首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
An allele-specific polymerase chain reaction (PCR) amplification method was developed to determine the genotypes at the bovine growth hormone locus that result from two nucleotide substitutions in exon 5 of the gene. This method was a multiplex PCR (ASM–PCR) employing a common primer pair and two allele-specific reverse primers. The common primer pair was designed to amplify a target region containing two substitution points from the three variants of the bovine growth hormone gene. The allele-specific primers were designed to be mismatched with other genotypes at the 3' end of oligonucleotides. When the common and allele-specific reverse primers competed with each other, the shorter allele-specific fragments were amplified preferentially. Consequently, the PCR products of the variant-specific fragments were 347, 483 and 656 bp for alleles A, B and C, respectively, of the bovine growth hormone gene. Genotypes of the bovine growth hormone gene were easily identified by agarose gel electrophoresis of PCR products. The results suggested that this multiplex PCR method would be useful for identification of genetic variants caused by point mutations.  相似文献   

2.
We present a simple rapid reproducible polymerase chain reaction based technique, termed amplified product length polymorphism (APLP), as a new strategy for primer design for ABO genotyping. The method involves the use of primers differing in length and permits the identification of the major ABO genotypes (A1, A2, B, OA, OG, and O2) according to the molecular size of the allele-specific amplified products. Ten different primers designed to analyze the variations in nucleotide positions 261, 297, 796, 802, and 1059–1061 of cDNA are mixed in one reaction, and the amplified products are resolved on a polyacrylamide gel. Of eight PCR fragments (132 bp, 120 bp, 108 bp, 98 bp, 88 bp, 80 bp, 72 bp, and 64 bp), two to five are amplified in the reaction according to ABO genotypes. The new technique has been successfully applied to the genotyping of 221 peripheral blood samples from Japanese and Germans whose ABO phenotypes had previously been determined; a novel A allele (AG) was found in Japanese individuals. Received: 12 June 1996 / Revised: 15 August 1996  相似文献   

3.
The wide development of single nucleotide polymorphism (SNP) markers also in non-model species increases the need for inexpensive methods that do not require sophisticated equipment and time for optimization. This work presents a new method for polymerase chain reaction (PCR) amplification of multiple specific alleles (PAMSA), which allows efficient discrimination of SNP polymorphisms in one reaction tube with standard PCR conditions. This improved PAMSA requires only three unlabeled primers: a common reverse primer and two allele-specific primers having a tail of different length to differentiate the two SNP alleles by the size of amplification products on agarose gel. A destabilizing mismatch within the five bases of the 3′ end is also added to improve the allele specificity. To validate the accuracy of this method, 94 full-sib individuals were genotyped with three SNPs and compared to the genotypes obtained by cleaved amplified polymorphic sequence (CAPS) or derived CAPS. This method is flexible, inexpensive, and well suited for high throughput and automated genotyping.  相似文献   

4.
Direct Sanger sequencing of polymerase chain reaction (PCR)-amplified nuclear genes leads to polymorphic sequences when allelic variation is present. To overcome this problem, most researchers subclone the PCR products to separate alleles. An alternative is to directly sequence the separate alleles using allele-specific primers. We tested two methods to enhance the specificity of allele-specific primers for use in direct sequencing: using short primers and amplification refractory mutation system (ARMS) technique. By shortening the allele-specific primer to 15-13 nucleotides, the single mismatch in the ultimate base of the primer is enough to hinder the amplification of the nontarget allele in direct sequencing and recover only the targeted allele at high accuracy. The deliberate addition of a second mismatch, as implemented in the ARMS technique, was less successful and seems better suited for allele-specific amplification in regular PCR rather than in direct sequencing.  相似文献   

5.
The allele-specific polymerase chain reaction (ASPCR) has been used to determine the genotype of maize lines at two loci, wx and NPI288. The ASPCR method uses allele-specific oligonucleotide primers in PCR amplifications to amplify and discriminate simultaneously between polymorphic alleles. The success of this technique relies on the specific failure of PCR to amplify with primers that do not perfectly match the DNA sequence of one of the allelic variants. Amplification results were evaluated by dot-blot hybridization using an alkaline-phosphatase-coupled probe. The technique's speed, accuracy, sensitivity, and high throughput make it valuable for plant-breeding applications.  相似文献   

6.
A method was developed to distinguish between genotypic variants B and C of bovine alpha s1-casein, using the allele-specific polymerase chain reaction (ASPCR). The alpha s1-casein genotype determined for 17 Jersey cows by the ASPCR method was confirmed by typing the alpha s1-casein milk proteins on isoelectric focusing gels. Using the ASPCR method described, rapid analysis of the alpha s1-casein genotype of bulls is now possible. In addition, kappa-casein genotypes can be determined from the same PCR reaction.  相似文献   

