首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper presents results of field and laboratory work on one component of population structure ofIridaea splendens (Setchellet Gardner) Papenfuss (Gigartinaceae, Rhodophyta), the seasonal change in abundance of the gametophyte life-history stage. Investigations of this genus by others (using a variety of sampling and identification techniques) have shown a seasonal gametophyte dominance, sporophyte dominance, or some combination of these two. Gametophyte stages ofIridaea splendens produce kappa carrageenan and tetrasporophyte stages lambda carrageenan; a chemical colorimetric test using resorcinol can be used to identify these stages regardless of the presence of reproductive structures. In this paper we report on the proportion of gametophytes determined both by this chemical test and by the presence of reproductive structures, and on one possible determinant of the seasonal change in dominance. Analysis of field samples using the resorcinol test showed that from June–August the gametophyte stage predominates and from December–February the tetrasporaphyte stage is most common, both in reproductive and non-reproductive thalli (the latter tested as three size classes). Examination of reproductive structures gave similar results. One factor suggested in the literatures as a possible determinant of the haploid/diploid ratio is apomeiosis (in the formation of the tetraspores); our results show this to be unimportant in the Vancouver Harbor populations.Presented at the XIIIth International Seaweed Symposium, University of British Columbia, Vancouver, Canada, August 1989.  相似文献   

2.
The Gigartinaceae are economically important because the carrageenans in this family are used for a variety of purposes including food stabilizers, food substitutes, pharmaceutical applications and cosmetics. The resorcinol method takes advantage of the different carrageenans found in life history phases in this family to identify nonreproductive phases, and consequently, a better understanding of the biology of this economically important family is possible. This study investigates sources of variability that could affect the accuracy of the resorcinol method in identifying phases within the Gigartinaceae. Vegetative disks of Iridaea splendens from different areas of the blade and disks containing reproductive structures all reacted consistently to the resorcinol reagent. The minimum size and testing conditions required to reliably identify phases at the germling stage of I. splendens were determined. Phases of I. splendens cannot be identified if blades are stored in 3% formaldehyde in seawater. Phases of I. splendens, I. lineare, I. heterocarpa, Rhodoglossum californicum and R. affine can be identified reliably at different times of the year. Manipulations of the resorcinol method improved its accuracy in identifying phases of Iridaea cornucopiae and Gigartina exasperata but the high percent of G. exasperata misidentified demonstrates that it cannot be assumed that the current resorcinol method works for all taxa in the Gigartinaceae.  相似文献   

3.
The present study firstly reports the cytological and molecular marker assisted differentiation of isomorphic population of Gracilaria corticata (J. Agardh) with inter and intra-phasic genetic diversity analysis using ISSR markers. The genetic diversity of inbreeding population of G. corticata as determined in terms of percentage of polymorphic loci (PPL), average heterozygosity (He) and Shannon’s Weaver index (I) were 59.80, 0.59 and 1.21, respectively. The inter-phasic pair-wise average polymorphism were found to be 31.6% between male and female, 24.0% in male and tetrasporophyte and 25.3% in female and tetrasporophyte. The intra-phasic average polymorphisms were calculated as a maximum of 5.5% between females, 4.2% between males and the lowest 2.4% between tetrasporophytes. The primer 10 generated a marker of 800 bp specific to male and 650 bp to female gametophyte, while the primer 17 generated a marker of 2,500 bp specific to tetrasporophyte. Both the UPGMA based dendrogram and PCA analysis clustered all the three life phases differentially as distinct identity. Cytological analysis by chromosome count revealed 24 chromosomes in both haploid male and female gametophytes (N) and 48 for diploid (2 N) tetrasporophyte further confirming their genetic distinctness. The life phase specific markers reported in this study could be of help in breeding programmes where differentiation of life phases at the early developmental stages is crucial.  相似文献   

4.
Kappaphycus alvarezii is a red alga that is commercially important as a source of carrageenan. Since K. alvarezii presents large phenotypic plasticity and rarely develops reproductive structures in culture, identification of gametophytic and tetrasporophytic phases in cultivation systems are difficult. The aim of this study was to determine the ploidy of three K. alvarezii strains previously identified as brown “tetrasporophyte”, brown “gametophyte” and “Edison de Paula” (EP). Nuclei from these strains were stained with DAPI, and analyzed using confocal fluorescence microscopy and ImageJ software. The brown “tetrasporophyte” had the highest nuclear fluorescence intensity, consistent with a diploid tetrasporophyte (2N). The brown “gametophyte” and “EP” strains had nuclear fluorescence intensities of 55.78% and 57.10% in relation to the tetrasporophyte, respectively, consistent with haploid gametophytes (N). The present study demonstrated that this technique can be used as a rapid and effective tool to distinguish between haploid (gametophytic) and diploid (tetrasporophytic) plants of K. alvarezii, in addition to help identify new strains developed through alterations of ploidy level.  相似文献   

