首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
1. The effect of independent variation of both acetyl-CoA and acetoacetyl-CoA on the initial velocity at pH8.0 and pH8.9 gives results compatible with a sequential mechanism involving a modified enzyme tentatively identified as an acetyl-enzyme, resulting from the reaction with acetyl-CoA in the first step of a Ping Pong (Cleland, 1963a) reaction. 2. Acetoacetyl-CoA gives marked substrate inhibition that is competitive with acetyl-CoA. This suggests formation of a dead-end complex with the unacetylated enzyme and is in accord with the inhibition pattern given by 3-oxohexanoyl-CoA, an inactive analogue of acetoacetyl-CoA. 3. The inhibition pattern given by products of the reaction is compatible with the above mechanism. CoA gives mixed inhibition with respect to both substrates, whereas dl-3-hydroxy-3-methylglutaryl-CoA competes with acetyl-CoA but gives uncompetitive inhibition with respect to acetoacetyl-CoA. 4. 3-Hydroxy-3-methylglutaryl-CoA analogues lacking the 3-hydroxyl group are found to compete, like 3-hydroxy-3-methylglutaryl-CoA, with acetyl-CoA but have K(i) values ninefold higher, indicating the importance of the 3-hydroxyl group in the interaction. 5. A comparison of inhibition by CoA and desulpho-CoA at pH8.0 and pH8.9 shows that at the higher pH value a kinetically significant reversal of the formation of acetyl-enzyme can occur. 6. Acetyl-CoA homologues do not act as substrates and compete only with acetyl-CoA. A study of the variation of K(i) with acyl-chain length suggests the presence near the active centre of a hydrophobic region. 7. These results are discussed in terms of a kinetic mechanism in which there is only one CoA-binding site the specificity of which is altered by acetylation of the enzyme. 8. The rate of 3-hydroxy-3-methylglutaryl-CoA synthesis in yeast is calculated from the kinetic constants determined for purified 3-hydroxy-3-methylglutaryl-CoA synthase and from estimates of the physiological substrate concentrations. The rate of synthesis of 12nmol of 3-hydroxy-3-methylglutaryl-CoA/min per g wet wt. of yeast is still greater than the rate of utilization in spite of the extremely low (calculated) acetoacetyl-CoA concentration (1.8nm).  相似文献   

2.
1. Purified 3-hydroxy-3-methylglutaryl-CoA synthase from baker's yeast (free from acetoacetyl-CoA thiolase activity) catalysed an exchange of acetyl moiety between 3'-dephospho-CoA and CoA. The exchange rate was comparable with the overall velocity of synthesis of 3-hydroxy-3-methylglutaryl-CoA. 2. Acetyl-CoA reacted with the synthase, giving a rapid ;burst' release of CoA proportional in amount to the quantity of enzyme present. The ;burst' of CoA was released from acetyl-CoA, propionyl-CoA and succinyl-CoA (3-carboxypropionyl-CoA) but not from acetoacetyl-CoA, hexanoyl-CoA, dl-3-hydroxy-3-methylglutaryl-CoA, or other derivatives of glutaryl-CoA. 3. Incubation of 3-hydroxy-3-methylglutaryl-CoA synthase with [1-(14)C]acetyl-CoA yielded protein-bound acetyl groups. The K(eq.) for the acetylation was 1.2 at pH7.0 and 4 degrees C. Acetyl-labelled synthase was isolated free from [1-(14)C]acetyl-CoA by rapid gel filtration at pH6.1. The [1-(14)C]acetyl group was removed from the protein by treatment with hydroxylamine, CoA or acetoacetyl-CoA but not by acid. When CoA or acetoacetyl-CoA was present the radioactive product was [1-(14)C]acetyl-CoA or 3-hydroxy-3-methyl-[(14)C]glutaryl-CoA respectively. 4. The isolated [1-(14)C]acetyl-enzyme was slowly hydrolysed at pH6.1 and 4 degrees C with a first-order rate constant of 0.005min(-1). This rate could be stimulated either by raising the pH to 7.0 or by the addition of desulpho-CoA. 5. These properties are interpreted in terms of a mechanism in which 3-hydroxy-3-methyl-glutaryl-CoA synthase is acetylated by acetyl-CoA to give a stable acetyl-enzyme, which then condenses with acetoacetyl-CoA yielding a covalent derivative between 3-hydroxy-3-methylglutaryl-CoA and the enzyme which is then rapidly hydrolysed to free enzyme and product.  相似文献   