7.
Different methods have been developed for single nucleotide polymorphism (SNP) typing during recent years. Allele-specific polymerase chain reaction (ASPCR) is a cost-saving method that scores SNPs by difference of the PCR efficiency of allele-specific primers. However, ASPCR for SNP typing is notoriously confounded for its locus-specific unpredictability and the laborious gel electrophoresis. In the current study, we investigated the real-time kinetics of ASPCR and found that a simple touchdown thermocycling protocol improved its specificity significantly. Combined with real-time PCR, we developed a homogeneous genotyping method and scored more than 1000 genotypes, including all transition and transversion SNPs. A clear genotyping result was identified and validated the robustness of the method. Optimization of reactions and intrinsic modification of allele-specific primers, a laborious process but one that is repeatedly reported to be inevitable for successful ASPCR, was proved to be unnecessary with our method. Accuracy was confirmed with mass spectrometry. These characters enabled real-time ASPCR with the touchdown thermocycling protocol being very competitive among various SNP typing methods for large-scale genetic studies.  相似文献   

8.
Deoxyribonuclease I (DNase I) polymorphism has been used as a valuable marker in genetic and clinical investigations. Six codominant alleles are known for DNase I, DNASE1*1, *2, *3, *4, and the recently discovered alleles *5 and *6. To detect these two new alleles, we added a new DNase I genotyping method based on both an allele-specific amplification and mismatched polymerase chain reaction (PCR). These methods were used to examine the distribution of DNase I genotypes in unrelated individuals from bloodstains of Ovambo and Turkish populations. The DNASE1*1 allele was found to be most dominant in the Ovambos. In contrast, Turks showed the highest allele frequency for DNASE1*2. This study is the first to demonstrate that there is a certain genetic heterogeneity in the worldwide distribution of DNase I polymorphism using the genotyping method of human DNase I polymorphism with PCR.  相似文献   

9.
In bivalves, heterozygote deficiencies and departures from Hardy-Weinberg equilibrium (HWE) in microsatellite analysis are common and mainly attributed to inbreeding, genetic patchiness (Walhund effect), or null alleles. We checked for the occurrence of null alleles at 3 microsatellite loci in 3 populations of black-lipped pearl oyster, Pinctada margaritifera, using a step-by-step method to re-amplify homozygotes and null individuals with redesigned primer pair combinations. After amplification with original primer pairs, the 3 populations exhibited null alleles, absence of structure, and significant departure from HWE for all 3 loci due to heterozygote deficiencies. After 3 re-amplification steps, with modified primer sets, all loci were corrected for null alleles. Once corrected, all populations appeared at HWE, demonstrating that null alleles were responsible for the initial disequilibrium of the populations. Furthermore, analysis from corrected genotypes demonstrates significant genetic differentiation for one population from the other 2.  相似文献   

10.
Human apolipoprotein A-IV exhibits a polymorphism, first investigated at the protein level, that is caused by a single amino acid substitution of glutamine to histidine at codon 360. Detection of this polymorphism requires polymerase chain reaction (PCR) and direct sequencing of the amplified products, radiolabeled allele-specific oligonucleotides (ASOs) technique, or restriction enzyme analysis of the amplified products. However, these techniques involve the use of radioactivity and/or are not well suited to the rapid processing of a large number of samples. In this paper, we propose a new technique, a bispecific-allele primer amplification, in which a simple electrophoresis of PCR products is used for typing the variation at codon 360. The 3' primer of PCR hybridizes with one or other homologous sequence in the apoA-IV gene, depending on the presence or the absence of the mutation. This differential hybridization of the primer is used for typing the variation. In order to demonstrate the validity of this system, 120 individuals phenotyped by two-dimensional electrophoresis and genotyped by ASO were analyzed by this new technique. The results obtained by the latter method are in agreement with those found by the other techniques. However, this method is simple, more reliable, and will facilitate population studies without using radioactive materials.  相似文献   

11.
The application of molecular DNA technologies to anthropological questions has meant that rare or archival samples of human remains, including blood, hair, and bone, can now be used as a source of material for genetic analysis. Often, these samples are irreplaceable, and/or yield very small quantities of DNA, so methods for preamplifying as much of the whole genome as possible would greatly enhance their usefulness. DOP-PCR (degenerate oligonucleotide-primed polymerase chain reaction) is an amplification method that uses a degenerate primer and very low initial annealing temperatures to amplify the whole genome. We adapted a published DOP-PCR protocol to long PCR enzyme and amplification conditions. The effectiveness of these modifications was tested by PCR amplification of DOP-PCR products at a mixture of genomic targets including 66 different microsatellites, 11 Alu insertion polymorphisms, and variable-length segments of the human lipoprotein lipase gene (LPL). The selected microsatellite markers were chosen to represent every chromosome, with expected product sizes ranging from 150 base pairs to 8,000 base pairs in length, while the 22 Alu insertion polymorphisms were selected to reveal biases in the recovery of alleles of different sizes. To determine nucleotide sequence variation, 2 kilobases (kb) of the LPL gene in 30 Mongolian individuals were sequenced. All gene-specific targets from DOP-PCR product template were amplified. No unexpected polymorphisms in the sequence results attributable to the DOP-PCR step were found, and 93% to 95% of Alu genotypes that have been amplified from total genomic DNA were replicated. The incorrect typings were all due to the preferential amplification of the shorter of two possible alleles in individuals heterozygous for an Alu insertion and were all correctly typed on subsequent reamplification of the gene-specific PCR products. This method of whole-genome amplification promises to be an efficient way to maximize the genetic use of rare anthropological samples.  相似文献   

