首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recently, we reported the purification of a 46-kDa membrane-associated platelet protein which is phosphorylated in intact platelets and platelet membranes by cGMP- and cAMP-dependent protein kinases (Halbrügge, M., and Walter, U. (1989) Eur. J. Biochem. 185, 41-50). Here we demonstrate that both cGMP- and cAMP-dependent protein kinases catalyze the rapid incorporation of up to 1.4 mol of phosphate/mol of this purified vasodilator-stimulated phosphoprotein (VASP). A specific rabbit antiserum was prepared which recognized both the 46-kDa dephospho form and the 50-kDa phospho form of VASP in Western blots. In untreated washed platelets, VASP was found to be present primarily as a 46-kDa dephosphoprotein. Sodium nitroprusside (100 microM) raised the intracellular platelet cGMP concentration from approximately 0.44 to 4.1 microM, without a significant effect on the cAMP level, and converted up to 50% of VASP to the 50-kDa phospho form. Prostaglandin E1 (10 microM) raised the platelet cAMP concentration from approximately 4.4 to 28.4 microM, without a significant effect on the cGMP level, and shifted up to 67% of VASP to the 50-kDa phospho form. Removal of the vasodilators sodium nitroprusside and prostaglandin E1 from the platelet suspension was followed by a return of the cyclic nucleotide concentration to basal levels and subsequent conversion of the 50-kDa phospho form of VASP to the 46-kDa dephospho form. The results support the hypothesis that VASP phosphorylation is an important component of the intracellular mechanism of action of these vasodilators in human platelets.  相似文献   

2.
Vasodilators such as sodium nitroprusside, nitroglycerin and various prostaglandins are capable of inhibiting platelet aggregation associated with an increase of either cGMP or cAMP. In our studies with intact platelets, prostaglandin E1 and sodium nitroprusside stimulated the phosphorylation of several proteins which could be distinguished from proteins known to be phosphorylated by a calmodulin-regulated protein kinase or by protein kinase C. Prostaglandin E1 (10 microM) or dibutyryl cAMP (2 mM) stimulated the phosphorylation of proteins with apparent relative molecular masses, Mr, of 240,000, 68,000, 50,000, and 22,000 in intact platelets. These proteins were also phosphorylated in response to low concentrations (1-2 microM) of cAMP in a particulate fraction of platelets. In intact platelets, sodium nitroprusside (100 microM) and the 8-bromo derivative of cGMP (2 mM) increased the phosphorylation of one protein of Mr 50,000 which was also phosphorylated in response to low concentrations (1-2 microM) of cGMP in platelet membranes. An additional protein (Mr 24,000) appeared to be phosphorylated to a lesser degree in intact platelets by prostaglandin E1 and sodium nitroprusside. Since the phosphorylation of the protein of Mr 50,000 was stimulated both in intact platelets by cyclic-nucleotide-elevating agents and cyclic nucleotide analogs, as well as in platelet membranes by cyclic nucleotides, this phosphoprotein was analyzed by limited proteolysis, tryptic fingerprinting and phosphoamino acid analysis. These experiments indicated that the 50-kDa proteins phosphorylated by sodium nitroprusside and prostaglandin E1 were identical, and that the peptide of the 50-kDa protein phosphorylated by both agents was also the same as the peptide derived from the 50-kDa protein phosphorylated in platelet membranes by cGMP- and cAMP-dependent protein kinases, respectively. Regulation of protein phosphorylation mediated by cAMP- and cGMP-dependent protein kinases may be the molecular mechanism by which those vasodilators, capable of increasing either cAMP or cGMP, inhibit platelet aggregation.  相似文献   

