首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A large number of plastid localized proteins are post-translationally imported as precursor proteins from the cytosol into the organelle. Recognition and translocation is accomplished by a subset of chloroplast envelope proteins, which were identified by different but complementary methods. The o uter e nvelope p roteins OEP 86, OEP 75, OEP 70 (a heat shock cognate 70 homologue) and OEP 34 are clearly involved in the import event and can be isolated as one functionally active translocation unit. For three of these proteins cDNA clones have been very recently obtained, namely OEP 86, OEP 75 and OEP 34. OEP 86 seems to be a precursor protein receptor which could be regulated by GTP binding and ATP-dependent phosphorylation-dephosphorylation. OEP 75 is part of the translocation pore traversing the membrane in multiple β-sheets. OEP 34 is tightly associated with OEP 75. It represents a new type of GTP-binding protein which possesses endogenous GTPase activity. Multiple GTP binding and hydrolysis cycles as well as protein phosphorylation-dephosphorylation events might, therefore, regulate the interaction of a precursor protein with the translocation machinery of the outer envelope, making it very distinct from the mitochondrial outer membrane system. Further proteins of the inner envelope membrane, namely IEP 97 and IEP 36, have been implied to function in the translocation event. These recent data allow not only identification of the players in the game but also speculation about mechanisms and regulation of translocation.  相似文献   

2.
The 34 kDa polypeptide of the outer envelope membranes from pea chloroplasts (OEP 34) is a major constituent of this membrane. OEP 34 is detected on polyacrylamide gels under non-reducing condition in association with OEP 75, the putative protein translocation pore. An antiserum against OEP 34 is able to co-immunoprecipitate the precursor of Rubisco small subunit from a partially purified import complex of chloroplast outer envelope membranes. A full-length cDNA clone coding for pea OEP 34 has been isolated. Analysis of the deduced amino acid sequence revealed typical and conserved sequence motifs found in GTP-binding proteins, making it a new and unique member of this superfamily. OEP 34 behaves as an integral constituent of the outer chloroplast envelope, which is anchored by its C-terminus into the membrane, while the majority of the protein projects into the cytoplasm. OEP 34 does not possess a cleavable N-terminal transit sequence but it is targeted to the chloroplasts and integrated into the outer membranes by internal sequence information which seems to be present in the C-terminal membrane anchor region. Productive integration of OEP 34 into the outer envelope requires, in contrast to other OEPs, protease-sensitive chloroplast surface components and is stimulated by ATR. The GTP binding specificity of OEP 34 is demonstrated by photo-affinity labelling in the presence of [α-32P]GTP. Overexpressed and purified OEP 34 possesses endogenous GTPase activity. These results indicate a possible regulatory function of OEP 34 in protein translocation into chloroplasts.  相似文献   

3.
Transport of cytoplasmically synthesized proteins into chloroplasts uses an import machinery present in the envelope membranes. To identify the components of this machinery and to begin to examine how these components interact during transport, chemical cross-linking was performed on intact chloroplasts containing precursor proteins trapped at a particular stage of transport by ATP limitation. Large crosslinked complexes were observed using three different reversible homobifunctional cross-linkers. Three outer envelope membrane proteins (OEP86, OEP75, and OEP34) and one inner envelope membrane protein (IEP110), previously reported to be involved in protein import, were identified as components of these complexes. In addition to these membrane proteins, a stromal member of the hsp100 family, ClpC, was also present in the complexes. We propose that ClpC functions as a molecular chaperone, cooperating with other components to accomplish the transport of precursor proteins into chloroplasts. We also propose that each envelope membrane contains distinct translocation complexes and that a portion of these interact to form contact sites even in the absence of precursor proteins.  相似文献   