5.
Mazzaella laminarioides has consistently been reported as a typical coalescent/clump species with a triphasic life history of the Polysiphonia-type in which the haploid gametophyte is the predominant phase with respect to the diploid sporophyte. Preliminary observations of intertidal populations revealed that, in some instances, cystocarpic and tetrasporic fronds emerged from the same clump (G-T clumps), implying a coalescent process of haploid and diploid thalli by fusion of their corresponding adjacent basal holdfasts. Population surveys at three sites in Coliumo Bay, central Chile, were carried out to characterize frond demography as well as to asses the frequency of gametophyte-tetrasporophyte (G-T) coalescence. Visual and resorcinol methods were employed to determine the phases of the fronds collected over central transects of 15 randomly sampled clumps. Coalescence of G-T clumps was infrequent, with gametophytes dominating over tetrasporophyte thalli.  相似文献   

6.
Features of an intertidal population of Chondracanthus teedei var. lusitanicus, which occurs in sandy basins on rocky shores of part of the Portuguese coast (Buarcos, Figueira da Foz), were studied over one year. Biomass and plant size showed a small increase in early spring (April), a marked increase in early summer (June/July) and were at a minimum in late summer. There was generally more tetrasporophytes (4–32.5%) than female gametophytes (3–29%), which contrasts with other geographical regions where C. teedei populations have been studied, such as Brazil and France. However, non-fructified thalli predominated throughout the year. Phycocolloid extracts were compared for the various stages using spectroscopic methods (FTIR, FT-Raman, 1H- and 13C-NMR). These showed a hybrid carrageenan belonging to the lambda family in the tetrasporophyte and a hybrid kappa-iota-mu-nu carrageenan in the female gametophyte and non-fructified thalli. The average phycocolloid content was 34.9% dry weight, with a maximum of 43.6% in July. The combination of high available biomass and phycocolloid content makes this species a potentially important source of kappa/iota hybrid carrageenan in Portugal additional to the traditionally harvested carrageenophytes.  相似文献   

7.
Halosaccion americanum, a member of Palmariaceae, was grown in culture from spores and the life history was critically examined by the use of scanning EM and light microscopy. A mature tetrasporangium of H. americanum produces four spores that germinate to form two male and two female gametophytes. The male gametophytes grow to maturity in approximately eight months and macroscopically resemble the tetrasporophyte. Following the first division of the tetraspore, the two-celled female gametophyte consists of a vegetative cell and a carpogonium with trichogynes. Fertilization is accomplished by spermatia from male plants of the preceding generation, as male plants of the same season are immature. Spermatia are formed in a continuous layer over the surface of the mature male gametophytes and, when released, are entrained in long strands of mucous. Spermatia adhere to and fuse with trichogynes and, nuclear fusions presumably follow. The carposporophyte is absent; the new tetrasporophyte develops directly from the fertilized carpogonium. Growth of the sporophyte eventually obliterates the female gametophyte, and development into a mature tetrasporophyte proceeds over a period of approximately eight months. The development of H. americanum, with its extremely abbreviated female gametophyte stage and direct development of the tetrasporophyte from the zygote, indicates that this rhodophyte has the same life history as reported for other members of the Palmariales.  相似文献   

8.
We describe the abundance, including spatial and temporal variability, of phases of the isomorphic Chondrus verrucosus Mikami from Japan. Chondrus verrucosus occurred in a dense (~90% cover) and temporally stable bed on a small, isolated rocky outcrop (Oyakoiwa) in Shizuoka Prefecture. Small vegetative fronds were always much more abundant than large vegetative and fertile fronds over the spring to late summer periods in 1999 and 2000. Over the same period, fertile carposporophytic fronds were generally more abundant than fertile tetrasporophytic fronds, and fertile male fronds appeared infrequently at low densities. Using the resorcinol‐acetal test, we determined the proportion of gametophytes and tetrasporophytes in three populations of C. verrucosus: Oyakoiwa and Noroshi (Shizuoka) in the summers of 1999 and 2000 and Kamehana Point (Miyagi) in autumn 2000. All populations had a significantly higher proportion of gametophytes than tetrasporophytes in both years, although gametophytic proportions were lower at Noroshi (~70%) than at Oyakoiwa (~80%) and Kamehana Point (~97%). However, examination of all isolated individuals sampled on Noroshi showed equal proportions of each phase in 1999, but gametophyte dominance (74%) in 2000. Differences in dispersal and spore production between phases are discussed as mechanisms potentially contributing to variation in gametophyte dominance.  相似文献   