3.
In platelets, nitric oxide (NO) activates cGMP/PKG signalling, whereas prostaglandins and adenosine signal through cAMP/PKA. Cyclic nucleotide signalling has been considered to play an inhibitory role in platelets. However, an early stimulatory effect of NO and cGMP-PKG signalling in low dose agonist-induced platelet activation have recently been suggested. Here, we investigated whether different experimental conditions could explain some of the discrepancy reported for platelet cGMP-PKG-signalling. We treated gel-filtered human platelets with cGMP and cAMP analogues, and used flow cytometric assays to detect low dose thrombin-induced formation of small platelet aggregates, single platelet disappearance (SPD), platelet-derived microparticles (PMP) and thrombin receptor agonist peptide (TRAP)-induced P-selectin expression. All four agonist-induced platelet activation phases were blocked when platelets were costimulated with the PKG activators 8-Br-PET-cGMP or 8-pCPT-cGMP and low-doses of thrombin or TRAP. However, extended incubation with 8-Br-PET-cGMP decreased its inhibition of TRAP-induced P-selectin expression in a time-dependent manner. This effect did not involve desensitisation of PKG or PKA activity, measured as site-specific VASP phosphorylation. Moreover, PKG activators in combination with the PKA activator Sp-5,6-DCL-cBIMPS revealed additive inhibitory effect on TRAP-induced P-selectin expression. Taken together, we found no evidence for a stimulatory role of cGMP/PKG in platelets activation and conclude rather that cGMP/PKG signalling has an important inhibitory function in human platelet activation.  相似文献   

4.
We reported previously that a 46/50-kDa membrane-associated vasodilator-stimulated phosphoprotein (VASP) is phosphorylated in intact human platelets in response to both cGMP- and cAMP-elevating vasodilator drugs and presented evidence that this is mediated by cGMP- and cAMP-dependent protein kinases, respectively. VASP was recently purified and an antibody against it was developed which detects a phosphorylation-induced mobility change of VASP in sodium dodecyl sulfate-polyacrylamide gel electrophoresis (Halbrügge, M., Friedrich, C., Eigenthaler, M., Schanzenb?cher, P., and Walter, U. (1990) J. Biol. Chem. 265, 3088-3093). We have now used these methods for the quantitative analysis of VASP phosphorylation during coincubations of human endothelial cells and human platelets. Endothelial cell-derived factors caused the rapid, stoichiometric, and reversible phosphorylation of platelet VASP during these coincubations. Other experiments indicated that the endothelium-derived factors which stimulate VASP phosphorylation are prostacyclin and endothelium-derived relaxing factor whose effects are mediated by cAMP/cAMP-dependent protein kinase and cGMP/cGMP-dependent protein kinase, respectively. The results suggest that VASP phosphorylation is an important component of the inhibitory effects of prostacyclin and endothelium-derived relaxing factor on platelet activation and that VASP phosphorylation is a useful biochemical marker for the interaction of endothelial cells and platelets.  相似文献   

5.
A specific 46,000/50,000 molecular weight protein substrate for both cAMP-dependent protein kinase (cAK) and cGMP-dependent protein kinase (cGK) extensively characterized and purified from human platelets was found to be present also in human T-lymphocytes, B-lymphocytes and other cells and tumour cell lines. This protein termed vasodilator-stimulated phosphoprotein (VASP) was present in cytosol and membranes of lymphocytes. Addition of exogenous purified cAK or cGK to lymphocyte cytosol or membranes converted 80-90% of VASP to its phosphoform. Endogenous VASP phosphorylation in both cytosol and membranes was stimulated by the addition of cAMP but not by cGMP. With intact lymphocytes, prostaglandin E1 (PGE1) and prostaglandin E2 (PGE2) induced an increase of cAMP and converted 70% of VASP to its phosphoform. In contrast, an increase of cGMP was not associated with VASP phosphorylation although cGK was detected in lymphocytes. These data support the hypothesis that VASP phosphorylation may be an important component of cAMP-mediated regulation of lymphocyte function.  相似文献   

6.
Vasodilator-stimulated phosphoprotein is a substrate for protein kinase C   总被引:1,自引:0,他引:1  
Chitaley K  Chen L  Galler A  Walter U  Daum G  Clowes AW 《FEBS letters》2004,556(1-3):211-215
Vasodilator-stimulated phosphoprotein (VASP), an actin binding protein localized to areas of focal contacts, is a substrate for the cyclic adenosine monophosphate/cyclic guanosine monophosphate (cAMP/cGMP)-dependent protein kinases (PKA, PKG). In this study, we show that serum stimulation of vascular smooth muscle cells (SMCs) induces VASP phosphorylation on Ser157, in a mechanism not dependent on PKA or PKG. We tested the possibility that protein kinase C (PKC), a regulator of cytoskeletal function, is involved. PKC inhibition or down-regulation prevented serum-induced phosphorylation of VASP at Ser157 in rat vascular SMCs. Additionally, recombinant PKCalpha directly phosphorylated Ser157 on VASP. In summary, our data support the hypothesis that PKC phosphorylates VASP and mediates serum-induced VASP regulation.  相似文献   

