首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Cell migration can be principally viewed as a chain of well-orchestrated morphological events that lead to dynamic reshaping of the cell body. However, behind the scene of such a “morphological theater” there are very complex, interrelated molecular and physiological processes that drive the cell movement. Among them, ion transport and pH regulation play a key role, with carbonic anhydrase IX (CA IX) emerging as one of the important “molecular actors.” CA IX is a highly active cell surface enzyme expressed in a broad range of solid tumors in response to hypoxia and explored as a clinically useful biomarker of hypoxia and as a therapeutic target. Its biological role is to protect tumor cells from hypoxia and acidosis in the tumor microenvironment. The study published recently by our group showed that CA IX actively contributes to cell migration and invasion. For the first time, we demonstrated CA IX accumulation in lamellipodia of migrating cells and its direct in situ interaction with bicarbonate transporters. Our findings indicate that tumor cells need CA IX not only as a pro-survival factor in hypoxia and acidosis, but also as a pro-migratory component of the cellular apparatus driving epithelial-mesenchymal transition.  相似文献   

2.
3.
The activity and cellular localization of carbonic anhydrase (CA) in two alkaliphilic anaerobes growing in soda lakes at pH 9–10 were studied. CA activity in the cell extracts of the acetogenic bacterium Natroniella acetigena was comparable to that of neutrophilic acetogens. Hydrogenotrophically grown cells of Desulfonatronum lacustre exhibited higher CA activity compared to the cells grown on medium with formate. High CA activity in the cytoplasmic fraction and the absence of high activity in the extracellular fraction were demonstrated. We propose that the cytoplasmic CA in alkaliphilic sulfate-reducers participates in conversion of bicarbonate to CO2, which is reduced in the cell to acetate via the acetyl-CoA pathway.  相似文献   

4.
The presence of aromatic clusters has been found to be an integral feature of many proteins isolated from thermophilic microorganisms. Residues found in aromatic cluster interact via π–π or C–H?π bonds between the phenyl rings, which are among the weakest interactions involved in protein stability. The lone aromatic cluster in human carbonic anhydrase II (HCA II) is centered on F226 with the surrounding aromatics F66, F95 and W97 located 12 Å posterior the active site; a location which could facilitate proper protein folding and active site construction. The role of F226 in the structure, catalytic activity and thermostability of HCA II was investigated via site-directed mutagenesis of three variants (F226I/L/W) into this position. The measured catalytic rates of the F226 variants via 18O-mass spectrometry were identical to the native enzyme, but differential scanning calorimetry studies revealed a 3–4 K decrease in their denaturing temperature. X-ray crystallographic analysis suggests that the structural basis of this destabilization is via disruption and/or removal of weak C–H?π interactions between F226 to F66, F95 and W97. This study emphasizes the importance of the delicate arrangement of these weak interactions among aromatic clusters in overall protein stability.  相似文献   

5.
Nonaqueous fractionation of leaves of the cotton plant suggested that carbonic anhydrase was associated with the chloroplasts. Activity of this enzyme in aqueous extracts prepared in media containing no reductants was stable at 4°. Response to sulfhydryl reagents varied. The results indicated that thiol groups, necessary for the activity of the enzyme, were partially protected from oxidation.  相似文献   

6.
Carbonic anhydrase (CA) enzymes have been shown to play an important role in ion transport and in pH regulation in several organisms. Despite this information and the wealth of knowledge regarding the significance of CA enzymes, few studies have been reported about bee CA enzymes and the hazardous effects of chemicals. Using Apis mellifera as a model, this study aimed to determine the risk of pesticides on Apis mellifera Carbonic anhydrase enzyme (Am CA). CA was initially purified from Apis mellifera spermatheca for the first time in the literature. The enzyme was purified with an overall purification of ~35-fold with a molecular weight of ~32?kDa. The enzyme was then exposed to pesticides, including tebuconazole, propoxur, carbaryl, carbofuran, simazine and atrazine. The six pesticides dose-dependently inhibited in vitro AmCA activity at low micromolar concentrations. IC50 values for the pesticides were 0.0030, 0.0321, 0.0031, 0.0087, 0.0273 and 0.0165?μM, respectively. The AmCA inhibition mechanism of these compounds is unknown at this moment.  相似文献   