9.
Physiological differentiation of the heteromorphic life-history phases of the red alga Mastocarpus papillatus (C. Agardh) Kützing was assessed. Photosynthetic responses to light and temperature of the erect, foliose gametophyte were compared to those of the crustose tetrasporophyte. Plants of both phases were collected from four locations on the Pacific coast of Baja California, Mexico, and California, USA, between 32–4l° N latitude. Within each location, the chlorophyll-specific, light-saturated photosynthetic rates of gametophytes were generally five times greater than those of tetrasporophytes. Initial slopes of photosynthesis: irradiance curves were greater for gametophytes than for tetrasporophytes. The crust and the blade from each location were similar with respect to dark respiration rates. For tetrasporophytes from all locations, the photosynthetic temperature optima were between 12–15° C. The photosynthetic temperature optima for gametophytes ranged from 15–17° C for plants from Trinidad Head (41° N) to 22–25° C for plants from Punta Descanso (32° N). Both gametophytes and tetrasporophytes from the northernmost location had significantly higher photosynthetic rates than the same phase from the other three locations. The photosynthetic responses to light support models for the life history in which life history phases have different ecological roles. The gametophyte, thought to be specialized for rapid growth and competition, may allocate more resources to photosynthetic machinery, hence the higher maximum photosynthetic rates. The tetrasporophyte, thought to be specialized for resistance to herbivores, may allocate more resources to structural or chemical defenses in preference to photosynthetic machinery. Consequently, the tetrasporophyte has lower photosynthetic capacity.  相似文献   

10.
Chondrus crispus Stackhouse alternates between two isomorphic life history phases that differ in cell-wall phycocolloid composition. It has been long hypothesized that the gametophyte, with strong-gelling kappa-type carrageenans, is mechanically superior to the tetrasporophyte, with nongelling lambda-type carrageenans, which could contribute to the observed gametophytic dominance in many wave-swept environments. Standard mechanical tests were performed on distal tissues of C. crispus sampled from a range of environments in Narragansett Bay, Rhode Island, using a tensometer equipped with a video extensometer. Life history phase was by far the most important determinant of mechanical properties, whereas environmental factors had only modest influence (vertical distribution) or no effect (exposure); gametophytic distal tissues were 43% stronger, 21% more extensible, and 21% stiffer than tetrasporophytic distal tissues. However, the superior strength of gametophytic tissues was not evident at the stipe/holdfast junction (where breakage typically occurs), and the two phases were equally susceptible to dislodgment by a given force. The primary ecophysiological role of carrageenans in C. crispus may not be the provision of a structure to resist wave action.  相似文献   

11.
Examination of two close collections of Plocamium cartilagineum separated into plants bearing carposporophyte, tetrasporophyte and gametophyte yielded the same qualitative chemical composition, but the three reproductive phases have quantitative differences. We designate chemotype β to the collection which contains brominated monoterpenes and chemotype to the group which lacks the enzymatic system which incorporates bromine.  相似文献   

12.
Total carrageenan levels (55–88% of plant dry weight) of four Gigartina species showed little variation between male, female and tetrasporic plants. However whereas male and female gametophyte plants gave carrageenans with K: λ ratios usually ranging from 1·0 to 4·0, with one species in the range 0·3–0·8, tetrasporophyte carrageenans gave very low K: λ ratios, 0·02–0·1, indicative of a virtual absence of K-carrageenan from plants of this stage of the life cycle.  相似文献   