7.
Intracellular communication is tightly regulated in both space and time. Spatiotemporal control is important to achieve a high level of specificity in both dimensions. For instance, cAMP-dependent kinase (PKA) attains spatial resolution by interacting with distinct members of the family of A-kinase anchoring proteins (AKAPs) that position PKA at specific loci within the cell. To control the cAMP induced signal in time, distinct signal terminators such as phosphodiesterases and phosphatases are often co-localized at the AKAP scaffold. In platelets, high levels of cAMP/cGMP maintain the resting state to allow free circulation. Exposure to collagen, for instance when the vessel is damaged, triggers platelet activation through initiation of the GPVI (glycoprotein VI)/FcRγ-chain forming the onset of a plethora of signaling pathways. Consequently overall intra-platelet cAMP and cGMP levels drop, however detail on how PKA, but also cGMP-dependent protein kinase (PKG) respond in relation to their localized signaling scaffolds is currently missing. To investigate this, we employed a quantitative chemical proteomics approach in activated human platelets enabling the specific enrichment of cAMP/cGMP signaling nodes. Our data reveal that within a few minutes several specific PKA and PKG signaling nodes respond significantly to the activating signal, whereas others do not, suggesting a rapid adaption of specific localized cAMP and cGMP pools to the stimulus. Using protein phosphorylation data gathered we touch upon the potential cross-talk between protein phosphorylation and signaling scaffold function as a general theme in platelet spatiotemporal control.  相似文献   

8.
Platelets have abundant tyrosine kinase activities, and activation of platelets results in the increased tyrosine phosphorylation of numerous protein substrates. The stimulation of tyrosine phosphorylation elicited by thrombin can be completely inhibited by preincubation with 10nm prostacyclin (PGI2), 1 microM PGD2, or 1mM N2,2'-O-dibutyryl-cAMP. In contrast, incubation of platelets with agents that increase cGMP (sodium nitroprusside or with 1mM 8-Bromo-cGMP) was without effect. The inhibition by prostacyclin was dose dependent, with an IC50 of approximately 3nM, corresponding to the dose range necessary to inhibit other platelet activation processes. These results demonstrate a novel pathway by which agents which raise cAMP may inhibit platelet signal transduction and differential mechanism of action between compounds which raise cAMP and those which elevate cGMP.  相似文献   

9.
Many signal transduction pathways are mediated by the second messengers cGMP and cAMP, cGMP- and cAMP-dependent protein kinases (cGK and PKA), phosphodiesterases, and ion channels. To distinguish among the different cGMP effectors, inhibitors of cGK and PKA have been developed including the K-252 compound KT5823 and the isoquinolinesulfonamide H89. KT5823, an in vitro inhibitor of cGK, has also been used in numerous studies with intact cells to implicate or rule out the involvement of this protein kinase in a given cellular response. However, the efficacy and specificity of KT5823 as cGK inhibitor in intact cells or tissues have never been demonstrated. Here, we analyzed the effects of both KT5823 and H89 on cyclic-nucleotide-mediated phosphorylation of vasodilator-stimulated phosphoprotein (VASP) in intact human platelets and rat mesangial cells. These two cell types both express high levels of cGK. KT5823 inhibited purified cGK. However, with both intact human platelets and rat mesangial cells, KT5823 failed to inhibit cGK-mediated serine 157 and serine 239 phosphorylation of VASP induced by nitric oxide, atrial natriuretic peptide, or the membrane-permeant cGMP analog, 8-pCPT-cGMP. KT5823 enhanced 8-pCPT-cGMP-stimulated VASP phosphorylation in platelets and did not inhibit forskolin-stimulated VASP phosphorylation in either platelets or mesangial cells. In contrast H89, an inhibitor of both PKA and cGK, clearly inhibited 8-pCPT-cGMP and forskolin-stimulated VASP phosphorylation in the two cell types. The data indicate that KT5823 inhibits purified cGK but does not affect a cGK-mediated response in the two different cell types expressing cGK I. These observations indicate that data that interpret the effects of KT5823 in intact cells as the major or only criteria supporting the involvement of cGK clearly need to be reconsidered.  相似文献   