12.
S Rust  H Funke    G Assmann 《Nucleic acids research》1993,21(16):3623-3629
With increasing knowledge about the causal role of genetic defects in clinical diseases the necessity is apparent to have procedures for rapid diagnosis of point mutations. We developed a PCR-based technique, whereby both normal and mutant alleles can be amplified in the same reaction tube, using different length allele-specific primers. Furthermore the allele-specific primers introduce additional deliberate differences into the allelic PCR-products that drastically reduce crossreactions in subsequent cycles. This mutagenesis separates the amplification reactions of the alleles performed in the same tube. Subsequent identification of the PCR-products is done by gel electrophoresis and shows at least one of the two allelic products. Therefore, in addition to simple handling, MS-PCR provides a within-assay quality control for the exclusion of false negative results. The feasibility of this technique has been tested using six different mutations. The high sensitivity of MS-PCR also allows screening for mutation carriers in pooled DNA samples.  相似文献   

13.
We present a PCR method for identification of single nucleotide polymorphisms (SNPs), using allele-specific primers designed for selective amplification of each allele. Matching the SNP at the 3' end of the forward or reverse primer, and additionally incorporating a 3' mismatch to prevent amplification of the incorrect allele, results in selectivity of the allele-specific primers. DNA melting analysis with fluorescent SYBR Green affords detection of the PCR products. By incorporating a GC-rich sequence into one of the two allele-specific primers to increase the melting temperature, both alleles can be measured simultaneously at their respective melting temperatures. Applying the DNA melting analysis to SNPs in ApoE and ABCA1 yielded results identical to those obtained with other genotyping methods. This provides a cost-effective, high-throughput method for amplification and scoring of SNPs.  相似文献   

14.
We have developed a genetic field effect transistor (FET) for single nucleotide polymorphism (SNP) genotyping, which is based on potentiometric detection of molecular recognition on the gate insulator. Here, we report direct transduction of allele-specific primer extension on the gate surface into electrical signal using the genetic FETs. This method is based on detection of intrinsic negative charges of polynucleotide synthesized by DNA polymerase. The charge density change at the gate surface could be monitored during primer extension reaction. Moreover, three different genotypes could be successfully distinguished without any labeling for target DNA by the use of the genetic FET in combination with allele-specific primer extension. The platform based on the genetic FETs is suitable for a simple, accurate and inexpensive system for SNP genotyping in clinical diagnostics.  相似文献   

15.
AFLPTM is a new technique to generate large numbers of molecular markers for genetic mapping. The method involves the selective amplification of a limited number of DNA restriction fragments out of complex plant genomic DNA digests using PCR. With six primer combinations 264 segregating AFLP amplification products were identified in a diploid backcross population from non-inbred potato parents. The identity of an AFLP marker was specified by the primer combination of the amplification product and its size estimated in bases. The segregating AFLP amplification products were mapped by using a mapping population with 217 already known RFLP, isozyme and morphological trait loci. In general, the AFLP markers were randomly distributed over the genome, although a few clusters were observed. No indications were found that AFLP markers are present in other parts of the genome than those already covered by RFLP markers. Locus specificity of AFLP markers was demonstrated because equally sized amplification products segregating from both parental clones generally mapped to indistinguishable maternal and paternal map positions. Locus specificity of AFLP amplification products will allow to establish the chromosomal identity of linkage groups in future mapping studies.Since AFLP technology is a multi-locus detection system, it was not possible to identify the AFLP alleles which belong to a single AFLP locus. The consequences of a genetic analysis based on single alleles, rather than on loci with two or more alleles on mapping studies using progenies of non-inbred parents are discussed.  相似文献   