13.
In populations of the Gigartinaceae (Rhodophyta), gametophytes often predominate numerically over tetrasporophytes. Several hypotheses have been proposed to explain this dominance, based on the usually implicit assumption that the stable ratio between gametophytes and tetrasporophytes (G:T ratio) should be 1 if both reproductive phases are ecologically similar. We developed demographic models to test this assumption, for which we considered that both phases are ecologically similar. Defining ecologic similarity for most demographic rates is relatively straightforward, except for rates of spore output. The first set of models considered the same spore output per thallus of both phases as representing ecologic similarity. Model iterations led to stable G:T ratios of 1 for triennial and for perennial thalli, regardless of the initial G:T ratio, but not for annual thalli with initial G:T ratios different from 1. However, equal spore output may not represent ecologic similarity, due to size differences between carpospores and tetraspores. The second set of models considered the lowest possible spore output for each phase, according to the life history of this family: only one carposporangium, with one carpospore, is produced from every two gametophytes and only one tetrasporangium, with four tetraspores, is produced by every tetrasporophyte. Model iterations led to stable G:T ratios of 2.8 for most cases, a ratio of 1 being obtained only every 2 years for annual thalli with an initial G:T ratio of 1. Increasing absolute spore output, without altering the relative output between phases and incorporating density-independent mortality through a matrix model, given the same mortality rate for both phases, did not modify results. We suggest that the combination of both modeling and field research may uncover more rapidly than otherwise the most relevant ecologic differences between phases, if any, that underlie the G:T ratio observed for a given population.  相似文献   

14.
Seasonal environmental changes may significantly influence macroalgal diversity and biomass. Cryptogam species richness increases towards the poles, especially in sub-Antarctic environments. Yet, subpolar seaweed biodiversity and ecophysiology remain understudied even though it is essential for the management and sustainability of endemic species of significant economic interest (e.g., Gigartina skottsbergii). We evaluate the seasonality and ecophysiology of the different life phases of the rhodophyte G. skottsbergii by analyzing variation in fluorescence yield and photosynthetic pigment composition. There were significant seasonal differences in maximum relative electron transport rate (rETRmax) between gametophyte and tetrasporophyte phase, and between reproductive and vegetative specimens. Photosynthetic efficiency (α) was not significantly different between reproductive states of G. skottsbergii. We found significant differences in mean concentrations of allophycocyanin (APC), phycocyanin (PC), and chlorophyll a (Chl a) between gametophyte and tetrasporophyte phases. Results obtained provide new insight into seasonal acclimation patterns of an ecologically important species, which can be used for the design of appropriate management and cultivation strategies of G. skottsbergii towards the restoration of natural populations in fragile, subpolar regions where some of the last, relatively undisturbed communities of G. skottsbergii still remain.  相似文献   

15.
Turnerella (Gigartinales) withT. mertensiana known from northern Japan was studied to determine its life history. Carpospores cultured from foliose female plants gave rise on germination to crustose plants containing tetrasporangia, as noted previously inT. pennyi from the Atlantic. The crusts were slow to develop and required 3–5 years to achieve reproductive maturity. Tetraspores liberated in culturedT. mertensiana gave rise on germination eventually to thalli similar to gametophyticT. mertensiana. Thus this species may be said to adhere to the pattern of life history in which a large, foliose gametophyte alternates with a small crustose tetrasporophyte. The erect filaments of the small sporophytes branch laterally and tetrasporangial mother cells are found there, exemplifying an unusual method for crustose species to produce tetrasporangia.  相似文献   

16.
Many algal life cycles alternate between two free‐living generations. Life histories in which the two generations look identical (isomorphic) are common, particularly in the Rhodophyta. Reports of natural populations dominated by one generation of the life history have sought explanation in terms of phase‐specific differences in mortality and reproductive output, yet in many cases identification of these adaptations has been elusive or inconsistent with predictions. We hypothesized that the gametophyte‐to‐sporophyte ratio of ecologically equivalent isomorphs could result from variation in fertilization rate. We developed two models to test this hypothesis: one representing a generalized isomorphic life history and the other specific to red algae with a Polysiphonia‐type life history. Fertilization rate affected the gametophyte‐to‐sporophyte ratio, especially at low fertilization rates. In the general model, gametophytes dominated the population regardless of fertilization rate unless egg production greatly exceeded meiospore production. In the red algal model, phase dominance depended on the combination of fertilization rate and the number of carpospores produced per fertilization. The generational composition of model multiphasic algal populations results from their inherent reproductive characteristics and the dynamic environment to which fertilization and mortality rates are tied.  相似文献   