7.
碳酸酐酶IX (carbonic anhydrase IX, CAIX)是一种在乏氧肿瘤细胞表面特异性过表达的跨膜蛋白,具有调节肿瘤细胞内外酸碱度的功能,与肿瘤增殖、侵袭和转移息息相关。因此,CAIX是一个很有潜力的肿瘤成像和治疗靶点。本文详细阐述了基于CAIX的肿瘤成像、治疗和诊疗一体化的研究进展,并对CAIX作为抗肿瘤靶点的应用前景进行了展望。  相似文献   

8.
Abstract

Among the diagnostic techniques for the identification of tumour biomarkers, the liquid biopsy is considered one that offers future research on precision diagnosis and treatment of tumours in a non-invasive manner. The approach consists of isolating tumor-derived components, such as circulating tumour cells (CTC), tumour cell-free DNA (ctDNA), and extracellular vesicles (EVs), from the patient peripheral blood fluids. These elements constitute a source of genomic and proteomic information for cancer treatment. Within the tumour-derived components of the body fluids, the enzyme indicated with the acronym CA IX and belonging to the superfamily of carbonic anhydrases (CA, EC 4.2.1.1) is a promising aspirant for checking tumours. CA IX is a transmembrane-CA isoform that is strongly overexpressed in many cancers being not much diffused in healthy tissues except the gastrointestinal tract. Here, it is summarised the role of CA IX as tumour-associated protein and its putative relationship in liquid biopsyfor diagnosing and monitoring cancer progression.  相似文献   

9.
The aim of this study was to identify events that might take place in oligodendrocytes early in the process of demyelination, i.e., before the occurrence of massive loss of myelin. It was considered important to focus on demyelination and remyelination in young adults, in whose brains there would be relatively few juvenile glial precursor cells. CAII mRNA and protein were used to monitor changes in oligodendrocytes during cuprizone intoxication in the mice. After four or eight weeks of cuprizone feeding CAII message became less plentiful in oligodendrocyte processes. Two days after removal of cuprizone CAII message had appeared in those cell processes. Four or eight weeks after beginning cuprizone feeding CAII protein had decreased∼25% in forebrain homogenates. The loss of CAII protein was reversible after four weeks on cuprizone, but not after eight weeks. After four weeks of cuprizone feeding the numbers of CAII mRNA-prositive oligodendrocytes had decreased by ∼50%m and after eight weeks, by ∼80%. By 12 weeks, however, the number of oligodendrocytes expressing CAII mRNA had spontaneously returned to normal levels. Before eight weeks of cuprizone feeding, loss of myelinated tracts in the corpus striatum was reversible. Demyelination appreared to become irreversible after nine weeks of intoxication, although expression of CAII mRNA remained reversible. The results suggest that in the brain of the young adult, oligodendrocytes expressing message for CAII can be generated spontaneously shortly before demyelination becomes irreversible, and can survive and continue to express CAII mRNA but not CAII protein. Special issue dedicated to Dr. Marion E. Smith.  相似文献   

10.
Sulfonamide drugs mediate their main therapeutic effects through modulation of the activity of membrane and cytosolic carbonic anhydrases. How interactions of sulfonamide drugs impact structural properties and activity of carbonic anhydrases requires further study. Here the effect of acetazolamide on the structure and function of bovine carbonic anhydrase II (cytosolic form of the enzyme) was evaluated. The Far-UV CD studies indicated that carbonic anhydrase, for the most part, retains its secondary structure in the presence of acetazolamide. Fluorescence measurements using iodide ions and ANS, along with ASA calculations, revealed that in the presence of acetazolamide minimal conformational changes occurred in the carbonic anhydrase structure. These structural changes, which may involve spatial reorientation of Trp 4 and Trp 190 or some other related aminoacyl residues near the active site, considerably reduced the catalytic activity of the enzyme while its thermal stability was slightly increased. Our binding results indicated that binding of acetazolamide to the protein could occur with a 1:1 ratio, one mole of acetazolamide per one mole of the protein. However, the obtained kinetic results supported the existence of two acetazolamide binding sites on the protein structure. The occupation of each of these binding sites by acetazolamide completely inactivates the enzyme. Advanced analysis of the kinetic results revealed that there are two substrate (p-NPA) binding sites whose simultaneous occupation is required for full enzyme activity. Thus, these studies suggest that the two isoforms of CA II should exist in the medium, each of which contains one substrate binding site (catalytic site) and one acetazolamide binding site. The acetazolamide binding site is equivalent to the catalytic site, thus, inhibiting enzyme activity by a competitive mechanism.  相似文献   