4.
Protein import into chloroplasts   总被引:2,自引:0,他引:2  
Most chloroplastic proteins are encoded in the nucleus, synthesized on cytosolic ribosomes and subsequently imported into the organelle. In general, proteins destined for the chloroplast are synthesized as precursor proteins with a cleavable N-terminal presequence that mediates routing to the inside of the chloroplast. These precursor proteins have to be targeted to the correct organellar membrane surface after their release from the ribosome and furthermore they have to be maintained in a conformation suitable for translocation across the two envelope membranes. Recognition and import of most chloroplastic precursor proteins are accomplished by a jointly used translocation apparatus. Different but complementary studies of several groups converged recently in the identification of the outer envelope proteins OEP86, OEP75, OEP70 (a Hsp 70-related protein), OEP34, and of the inner envelope protein IEP110 as components of this translocation machinery. None of these proteins, except for OEP70, shows any homology to components of other protein translocases. The plastid import machinery thus seems to be an original development in evolution. Following translocation into the organelle, chloroplastic proteins are sorted to their suborganellar destination, i.e., the inner envelope membrane, the thylakoid membrane, and the thylakoid lumen. This structural and evolutionary complexity of chloroplasts is reflected by a variety of routing mechanisms by which proteins reach their final location once inside the organelle. This review will focus on recent advances in the identification of components of the chloroplastic protein import machinery, and new insights into the pathways of inter-and intraorganellar sorting.  相似文献   

5.
The interactions of precursor proteins with components of the chloroplast envelope were investigated during the early stages of protein import using a chemical cross-linking strategy. In the absence of energy, two components of the outer envelope import machinery, IAP86 and IAP75, cross-linked to the transit sequence of the precursor to the small subunit of ribulose-1, 5-bisphosphate carboxylase (pS) in a precursor binding assay. In the presence of concentrations of ATP or GTP that support maximal precursor binding to the envelope, cross- linking to the transit sequence occurred predominantly with IAP75 and a previously unidentified 21-kD polypeptide of the inner membrane, indicating that the transit sequence had inserted across the outer membrane. Cross-linking of envelope components to sequences in the mature portion of a second precursor, preferredoxin, was detected in the presence of ATP or GTP, suggesting that sequences distant from the transit sequence were brought into the vicinity of the outer membrane under these conditions. IAP75 and a third import component, IAP34, were coimmunoprecipitated with IAP86 antibodies from solubilized envelope membranes, indicating that these three proteins form a stable complex in the outer membrane. On the basis of these observations, we propose that IAP86 and IAP75 act as components of a multisubunit complex to mediate energy-independent recognition of the transit sequence and subsequent nucleoside triphosphate-induced insertion of the transit sequence across the outer membrane.  相似文献   

6.
Chloroplast precursor proteins encoded in the nucleus depend on their targeting sequences for delivery to chloroplasts. There exist different routes to the chloroplast outer envelope, but a common theme is the involvement of molecular chaperones. Hsp90 (heat-shock protein 90) delivers precursors via its receptor Toc64, which transfers precursors to the core translocase in the outer envelope. In the present paper, we identify an uncharacterized protein in Arabidopsis thaliana OEP61 which shares common features with Toc64, and potentially provides an alternative route to the chloroplasts. Sequence analysis indicates that OEP61 possesses a clamp-type TPR (tetratricopeptide repeat) domain capable of binding molecular chaperones, and a C-terminal TMD (transmembrane domain). Phylogenetic comparisons show sequence similarities between the TPR domain of OEP61 and those of the Toc64 family. Expression of mRNA and protein was detected in all plant tissues, and localization at the chloroplast outer envelope was demonstrated by a combination of microscopy and in vitro import assays. Binding assays show that OEP61 interacts specifically with Hsp70 (heat-shock protein 70) via its TPR clamp domain. Furthermore, OEP61 selectively recognizes chloroplast precursors via their targeting sequences, and a soluble form of OEP61 inhibits chloroplast targeting. We therefore propose that OEP61 is a novel chaperone receptor at the chloroplast outer envelope, mediating Hsp70-dependent protein targeting to chloroplasts.  相似文献   