3.
Ox liver mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase (EC 4.1.3.5) reacts with acetyl-CoA to form a complex in which the acetyl group is covalently bound to the enzyme. This acetyl group can be removed by addition of acetoacetyl-CoA or CoA. The extent of acetylation and release of CoA were found to be highly temperature-dependent. At temperatures above 20 degrees C, a maximum value of 0.85 mol of acetyl group bound/mol of enzyme dimer was observed. Below this temperature the extent of rapid acetylation was significantly lowered. Binding stoichiometries close to 1 mol/mol of enzyme dimer were also observed when the 3-hydroxy-3-methylglutaryl-CoA synthase activity was titrated with methyl methanethiosulphonate or bromoacetyl-CoA. This is taken as evidence for a 'half-of-the-sites' reaction mechanism for the formation of 3-hydroxy-3-methylglutaryl-CoA by 3-hydroxy-3-methylglutaryl-CoA synthase. The Keq. for the acetylation was about 10. Isolated acetyl-enzyme is stable for many hours at 0 degrees C and pH 7, but is hydrolysed at 30 degrees C with a half-life of 7 min. This hydrolysis is stimulated by acetyl-CoA and slightly by succinyl-CoA, but not by desulpho-CoA. The site of acetylation has been identified as the thiol group of a reactive cysteine residue by affinity-labelling with the substrate analogue bromo[1-14C]acetyl-CoA.  相似文献   

4.
Homogeneous liver 3-hydroxy-3-methylglutaryl coenzyme A synthase, which catalyzes the condensation of acetyl-CoA with acetoacetyl-CoA to form 3-hydroxy-3-methylglutaryl-CoA, also carries out: (a) a rapid transacetylation from acetyl-CoA to 31-dephospho-CoA and (b) a slow hydrolysis of acetyl-CoA to acetate and CoA. Transacetylation and hydrolysis occur at 50 and 1 percent, respectively, the rate of the synthasecatalyzed condensation reaction. It appears that an acetyl-enzyme intermediate is involved in the transacetylase and hydrolase reactions of 3-hydroxy-3-methylglutaryl-CoA synthase, as well as in the over-all condensation process. Covalent binding to the enzyme of a [14C]acetyl group contributed by [1(-14)C]acetyl-CoA is indicated by migration of the [14C]acetyl group with the dissociated synthase upon electrophoresis in dodecyl sulfate-urea and by precipitation of [14C]acetyl-enzyme with trichloroacetic acid. At 0 degrees and a saturating level of acetyl-CoA, the synthase is rapidly (less than 20 s) acetylated yielding 0.6 acetyl group/enzyme dimer. Performic acid oxidation completely deacetylates the enzyme, suggesting the site of acetylation to be a cysteinyl sulfhydryl group. Proteolytic digestion of [14C]acetyl-S-enzyme under conditions favorable for intramolecular S to N acetyl group transfer quantitatively liberates a labeled derivative with a [14C]acetyl group stable to performic acid oxidation. The labeled oxidation product is identified as N-[14C]acetylcysteic acid, thus demonstrating a cysteinyl sulfhydryl group as the original site of acetylation. The ability of the acetylated enzyme, upon addition of acetoacetyl-CoA, to form 3-hydroxy-3-methylglutaryl-CoA indicates that the acetylated cysteine residue is at the catalytic site.  相似文献   

5.
1. A purification of 3-hydroxy-3-methylglutaryl-CoA synthase from baker's yeast is described. This yields a preparation of average specific activity 2.1 units (mumol/min)/mg in which contamination by acetoacetyl-CoA thiolase is less than 0.2%. 2. The molecular weights of 3-hydroxy-3-methylglutaryl-CoA synthase and acetoacetyl-CoA thiolase from baker's yeast were determined by gel filtration on Sephadex G-200. The values obtained were 130000 and 190000 respectively. 3. 3-Hydroxy-3-methylglutaryl-CoA synthase is susceptible to irreversible inhibition by a wide variety of alkylating and acylating agents. The time-course of inhibition of the enzyme by some of these, including the active-site-directed inhibitor bromoacetyl-CoA, was studied in the presence and absence of substrates, products and product analogues. Acetyl-CoA, even when present at concentrations as low as 5mum, gives almost complete protection. Other acyl-CoA derivatives give some protection, but only at concentrations 10-30-fold higher. 4. These results are discussed with reference to an ordered reaction pathway in which acetyl-CoA reacts to give a covalent acetyl-enzyme intermediate.  相似文献   