10.
Heat-stable enterotoxin (STa) stimulates intestinal Cl(-) secretion by activating guanylate cyclase C (GCC) to increase intracellular cyclic GMP (cGMP). In the colon, cGMP action could involve protein kinase (PK) G-II or PKA pathways, depending on the segment and species. In the human colon, both PKG and PKA pathways have been implicated, and, therefore, the present study examined the mechanism of cGMP-mediated Cl(-) transport in primary cultures of human distal colonocytes and in T84, the colonic cell line. Both cell preparations express mRNA for CFTR, Na(+)-K(+)-2Cl(-) cotransporter (NKCC1), GCC and PKG-II as detected by RT-PCR. The effects of STa and the PKG-specific cGMP analogues, 8Br-cGMP and 8pCPT-cGMP, on Cl(-) transport were measured using a halide-sensitive probe. In primary human colonocytes and T84 cells, STa, the cGMP analogues and the cAMP-dependent secretagogue, prostaglandin E(1) (PGE(1)), enhanced Cl(-) transport. The effects of 8Br-cGMP and 8pCPT-cGMP suggested the involvement of PKG, and this was explored further in T84 cells. The effects of 8pCPT-cGMP were dose-dependent and sensitive to the PKG inhibitor, H8 (70 microM), but H8 had no effect on PGE(1)-induced Cl(-) secretion. In contrast, a PKA inhibitor, H7 (50 microM), blocked PGE(1)-mediated but not 8pCPT-cGMP-induced Cl(-) transport. 8pCPT-cGMP enhanced phosphorylation of the PKG-specific substrate, 2A3, by T84 membranes in vitro. This phosphorylation was inhibited by H8. These results strongly suggest that cGMP activates Cl(-) transport through a PKG-II pathway in primary cells and in the T84 cell line of the human colon.  相似文献   

11.
The effects of prostaglandin E1 and prostaglandin G2, the prostaglandin endoperoxide, on platelet cyclic nucleotide concentrations were measured in platelet rich plasma (PRP), and in washed intact platelets. PGE1 was found to be a potent stimulator of platelet cAMP levels in both PRP and washed cells, and to inhibit aggregation in both systems. PGE1 did not change platelet cGMP levels in either PRP or washed cells. PGG2 which is a potent inducer of platelet aggregation, did not affect either the basal cAMP or the basal cGMP concentration. However, PGG2 was found to antagonize the increases in cAMP content in response to PGE1 in both PRP and washed platelets. The addition to our system of a cyclic nucleotide phosphodiesterase inhbitor, theophylline, did not change our findings. It is suggested that PGG2 may induce platelet aggregation by inhibiting PGE1-stimulated cAMP accumulation.  相似文献   

12.
Regulation of adenylyl cyclase type V/VI and cAMP-specific, cGMP-inhibited phosphodiesterase (PDE) 3 and cAMP-specific PDE4 by cAMP-dependent protein kinase (PKA) and cGMP-dependent protein kinase (PKG) was examined in gastric smooth muscle cells. Expression of PDE3A but not PDE3B was demonstrated by RT-PCR and Western blot. Basal PDE3 and PDE4 activities were present in a ratio of 2:1. Forskolin, isoproterenol, and the PKA activator 5,6-dichloro-1-beta-D-ribofuranosyl benzimidazole 3',5'-cyclic monophosphate, SP-isomer, stimulated PDE3A phosphorylation and both PDE3A and PDE4 activities. Phosphorylation of PDE3A and activation of PDE3A and PDE4 were blocked by the PKA inhibitors [protein kinase inhibitor (PKI) and H-89] but not by the PKG inhibitor (KT-5823). Sodium nitroprusside inhibited PDE3 activity and augmented forskolin- and isoproterenol-stimulated cAMP levels; PDE3 inhibition was reversed by blockade of cGMP synthesis. Forskolin stimulated adenylyl cyclase phosphorylation and activity; PKI blocked phosphorylation and enhanced activity. Stimulation of cAMP and inhibition of inositol 1,4,5-trisphosphate-induced Ca(2+) release and muscle contraction by isoproterenol were augmented additively by PDE3 and PDE4 inhibitors. The results indicate that PKA regulates cAMP levels in smooth muscle via stimulatory phosphorylation of PDE3A and PDE4 and inhibitory phosphorylation of adenylyl cyclase type V/VI. Concurrent generation of cGMP inhibits PDE3 activity and augments cAMP levels.  相似文献   