16.
The use of the AFLP (amplified fragment length polymorphism) technique for the characterization of highly inbred Iberian pig breed genotypes and the detection of strain-specific polymorphisms is demonstrated. Twelve different primer combinations were used on individual DNA samples from animals belonging to two black hairless Iberian pig strains, Guadyerbas and Coronado. These amplification reactions allowed the detection of more than 1700 amplification products of which 26 were identified as strain-specific markers, present in all individuals of one strain and absent in the other. Comparison of male and female amplification products within one strain also allowed the identification of 8 male-specific amplified bands. AFLP showed a great power of marker detection due to a high multiplex ratio and high reproducibility. Comparison of similarity and co-ancestry coefficient matrices also showed the usefulness of AFLP markers to estimate genetic relationships between individuals pigs.  相似文献   

17.
基于荧光定量PCR扩增反应的SNP测定法   总被引:4,自引:0,他引:4  
建立一种利用荧光定量PCR扩增反应进行单核苷酸多态性(SNP)快速测定的方法.以人β肾上腺素受体2基因中的Arg16Gly为研究对象,利用荧光染料SYBRGreenⅠ标记定量PCR产物,通过PCR生长曲线和融解曲线分析结果进行SNP分型.为提高SNP测定的特异性,分别在野生型和突变型等位基因的特异性引物3′端倒数第3个碱基位置,引入了一个人为错配碱基,使引物的错误延伸率显著降低,大大提高了SNP分析的准确性.通过DNA测序验证荧光定量PCR对β肾上腺素受体2基因中Arg16Gly分型结果的准确率.实验结果表明,所建立的方法操作简便,结果准确,适合进行大规模样品的SNP检测工作.  相似文献   

18.
Sperm typing is an effective way to study recombination rate on a fine scale in regions of interest. There are two strategies for the amplification of single meiotic recombinants: repulsion-phase allele-specific PCR and whole genome amplification (WGA). The former can selectively amplify single recombinant molecules from a batch of sperm but is not scalable for high-throughput operation. Currently, primer extension pre-amplification is the only method used in WGA of single sperm, whereas it has limited capacity to produce high-coverage products enough for the analysis of local recombination rate in multiple large regions. Here, we applied for the first time a recently developed WGA method, multiple displacement amplification (MDA), to amplify single sperm DNA, and demonstrated its great potential for producing high-yield and high-coverage products. In a 50 μl reaction, 76 or 93% of loci can be amplified at least 2500- or 250-fold, respectively, from single sperm DNA, and second-round MDA can further offer >200-fold amplification. The MDA products are usable for a variety of genetic applications, including sequencing and microsatellite marker and single nucleotide polymorphism (SNP) analysis. The use of MDA in single sperm amplification may open a new era for studies on local recombination rates.  相似文献   

19.
This study introduces a DNA microarray-based genotyping system for accessing single nucleotide polymorphisms (SNPs) directly from a genomic DNA sample. The described one-step approach combines multiplex amplification and allele-specific solid-phase PCR into an on-chip reaction platform. The multiplex amplification of genomic DNA and the genotyping reaction are both performed directly on the microarray in a single reaction. Oligonucleotides that interrogate single nucleotide positions within multiple genomic regions of interest are covalently tethered to a glass chip, allowing quick analysis of reaction products by fluorescence scanning. Due to a fourfold SNP detection approach employing simultaneous probing of sense and antisense strand information, genotypes can be automatically assigned and validated using a simple computer algorithm. We used the described procedure for parallel genotyping of 10 different polymorphisms in a single reaction and successfully analyzed more than 100 human DNA samples. More than 99% of genotype data were in agreement with data obtained in control experiments with allele-specific oligonucleotide hybridization and capillary sequencing. Our results suggest that this approach might constitute a powerful tool for the analysis of genetic variation.  相似文献   

20.
The ABO blood group is the most important blood group system in transfusion medicine and organ transplantation. To date, more than 160 ABO alleles have been identified by molecular investigation. Almost all ABO genotyping studies have been performed in blood donors and families and for investigation of ABO subgroups detected serologically. The aim of the present study was to perform ABO genotyping in patients with leukemia. Blood samples were collected from 108 Brazilian patients with chronic myeloid leukemia (N = 69), chronic lymphoid leukemia (N = 13), acute myeloid leukemia (N = 15), and acute lymphoid leukemia (N = 11). ABO genotyping was carried out using allele specific primer polymerase chain reaction followed by DNA sequencing. ABO*O01 was the most common allele found, followed by ABO*O22 and by ABO*A103. We identified 22 new ABO*variants in the coding region of the ABO gene in 25 individuals with leukemia (23.2%). The majority of ABO variants was detected in O alleles (15/60.0%). In 5 of 51 samples typed as blood group O (9.8%), we found non-deletional ABO*O alleles. Elucidation of the diversity of this gene in leukemia and in other diseases is important for the determination of the effect of changes in an amino acid residue on the specificity and activity of ABO glycosyltransferases and their function. In conclusion, this is the first report of a large number of patients with leukemia genotyped for ABO. The findings of this study indicate that there is a high level of recombinant activity in the ABO gene in leukemia patients, revealing new ABO variants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号