11.
Mono- and dihalogenated histamine derivatives incorporating fluorine, chlorine and bromine have been prepared together with the corresponding boc-protected compounds at the aminoethyl group. They have been investigated as activators of the zinc enzyme carbonic anhydrase (CA, EC 4.2.1.1). The cytosolic human (h) isoforms hCA I and II were moderately activated by the boc-protected halogenated histamines and very effectively activated by the deprotected ones. Low nanomolar and subnanomolar hCA I and II activators have been detected for the first time, starting from histamine as lead which has an affinity of 2 μM against isoform I and of 125 μM against hCA II.  相似文献   

12.
The possible sulfatase activity of several carbonic anhydrase (CA, EC 4.2.1.1) isoforms have been investigated with a series of synthesized methanesulfonate derivatives of phenols. Four α-CA isozymes, i.e. hCA I, hCA II, hCA IV and hCA VI (h?=?human isoform), were included in the study. We evidenced that the original sulfonate esters are being hydrolyzed effectively to the corresponding phenols which there after act as CA inhibitors. The KI-s of these compounds ranged from 10.24 to 4012 µM against hCA I, 0.10 to 35.42 µM against hCA II, 0.49 to 45.06 µM against hCA IV and 3.27 to 608 µM against CA VI, respectively. The relevant sulfatase activity of CA with these esters is amazing considering the fact that 4-nitrophenyl-sulfate, an activated ester, is not a substrate of these enzymes.  相似文献   

13.
Carbonic anhydrase IV (CAIV) is a membrane-associated enzyme anchored to plasma membrane surfaces by a phosphatidylinositol glycan linkage. We have determined the 2.8-angstroms resolution crystal structure of a truncated, soluble form of recombinant murine CAIV. We have also determined the structure of its complex with a drug used for glaucoma therapy, the sulfonamide inhibitor brinzolamide (Azopt). The overall structure of murine CAIV is generally similar to that of human CAIV; however, some local structural differences are found in the active site resulting from amino acid sequence differences in the "130's segment" and the residue-63 loop (these may affect the nearby catalytic proton shuttle, His-64). Similar to human CAIV, the C-terminus of murine CAIV is surrounded by a substantial electropositive surface potential that may stabilize the interaction with the phospholipid membrane. Binding interactions observed for brinzolamide rationalize the generally weaker affinity of inhibitors used in glaucoma therapy toward CAIV compared with CAII.  相似文献   

14.
Four different derivatives of aromatic sulfonamides have been synthesized: 1,2-bis[(4-sulfonamidobenzamide)ethoxy]ethane (SBAM), 1,2-bis[(4-sulfonamidobenzoate)ethoxy]ethane, 1,2-bis[(2,4-dichloro-5-sulfonamidobenzamide)ethoxy]ethane, and 1,2-bis[(2,4-dichloro-5-sulfonamidobenzoate)ethoxy]ethane. SBAM is a most potent inhibitor on ciliary epithelium carbonic anhydrase and is approximately 13 times more active against carbonic anhydrase isoform II than against isoform I.  相似文献   

15.
Extracellular acidification, a mandatory feature of several malignancies, has been mainly correlated with metabolic reprogramming of tumor cells toward Warburg metabolism, as well as to the expression of carbonic anydrases or proton pumps by malignant tumor cells. We report herein that for aggressive prostate carcinoma, acknowledged to be reprogrammed toward an anabolic phenotype and to upload lactate to drive proliferation, extracellular acidification is mainly mediated by stromal cells engaged in a molecular cross-talk circuitry with cancer cells. Indeed, cancer-associated fibroblasts, upon their activation by cancer delivered soluble factors, rapidly express carbonic anhydrase IX (CA IX). While expression of CAIX in cancer cells has already been correlated with poor prognosis in various human tumors, the novelty of our findings is the upregulation of CAIX in stromal cells upon activation. The de novo expression of CA IX, which is not addicted to hypoxic conditions, is driven by redox-based stabilization of hypoxia-inducible factor-1. Extracellular acidification due to carbonic anhydrase IX is mandatory to elicit activation of stromal fibroblasts delivered metalloprotease-2 and -9, driving in cancer cells the epithelial-mesenchymal transition epigenetic program, a key event associated with increased motility, survival and stemness. Both genetic silencing and pharmacological inhibition of CA IX (with sulfonamide/sulfamides potent inhibitors) or metalloprotease-9 are sufficient to impede epithelial-mesenchymal transition and invasiveness of prostate cancer cells induced by contact with cancer-associated fibroblasts. We also confirmed in vivo the upstream hierarchical role of stromal CA IX to drive successful metastatic spread of prostate carcinoma cells. These data include stromal cells, as cancer-associated fibroblasts as ideal targets for carbonic anhydrase IX-directed anticancer therapies.  相似文献   