13.
The singular effects and interplay of cAMP- and cGMP-dependent protein kinase (PKA and PKG) on Ca(2+) mobilization were examined in dispersed smooth muscle cells. In permeabilized muscle cells, exogenous cAMP and cGMP inhibited inositol 1,4,5-trisphosphate (IP(3))-induced Ca(2+) release and muscle contraction via PKA and PKG, respectively. A combination of cAMP and cGMP caused synergistic inhibition that was exclusively mediated by PKG and attenuated by PKA. In intact muscle cells, low concentrations (10 nM) of isoproterenol and sodium nitroprusside (SNP) inhibited agonist-induced, IP(3)-dependent Ca(2+) release and muscle contraction via PKA and PKG, respectively. A combination of isoproterenol and SNP increased PKA and PKG activities: the increase in PKA activity reflected inhibition of phosphodiesterase 3 activity by cGMP, whereas the increase in PKG activity reflected activation of cGMP-primed PKG by cAMP. Inhibition of Ca(2+) release and muscle contraction by the combination of isoproterenol and SNP was preferentially mediated by PKG. In light of studies showing that PKG phosphorylates the IP(3) receptor in intact and permeabilized muscle cells, whereas PKA phosphorylates the receptor in permeabilized cells only, the results imply that inhibition of IP(3)-induced Ca(2+) release is mediated exclusively by PKG. The effect of PKA on agonist-induced Ca(2+) release probably reflects inhibition of IP(3) formation.  相似文献   

14.
The exogenous addition of the catalytic subunit of cAMP-dependent protein kinase (PKA), cGMP-dependent protein kinase (PKG), or calmodulin (CaM) induced rapid phosphorylation of the ryanodine receptor (Ca2+ release channel) in canine cardiac microsomes treated with 1 mM [gamma-32P]ATP. Added protein kinase C (PKC) also phosphorylated the cardiac ryanodine receptor but at a relatively slow rate. The observed level of PKA-, PKG-, or PKC-dependent phosphorylation of the ryanodine receptor was comparable to the maximum level of [3H]ryanodine binding in cardiac microsomes, whereas the level of CaM-dependent phosphorylation was about 4 times greater. Phosphorylation by PKA, PKG, and PKC increased [3H]ryanodine binding in cardiac microsomes by 22 +/- 5, 17 +/- 4, and 15 +/- 9% (average +/- SD, n = 4-5), respectively. In contrast, incubation of microsomes with 5 microM CaM alone and 5 microM CaM plus 1 mM ATP decreased [3H]ryanodine binding by 38 +/- 14 and 53 +/- 15% (average +/- SD, n = 6), respectively. Phosphopeptide mapping and phosphoamino acid analysis provided evidence suggesting that PKA, PKG, and PKC predominantly phosphorylate serine residue(s) in the same phosphopeptide (peptide 1), whereas the endogenous CaM-kinase phosphorylates serine residue(s) in a different phosphopeptide (peptide 4). Photoaffinity labeling of microsomes with photoreactive 125I-labeled CaM revealed that CaM bound to a high molecular weight protein, which was immunoprecipitated by a monoclonal antibody against the cardiac ryanodine receptor. These results suggest that protein kinase-dependent phosphorylation and CaM play important regulatory roles in the function of the cardiac sarcoplasmic reticulum Ca2+ release channel.  相似文献   

15.
Vasoactive agents which elevate either cGMP or cAMP inhibit platelet activation by pathways sharing at least one component, the 46/50 kDa vasodilator-stimulated phosphoprotein (VASP). VASP is stoichiometrically phosphorylated by both cGMP-dependent and cAMP-dependent protein kinases in intact human platelets, and its phosphorylation correlates very well with platelet inhibition caused by cGMP- and cAMP-elevating agents. Here we report that in human platelets spread on glass, VASP is associated predominantly with the distal parts of radial microfilament bundles and with microfilaments outlining the periphery, whereas less VASP is associated with a central microfilamentous ring. VASP is also detectable in a variety of different cell types including fibroblasts and epithelial cells. In fibroblasts, VASP is concentrated at focal contact areas, along microfilament bundles (stress fibres) in a punctate pattern, in the periphery of protruding lamellae, and is phosphorylated by cGMP- and cAMP-dependent protein kinases in response to appropriate stimuli. Evidence for the direct binding of VASP to F-actin is also presented. The data demonstrate that VASP is a novel phosphoprotein associated with actin filaments and focal contact areas, i.e. transmembrane junctions between microfilaments and the extracellular matrix.  相似文献   