7.
We have used a hybrid precursor protein to study the pathway of protein import into chloroplasts. This hybrid (pS/protA) consists of the precursor to the small subunit of Rubisco (pS) fused to the IgG binding domains of staphylococcal protein A. The pS/protA is efficiently imported into isolated chloroplasts and is processed to its mature form (S/protA). In addition to the mature stromal form, two intermediates in the pathway of pS/protA import were identified at early time points in the import reaction. The first intermediate represents unprocessed pS/protA bound to the outer surface of the chloroplast envelope and is analogous to a previously characterized form of pS that is specifically bound to the chloroplast surface and can be subsequently translocated in the stroma (Cline, K., M. Werner-Washburne, T. H. Lubben, and K. Keegstra. 1985. J. Biol. Chem. 260:3691-3696.) The second intermediate represents a partially translocated form of the precursor that remains associated with the envelope membrane. This form is processed to mature S/protA, but remains susceptible to exogenously added protease in intact chloroplasts. We conclude that the envelope associated S/protA is spanning both the outer and inner chloroplast membranes en route to the stroma. Biochemical and immunochemical localization of the two translocation intermediates indicates that both forms are exposed at the surface of the outer membrane at sites where the outer and inner membrane are closely apposed. These contact zones appear to be organized in a reticular network on the outer envelope. We propose a model for protein import into chloroplasts that has as its central features two distinct protein conducting channels in the outer and inner envelope membranes, each gated open by a distinct subdomain of the pS signal sequence.  相似文献   

8.
Tu SL  Chen LJ  Smith MD  Su YS  Schnell DJ  Li HM 《The Plant cell》2004,16(8):2078-2088
Most chloroplast outer-membrane proteins are synthesized at their mature size without cleavable targeting signals. Their insertion into the outer membrane is insensitive to thermolysin pretreatment of chloroplasts and does not require ATP. It has therefore been assumed that insertion of outer-membrane proteins proceeds through a different pathway from import into the interior of chloroplasts, which requires a thermolysin-sensitive translocon complex and ATP. Here, we show that a model outer-membrane protein, OEP14, competed with the import of a chloroplast interior protein, indicating that the two import pathways partially overlapped. Cross-linking studies showed that, during insertion, OEP14 was associated with Toc75, a thermolysin-resistant component of the outer-membrane protein-conducting channel that mediates the import of interior-targeted precursor proteins. Whereas almost no OEP14 inserted into protein-free liposomes, OEP14 inserted into proteoliposomes containing reconstituted Toc75 with a high efficiency. Taken together, our data indicate that Toc75 mediates OEP14 insertion, and therefore plays a dual role in the targeting of proteins to the outer envelope membrane and interior of chloroplasts.  相似文献   

9.
We have investigated the interactions of two nuclear-encoded preproteins with the chloroplast protein import machinery at three stages in import using a label-transfer crosslinking approach. During energy-independent binding at the outer envelope membrane, preproteins interact with three known components of the outer membrane translocon complex, Toc34, Toc75, and Toc86. Although Toc75 and Toc86 are known to associate with preproteins during import, a role for Toc34 in preprotein binding previously had not been observed. The interaction of Toc34 with preproteins is regulated by the binding, but not hydrolysis of GTP. These data provide the first evidence for a direct role for Toc34 in import, and provide insights into the function of GTP as a regulator of preprotein recognition. Toc75 and Toc86 are the major targets of cross-linking upon insertion of preproteins across the outer envelope membrane, supporting the proposal that both proteins function in translocation at the outer membrane as well as preprotein recognition. The inner membrane proteins, Tic(21) and Tic22, and a previously unidentified protein of 14 kD are the major targets of crosslinking during the late stages in import. These data provide additional support for the roles of these components during protein translocation across the inner membrane. Our results suggest a defined sequence of molecular interactions that result in the transport of nuclear-encoded preproteins from the cytoplasm into the stroma of chloroplasts.  相似文献   

