclei in ole1 seeds, which caused seed mortality. In contrast, ole1 seeds that had undergone freezing treatment germinated normally when incubated at 22°C instead of 4°C, because degradation of oils abolished the acceleration of fusion of oil bodies during imbibition. Taken together, our findings suggest that oleosins increase the viability of over-wintering oilseeds by preventing abnormal fusion of oil bodies during imbibition in the spring.  相似文献   

20.

Objective

To investigate the oil body protein and function in seeds of mature seagrass, Thalassia hemprichii.

Results

Seeds of mature seagrass T. hemprichii when stained with a fluorescent probe BODIPY showed the presence of oil bodies in intracellular cells. Triacylglycerol was the major lipid class in the seeds. Protein extracted from seagrass seeds was subjected to immunological cross-recognition with land plant seed oil body proteins, such as oleosin and caleosin, resulting in no cross-reactivity. An oleosin-like gene was found in seagrass seeds. Next generation sequencing and sequence alignment indicated that the deduced seagrass seed oleosin-like protein has a central hydrophobic domain responsible for their anchoring onto the surface of oil bodies. Phylogenetic analysis showed that the oleosin-like protein was evolutionarily closer to pollen oleosin than to seed oleosins.

Conclusion

Oil body protein found in seagrass seeds represent a distinct class of land seed oil body proteins.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号