16.
1. The effect of nitroprusside on cGMP concn., cAMP concn., shape change, aggregation, intracellular free Ca2+ concn. (by quin-2 fluorescence) and Mn2+ entry (by quenching of quin-2) was investigated in human platelets incubated with 1 mM-Ca2+ or 1 mM-EGTA. 2. Nitroprusside (10 nM-10 microM) caused similar concentration-dependent increases in platelet cGMP concn. and was without effect on cAMP concn. in the presence of extracellular Ca2+ or EGTA. 3. In ADP (3-6 microM)-stimulated platelets, nitroprusside caused 50% inhibition of shape change at 0.4 microM (+Ca2+) or 1.3 microM (+EGTA), aggregation at 0.09 microM (+Ca2+) and of increased intracellular Ca2+ at 0.02 microM (+Ca2+) or 2.1 microM (+EGTA). Entry of 1 mM-Mn2+ (-Ca2+) was inhibited by 80% by 5 microM-nitroprusside. 4. In ionomycin (20-500 nM)-stimulated platelets, nitroprusside (10 nM-100 microM) did not inhibit shape change or intracellular-Ca2+-increase responses, and only partially inhibited aggregation. 5. In phorbol myristate acetate (10 nM)-stimulated platelets, neither shape change nor aggregation was inhibited by 5 microM-nitroprusside. 6. The data demonstrate that nitroprusside inhibits ADP-mediated Ca2+ influx more potently than Ca2+ mobilization. Nitroprusside appears not to influence Ca2+ efflux or sequestration and not to affect the sensitivity of the activation mechanism to intracellular Ca2+ concn. or activation of protein kinase C.  相似文献   

17.
Agonist-induced smooth muscle relaxation occurs following an increase in intracellular concentrations of cGMP or cAMP. However, the role of protein kinase G (PKG) and/or protein kinase A (PKA) in cGMP- or cAMP-mediated pulmonary vasodilation is not clearly elucidated. In this study, we examined the relaxation responses of isolated pulmonary arteries of lambs (age = 10 +/- 1 days), preconstricted with endothelin-1, to increasing concentrations of 8-bromo-cGMP (8-BrcGMP) or 8-BrcAMP (cell-permeable analogs), in the presence or absence of Rp-8-beta-phenyl-1,N(2)-etheno-bromoguanosine cyclic monosphordthioate (Rp-8-PET-BrcGMPS) or KT-5720, selective inhibitors of PKG and PKA, respectively. When examined for specificity, Rp-8-Br-PET-cGMPS abolished PKG, but not PKA, activity in pulmonary arterial extracts, whereas KT-5720 inhibited PKA activity only. 8-BrcGMP-induced relaxation was inhibited by the PKG inhibitor only, whereas 8-BrcAMP-induced relaxation was inhibited by both inhibitors. A nearly fourfold higher concentration of cAMP than cGMP was required to relax arteries by 50% and to activate PKG by 50%. Our results demonstrate that relaxation of pulmonary arteries is more sensitive to cGMP than cAMP and that PKG plays an important role in both cGMP- and cAMP-mediated relaxation.  相似文献   