10.
Cytoplasmically synthesized precursors interact with translocation components in both the outer and inner envelope membranes during transport into chloroplasts. Using co-immunoprecipitation techniques, with antibodies specific to known translocation components, we identified stable interactions between precursor proteins and their associated membrane translocation components in detergent-solubilized chloroplastic membrane fractions. Antibodies specific to the outer envelope translocation components OEP75 and OEP34, the inner envelope translocation component IEP110 and the stromal Hsp100, ClpC, specifically co-immunoprecipitated precursor proteins under limiting ATP conditions, a stage we have called docking. A portion of these same translocation components was co-immunoprecipitated as a complex, and could also be detected by co-sedimentation through a sucrose density gradient. ClpC was observed only in complexes with those precursors utilizing the general import apparatus, and its interaction with precursor-containing translocation complexes was destabilized by ATP. Finally, ClpC was co-immunoprecipitated with a portion of the translocation components of both outer and inner envelope membranes, even in the absence of added precursors. We discuss possible roles for stromal Hsp100 in protein import and mechanisms of precursor binding in chloroplasts.  相似文献   

11.
Outer envelope membranes were isolated from purified chloroplasts of pea leaves. The sidedness of the vesicles was analyzed by (i) aqueous polymer-two phase partitioning, (ii) the effect of limited proteolysis on the outer-envelope proteins (OEP) 86 and OEP 7 in intact organelles and isolated membranes, (iii) fluorescence-microscopy and finally (iv) binding of precursor polypeptides to isolated outer-membrane vesicles. The results demonstrate that purified outer envelope membranes occur largely (>90%) as right-side-out vesicles.Abbreviations FITC fluorescein isothiocyanate - IEP Pinner-envelope protein - OE outer-envelope protein - pSSU precursor form of the small subunit of ribulose bisphosphate carboxylaseoxygenase - SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis We thank P. Å. Albertsson, Lund, Sweden, for introducing one of us (S. E.) to the technique of phase partitioning. This work was supported by the Deutsche Forschungsgemeinschaft (SFB 246) and Fonds der Chemischen Industrie.  相似文献   

12.
P J Tranel  J Froehlich  A Goyal    K Keegstra 《The EMBO journal》1995,14(11):2436-2446
A chloroplastic outer envelope membrane protein of 75 kDa (OEP75) was identified previously as a component of the protein import machinery. Here we provide additional evidence that OEP75 is a component of protein import, present the isolation of a cDNA clone encoding this protein, briefly describe its developmental expression and tissue specificity, and characterize its insertion into the outer envelope membrane. OEP75 was synthesized as a higher molecular weight precursor (prOEP75) which bound to isolated chloroplasts in an in vitro import assay and subsequently was processed to the mature form (mOEP75). During this import assay, two proteins intermediate in size between prOEP75 and mOEP75 were detected. One of these intermediates was also detected in chloroplast envelopes isolated from young pea leaves. Binding and processing of prOEP75 required ATP and one or more surface-exposed proteinaceous components, and was competed by prSSU, a stromal-targeted protein. We propose that the N-terminus of the prOEP75 transit peptide acts as a stromal-targeting domain and a central, hydrophobic region of this transit peptide acts as a stop-transfer domain. A complex route of insertion and processing of prOEP75 may exist to ensure high fidelity targeting of this import component.  相似文献   