17.
The red alga Chondracanthus chamissoi (Gigartinales) is endemic to the southern-central region of South America. In the Pacific Ocean, it is distributed from north-central Peru to Chiloe Island. This species is of economic importance because it is edible and used for carrageenan production. The tetrasporophyte phase was grown in the laboratory, obtaining male and female gametophytes that were incubated under different photoperiod, pH, salinity and temperature conditions. These gametophytes developed and generated reproductive structures that led to in vitro maturation. Subsequently, fertilisation occurred and formation of cystocarps was observed. Finally, carpospores were released and the formation of sporophytes completed the life history of this species under laboratory conditions. Reproductive phase growth rates were recorded for each of the different culture conditions used. Sporophytes reached the highest daily growth rate (22%), while gametophyte’s daily growth rate was slower (9%). This research confirms, in vitro, the assumption that C. chamissoi has a sexual triphasic life history Polysiphonia type with isomorphic gametophytes and tetrasporophytes. The development of the complete life history took 20 months in the laboratory.  相似文献   

18.
The life-cycle of Scinaia interrupta (A.P. de Candolle) M. J. Wynne was investigated in vitro using four irradiance regimes: 4, 8, 12 and 16 μmol photons m−2 s−1. A triphasic heteromorphic life-cycle was observed. Carpospores released by cystocarps of gametophytes collected in the field developed into filamentous tetrasporophytes, which produced tetrahedral tetrasporangia. Tetrasporangial development was accelerated under higher irradiance levels. Tetraspores germinated into filamentous protonemal gametophytes, initially identical to the tetrasporophyte. Filamentous gametophytes developed apical utricles and gave rise directly to the fleshy gametophyte. Further development of the fleshy gametophyte was not observed at the lowest irradiance regime (4 μmol photons m−2 s−1). The present study reports for the first time the influence of the irradiance regime on the initial tetrasporangial development and in the development of the fleshy gametophyte, and reinforces the importance of light intensity on Scinaia life-cycle. Production of apical utricles by the filamentous gametophyte is newly reported for the genus.  相似文献   

19.
In the fall, when 61% of the fronds of the Gelidium sesquipedale (Clem.) Born. et Thur. population located in Albufeira (southern Portugal) were reproductive, about 90% of these fronds were tetrasporophytes, whereas an equal percentage of female and male gametophytes was found (5%). The comparison of physiological performances of the reproductive phases (males, females and tetrasporophytes) did not reveal a physiological advantage of tetrasporic fronds. There were no significant differences either in the photosynthesis, nitrogen uptake, nitrate reductase activity, or biochemical composition of adult fronds. On the other hand, vegetative recruitment and spore production in the laboratory were significantly different. The re‐attachment to calcareous substrate and the subsequent rhizoidal growth were faster in tetrasporophytes. Particular levels of temperature, rather than irradiance, had an important effect on the phase differences in the spore release, attachment, and germination rates. Significant results were the higher release of carpospores at all irradiances at 17°C, and the higher attachment percentage of carpospores at 13°C versus tetraspores. Under higher temperatures (21°C), tetraspores showed higher attachment rates while carpospores germinated more. G. sesquipedale cystocarps released carpospores for 2 months, while tetrasporangia stopped shedding tetraspores after 1 month, resulting in a 3‐fold higher production of carpospores than tetraspores. Results showed that vegetative and spore recruitment may explain the low gametophyte–tetrasporophyte ratio of the studied population of G. sesquipedale as opposed to the physiological performance of phases.  相似文献   

20.
We investigated the effects of elevation, wave exposure, and year on the proportion of gametophytes and tetrasporophytes in populations of the intertidal red seaweed Mazzaella parksii (= M. cornucopiae, Gigartinaceae) from the Pacific coast of Canada. In July 2002, we determined the life-history phase of 864 frond samples from four populations from Barkley Sound, using the resorcinol-acetal test. For these populations, gametophytes were significantly more numerous than tetrasporophytes, and the proportion of gametophytes was significantly higher at higher elevations. The proportion of gametophytes varied directly (although less markedly) with the degree of wave exposure, but significance could not be assessed for this factor. All of these patterns were spatially consistent, as they held for two different rocky points with similar physical characteristics. One of these points had also been surveyed in 1994-1995, which allows us to conclude that the population-wise gametophyte predominance and the positive relationship between elevation and the proportion of gametophytes are stable features of this species in this area. However, the average proportion of gametophytes was similar between the studied levels of wave exposure in 1994–1995; such a difference revealed as non-significant when data were combined with those for 2002. This suggests that wave exposure is not important in determining the proportion of life-history phases for this species. Comparisons with other species are done in search of general patterns for the Gigartinaceae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号