16.
The undisputed role of His64 in proton transfer during catalysis by carbonic anhydrases in the α class has raised questions concerning the details of its mechanism. The highly conserved residues Tyr7, Asn62, and Asn67 in the active-site cavity function to fine tune the properties of proton transfer by human carbonic anhydrase II (HCA II). For example, hydrophobic residues at these positions favor an inward orientation of His64 and a low pKa for its imidazole side chain. It appears that the predominant manner in which this fine tuning is achieved in rate constants for proton transfer is through the difference in pKa between His64 and the zinc-bound solvent molecule. Other properties of the active-site cavity, such as inward and outward conformers of His64, appear associated with the change in ΔpKa; however, there is no strong evidence to date that the inward and outward orientations of His64 are in themselves requirements for facile proton transfer in carbonic anhydrase.  相似文献   

17.
Intracellular pH is a potent modulator of neuronal functions. By catalyzing (de)hydration of CO2, intracellular carbonic anhydrase (CAi) isoforms CA2 and CA7 contribute to neuronal pH buffering and dynamics. The presence of two highly active isoforms in neurons suggests that they may serve isozyme‐specific functions unrelated to CO2‐(de)hydration. Here, we show that CA7, unlike CA2, binds to filamentous actin, and its overexpression induces formation of thick actin bundles and membrane protrusions in fibroblasts. In CA7‐overexpressing neurons, CA7 is enriched in dendritic spines, which leads to aberrant spine morphology. We identified amino acids unique to CA7 that are required for direct actin interactions, promoting actin filament bundling and spine targeting. Disruption of CA7 expression in neocortical neurons leads to higher spine density due to increased proportion of small spines. Thus, our work demonstrates highly distinct subcellular expression patterns of CA7 and CA2, and a novel, structural role of CA7.  相似文献   

18.
Carbonic anhydrase (CA, EC 4.2.1.1) catalyses the first reaction in the C4 photosynthetic pathway, the conversion of atmospheric CO2 to bicarbonate in the mesophyll cytosol. To examine the importance of the enzyme to the functioning of the C4 photosynthetic pathway, Flaveria bidentis (L.) Kuntze, a C4 dicot, was genetically transformed with an antisense construct in which the cDNA encoding a putative cytosolic CA (CA3) was placed under the control of a constitutive promoter. Some of the primary transformants had impaired CO2 assimilation rates and required high CO2 for growth. The T1 progeny of four primary transformants were used to examine the quantitative relationship between leaf CA activity and CO2 assimilation rate. CA activity was determined in leaf extracts with a mass spectrometric technique that measured the rate of 18O exchange from doubly labelled 13C18O2. Steady‐state CO2 assimilation rates were unaffected by a decrease in CA activity until CA activity was less than 20% of wild type when they decreased steeply. Transformants with less than 10% of wild‐type CA activity had very low CO2 assimilation rates and grew poorly at ambient CO2 partial pressure. Reduction in CA activity also increased the CO2 partial pressure required to saturate CO2 assimilation rates. The present data show that CA activity is essential for the functioning of the C4 photosynthetic pathway.  相似文献   

19.
The identification of specific interactions between small molecules and human proteins of interest is a fundamental step in chemical biology and drug development. Here we describe an efficient method to obtain novel binding ligands of human proteins by a chemical array approach. Our method includes large-scale ligand screening with two libraries, proteins and chemicals, the use of cell lysates that express proteins of interest fused with red fluorescent protein, and high-throughput screening by merged display analysis, which removes false positive signals from array experiments. Using our systematic platform, we detected novel inhibitors of carbonic anhydrase II. It is suggested that our systematic platform is a rapid and robust approach to screen novel ligands for human proteins of interest.  相似文献   

20.
Animal experimentation contributes significantly to the progression of science. Nonhuman primates play a particularly important role in biomedical research not only because of their anatomical, physiological, biochemical, and behavioral similarities with humans but also because of their close phylogenetic affinities. In order to investigate the use of New World primates (NWP) in biomedical research over the last four decades (1966–2005), we performed a quantitative study of the literature listed in bibliographic databases from the Health Sciences. The survey was performed for each genus of NWP that has been bred in the National Center of Primates in Brazil. The number of articles published was determined for each genus and sorted according to the country from which the studies originated and the general scientific field. The data obtained suggests that Brazil is a leader in generating knowledge with NWP models for translational medicine. Am. J. Primatol. 72:1055–1061, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号