13.
A cDNA clone encoding a major chloroplast inner envelope membrane protein of 96 kDa (IEP96) was isolated and characterized. The protein is synthesized as a larger-molecular-weight precursor (pIEP96) which contains a cleavable N-terminal transit sequence of 50 amino acids. The transit peptide exhibits typical stromal targeting information. It is cleaved in vitro by the stromal processing peptidase, though the mature protein is clearly localized in the inner envelope membrane. Translocation of pIEP96 into chloroplasts is greatly stimulated in the presence of 80 mM potassium phosphate which results in an import efficiency of about 90%. This effect is specific for potassium and phosphate, but cannot be ascribed to a membrane potential across the inner envelope membrane. Protein sequence analysis reveals five stretches of repeats of 26 amino acids in length. The N-terminal 300 amino acids are 45% identical (76% similarity) to the 35 kDa -subunit of acetyl-CoA carboxyl-transferase from Escherichia coli. The C-terminal 500 amino acids share significant similarity (69%) with USOI, a component of the cytoskeleton in yeast.Abbreviations Pi phosphate - IEP inner envelope membrane protein - pIEP precursor form of IEP - SSU small subunit of ribulose-1,5-bisphosphate carboxylase oxygenase - IEP96pep peptide specific antiserum to IEP96 - IEP96pol polyspecific antiserum to IEP96  相似文献   

14.
While the import of nuclear-encoded chloroplast proteins is relatively well studied, the targeting of proteins to the outer membrane of the chloroplast envelope is not. The insertion of most outer membrane proteins (OMP) is generally considered to occur without the utilization of energy or proteinaceous components. Recently, however, proteins have been shown to be involved in the integration of outer envelope protein 14 (OEP14), whose outer membrane insertion was previously thought to be spontaneous. Here we investigate the insertion of two proteins from Physcomitrella patens, PpOEP64-1 and PpOEP64-2 (formerly known as PpToc64-1 and PpToc64-2), into the outer membrane of chloroplasts. The association of PpOEP64-1 with chloroplasts was not affected by chloroplast pre-treatments. Its insertion into the membrane was affected, however, demonstrating the importance of measuring insertion specifically in these types of assays. We found that the insertion of PpOEP64-1, PpOEP64-2 and two other OMPs, OEP14 and digalactosyldiacylglycerol synthase 1 (DGD1), was reduced by either nucleotide depletion or proteolysis of the chloroplasts. Integration was also inhibited in the presence of an excess of an imported precursor protein. In addition, OEP14 competed with the insertion of the OEP64s and DGD1. These data demonstrate that the targeting of several OMPs involves proteins present in chloroplasts and requires nucleotides. Together with previous reports, our data suggest that OMPs in general do not insert spontaneously.  相似文献   

15.
The identification and localization of a marker protein for the intermembrane space between the outer and inner chloroplast envelopes is described. This 64-kDa protein is very rapidly labeled by [gamma-32P]ATP at very low (30 nM) ATP concentrations and the phosphoryl group exhibits a high turnover rate. It was possible to establish the presence of the 64-kDa protein in this plastid compartment by using different chloroplast envelope separation and isolation techniques. In addition comparison of labeling kinetics by intact and hypotonically lysed pea chloroplasts support the localization of the 64-kDa protein in the intermembrane space. The 64-kDa protein was present and could be labeled in mixed envelope membranes isolated from hypotonically lysed plastids. Mixed envelope membranes incorporated high amounts of 32P from [gamma-32P]ATP into the 64-kDa protein, whereas separated outer and inner envelope membranes did not show significant phosphorylation of this protein. Water/Triton X-114 phase partitioning demonstrated that the 64-kDa protein is a hydrophilic polypeptide. These findings suggest that the 64-kDa protein is a soluble protein trapped in the space between the inner and outer envelope membranes. After sonication of mixed envelope membranes, the 64-kDa protein was no longer present in the membrane fraction, but could be found in the supernatant after a 110,000 x g centrifugation.  相似文献   

16.
17.
The molecular composition of chloroplast outer and inner envelope translocons is fairly well established, but little is known about mechanisms and elements involved in import regulation. After synthesis in the cytosol, chloroplast targeted precursor proteins are recognized by outer envelope receptors Toc34 and Toc159. Phosphorylation plays an important role in regulation of Toc34 activity and preprotein binding. Using kinase renaturation assays, we have identified an ATP-dependent 98-kDa outer envelope kinase which is able to selectively phosphorylate Toc34 at a specific site. A 70-kDa outer envelope polypeptide phosphorylating Toc159 was identified by the same strategy. Antiserum against the 98-kDa kinase inhibits phosphorylation of Toc34, whereas labeling of Toc159 remains unaffected. Both kinases do not autophosphorylate in vitro and are unable to utilize myelin basic protein as substrate. We propose that distinct kinases are involved in regulation of chloroplast import via desensitization of preprotein receptors.  相似文献   