18.
Agonists elevate the cytosolic calcium concentration in human platelets via a receptor-operated mechanism, involving both Ca(2+) release from intracellular stores and subsequent Ca(2+) entry, which can be inhibited by platelet inhibitors, such as prostaglandin E(1) and nitroprusside which elevate cAMP and cGMP, respectively. In the present study we investigated the mechanisms by which cAMP and cGMP modulate store-mediated Ca(2+) entry. Both prostaglandin E(1) and sodium nitroprusside inhibited thapsigargin-evoked store-mediated Ca(2+) entry and actin polymerization. However, addition of these agents after induction of store-mediated Ca(2+) entry did not affect either Ca(2+) entry or actin polymerization. Furthermore, prostaglandin E(1) and sodium nitroprusside dramatically inhibited the tyrosine phosphorylation induced by depletion of the internal Ca(2+) stores or agonist stimulation without affecting the activation of Ras or the Ras-activated phosphatidylinositol 3-kinase or extracellular signal-related kinase (ERK) pathways. Inhibition of cyclic nucleotide-dependent protein kinases prevented inhibition of agonist-evoked Ca(2+) release but it did not have any effect on the inhibition of Ca(2+) entry or actin polymerization. Phenylarsine oxide and vanadate, inhibitors of protein-tyrosine phosphatases prevented the inhibitory effects of the cGMP and cAMP elevating agents on Ca(2+) entry and actin polymerization. These results suggest that Ca(2+) entry in human platelets is directly down-regulated by cGMP and cAMP by a mechanism involving the inhibition of cytoskeletal reorganization via the activation of protein tyrosine phosphatases.  相似文献   

19.
Increased pulmonary endothelial cGMP was shown to prevent endothelial barrier dysfunction through activation of protein kinase G (PKG(I)). Vasodilator-stimulated phosphoprotein (VASP) has been hypothesized to mediate PKG(I) barrier protection because VASP is a cytoskeletal phosphorylation target of PKG(I) expressed in cell-cell junctions. Unphosphorylated VASP was proposed to increase paracellular permeability through actin polymerization and stress fiber bundling, a process inhibited by PKG(I)-mediated phosphorylation of Ser(157) and Ser(239). To test this hypothesis, we examined the role of VASP in the transient barrier dysfunction caused by H(2)O(2) in human pulmonary artery endothelial cell (HPAEC) monolayers studied without and with PKG(I) expression introduced by adenoviral infection (Ad.PKG). In the absence of PKG(I) expression, H(2)O(2) (100-250 microM) caused a transient increased permeability and pSer(157)-VASP formation that were both attenuated by protein kinase C inhibition. Potentiation of VASP Ser(157) phosphorylation by either phosphatase 2B inhibition with cyclosporin or protein kinase A activation with forskolin prolonged, rather than inhibited, the increased permeability caused by H(2)O(2). With Ad.PKG infection, inhibition of VASP expression with small interfering RNA exacerbated H(2)O(2)-induced barrier dysfunction but had no effect on cGMP-mediated barrier protection. In addition, expression of a Ser-double phosphomimetic mutant VASP failed to reproduce the protective effects of activated PKG(I). Finally, expression of a Ser-double phosphorylation-resistant VASP failed to interfere with the ability of cGMP/PKG(I) to attenuate H(2)O(2)-induced disruption of VE-cadherin homotypic binding. Our results suggest that VASP phosphorylation does not explain the protective effect of cGMP/PKG(I) on H(2)O(2)-induced endothelial barrier dysfunction in HPAEC.  相似文献   

20.
Reactive species formed from nitric oxide (NO) nitrate unsaturated fatty acids such as linoleate (LA) to nitrated derivatives including nitrolinoleate (LNO(2)). The effect of LNO(2) on human platelets was examined to define how nitrated lipids might behave in vivo. LNO(2), but not LA or 3-nitrotyrosine, dose dependently (0.5-10 microm) inhibited thrombin-mediated aggregation of washed human platelets, with concomitant attenuation of P-selectin expression and selective phosphorylation of VASP at the cAMP-dependent protein kinase selective site, serine 157. LNO(2) caused slight mobilization of calcium (Ca(2+)) from intracellular stores but significantly inhibited subsequent thrombin-stimulated Ca(2+) elevations. LNO(2) did not elevate platelet cGMP, and its effects were not blocked with inhibitors of NO signaling (oxyhemoglobin, 1H-[1,2,4]oxadiazole[4,3-a]quinoxalin-1-one. 2-fold elevations in cAMP were found following LNO(2) treatment of platelets, and the adenylyl cyclase inhibitors 2',5'-dideoxyadenosine and SQ22536 partially restored thrombin-stimulated aggregation. Finally, LNO(2) significantly inhibited cAMP hydrolysis to AMP by platelet lysates. These data implicate cAMP in the anti-aggregatory action of LNO(2). The platelet inhibitory actions of LNO(2) indicate that nitration reactions that occur following NO generation in an oxidizing environment can alter the activity of lipids and lend insight into mechanisms by which NO-derived species may modulate the progression of vascular injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号