18.
The chloroplastic inner envelope protein of 110 kD (IEP110) is part of the protein import machinery in the pea. Different hybrid proteins were constructed to assess the import and sorting pathway of IEP110. The IEP110 precursor (pIEP110) uses the general import pathway into chloroplasts, as shown by the mutual exchange of presequences with the precursor of the small subunit of ribulose-1,5-bisphosphate carboxylase (pSSU). Sorting information to the chloroplastic inner envelope is contained in an NH2-proximal part of mature IEP110 (110N). The NH2-terminus serves to anchor the protein into the membrane. Large COOH-terminal portions of this protein (80–90 kD) are exposed to the intermembrane space in situ. Successful sorting and integration of IEP110 and the derived constructs into the inner envelope are demonstrated by the inaccessability of processed mature protein to the protease thermolysin but accessibility to trypsin, i.e., the imported protein is exposed to the intermembrane space. A hybrid protein consisting of the transit sequence of SSU, the NH2-proximal part of mature IEP110, and mature SSU (tpSSU-110N-mSSU) is completely imported into the chloroplast stroma, from which it can be recovered as soluble, terminally processed 110NmSSU. The soluble 110N-mSSU then enters a reexport pathway, which results not only in the insertion of 110N-mSSU into the inner envelope membrane, but also in the extrusion of large portions of the protein into the intermembrane space. We conclude that chloroplasts possess a protein reexport machinery for IEPs in which soluble stromal components interact with a membrane-localized translocation machinery.  相似文献   

19.
We have used synthetic peptides representing segments of the signal sequences of preferredoxin (pFd) and the precursor of the small subunit of ribulose-1,5-bisphosphate carboxylase (pS) to study interactions with the signal sequence recognition system at the chloroplast surface. Peptides representing the COOH-terminal 30 amino acids of the pFd and pS signal peptides were able to completely and reversibly inhibit the import of their homologous precursors into isolated chloroplasts at a 2.5 microM concentration. Import was blocked at the level of precursor binding to the chloroplast. This inhibition of precursor binding and import was not due to disruption of chloroplast integrity as incubation of isolated chloroplasts with the peptides did not cause measurable perturbation of the envelope membranes. The peptides also were able to block the import of the heterologous precursor protein, suggesting that pS and pFd share a common signal sequence recognition system. Visualization of the bound peptides at the chloroplast surface by indirect immunofluorescence microscopy using antipeptide antibodies gave a marked punctate staining pattern. This pattern is consistent with the localization of chloroplast import receptor(s) at contact zones between the inner and outer envelope membranes.  相似文献   

20.
J. Soll 《Planta》1985,166(3):394-400
A protein kinase was found in envelope membranes of purified pea (Pisum sativum L.) chloroplasts. Separation of the two envelope membranes showed that most of the enzyme activity was localized in the outer envelope. The kinase was activated by Mg2+ and inhibited by ADP and pyrophosphate. It showed no response to changes in pH in the physiological range (pH 7-8) or conventional protein substrates. Up to ten phosphorylated proteins could be detected in the envelope-membrane fraction. The molecular weights of these proteins, as determined by polyacrylamide-gel electrophoresis were: two proteins higher than 145 kDa, 97, 86, 62, 55, 46, 34 and 14 kDa. The 86-kDa band being the most pronounced. Experiments with separated inner and outer envelopes showed that most labeled proteins are also localized in the outer-envelope fraction. The results indicate a major function of the outer envelope in the communication between the chloroplast and the parent cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号