6.
The effects of various mitochondrial coenzymes and metabolities on the activities of 3-oxoacyl-CoA thiolase (EC 2.3.1.16) and acetoacetyl-CoA thiolase (EC 2.3.1.9) from pig heart were investigated with the aim of elucidating the possible regulation of these two enzymes. Of the compounds tested, acetyl-CoA was the most effective inhibitor of both thiolases. However, 3-oxoacyl-CoA thiolase was more severly inhibited by acetyl-CoA than was acetoacetyl-CoA thiolase. 3-Oxoacyl-CoA thiolase was also significantly inhibited by decanoyl-CoA while acetoacetyl-CoA thiolase was inhibited by 3-hydroxybutyryl-CoA as strongly as it was by acetyl-CoA. All other compounds either did not affect the thiolase activities or only at unphysiologically high concentrations. The inhibition of acetoacetyl-CoA thiolase by acetyl-CoA was linear and apparently noncompetitive with respect to CoASH (Ki = 125 microM) whereas that of 3-oxoacyl-CoA thiolase was nonlinear. However at low concentrations of acetyl-CoA the inhibition of 3-oxoacyl-CoA thiolase was linear competitive with respect to CoASH (Ki = 3.9 microM). It is concluded that 3-oxoacyl-CoA thiolase, but not acetoacetyl-CoA thiolase, will be completely inhibited by acetyl-CoA at concentrations of CoASH and acetyl-CoA which are assumed to exist intramitochondrially at state-4 respiration. It is suggested that fatty acid oxidation in heart muscle at sufficiently high concentrations of plasma free fatty acids is controlled via the regulation of 3-oxoacyl-CoA thiolase by the acetyl-CoA/CoASH ratio which is determined by the rate of the citric acid cycle and consequently by the energy demand of the tissue.  相似文献   

7.
Succinyl-CoA (3-carboxypropionyl-CoA) inactivates ox liver mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase (EC 4.1.3.5) in a time-dependent manner, which is partially prevented by the presence of substrates of the enzyme. The inactivation is due to the enzyme catalysing its own succinylation. Complete inactivation corresponds to about 0.5 mol of succinyl group bound/mol of enzyme dimer. The succinyl-enzyme linkage appears to be a thioester bond and is probably formed with the active-site cysteine residue that is normally acetylated by acetyl-CoA. Succinyl-CoA binds to 3-hydroxy-3-methylglutaryl-CoA synthase with a binding constant of 340 microM and succinylation occurs with a rate constant of 0.57 min-1. Succinyl-enzyme breaks down with a half-life of about 40 min (k = 0.017 min-1) at 30 degrees C and pH 7 and is destabilized by the presence of acetyl-CoA and succinyl-CoA. A control mechanism is postulated in which flux through the 3-hydroxy-3-methylglutaryl-CoA cycle of ketogenesis is regulated according to the extent of succinylation of 3-hydroxy-3-methylglutaryl-CoA synthase.  相似文献   

8.
1) Analogues of 3-hydroxy-3-methylglutaryl-CoA were prepared in which the substituents at C-3 of the acyl residue were altered. The same analogues were additionally modified by replacement of the thioester oxygen by hydrogen to yield reduction-resistant CoA-thioethers. The interaction of both types of CoA derivatives with a 58-kDa catalytic fragment of human 3-hydroxy-3-methylglutaryl-CoA reductase was studied. 2) This enzyme reduces glutaryl-CoA at a very low rate whereas 3-hydroxyglutaryl-CoA is well reduced, the maximal rate of reduction being 7% that of the physiological substrate. Only half of total 3-hydroxyglutaryl-CoA was attacked, thus reflecting the stereo-specificity of the enzyme for (3S)-3-hydroxy-3-methylglutaryl-CoA. The results invalidate the hitherto assumed absolute substrate specificity of the enzyme. 3) The affinity of both 3-hydroxyglutaryl-CoA and its thioether variant S-(4-carboxy-3-hydroxybutyl)CoA to the reductase, Ki = 0.3 microM and Ki = 0.4 microM, respectively, is higher than that of the physiological substrate, Km = 1.5 microM (data related to (S)-diastereomer). The results show for the first time that the methyl-group effect observed with the inhibitor lovastatin is an intrinsic property of the enzyme. 4) All of the prepared CoA derivatives are purely competitive inhibitors of the reductase, the affinities varying within a range of two powers of ten (Ki = 0.3-32 microM). On variation of the substituents at C-3 of the acyl residue of the physiological substrate the affinity of both CoA-thioesters and CoA-thioethers increases in the sequence CH2, C(CH3)2, CH(CH3), C(OH)CH3, CH(OH).  相似文献   

9.
3-Hydroxy-3-methyl-1-thionoglutaryl-coenzyme A, a dithioester analog of 3-hydroxy-3-methylglutaryl-CoA, has been enzymatically synthesized using the HMG-CoA synthase catalyzed condensation of acetyl-CoA with 3-oxo-1-thionobutyryl-CoA. HMGdithio-CoA is a potent inhibitor of Pseudomonas mevalonii HMG-CoA reductase. Inhibition was mainly competitive with respect to HMG-CoA with a Kis of 0.086 +/- .01 microM and noncompetitive with respect to NADH with a Kis of 3.7 +/- 1.5 microM and a Kii of 0.65 +/- .05 microM in the presence of 110 microM (R.S)-HMG-CoA.  相似文献   

10.
Acetoacetyl-CoA thiolase and 3-hydroxy-3-methylglutaryl coenzyme synthase which comprise the 3-hydroxy-3-methylglutaryl-CoA-generating system(s) for hepatic cholesterogenesis and ketogenesis exhibit dual mitochondrial and cytoplasmic localization. Twenty to forty per cent of the thiolase and synthase of avian and rat liver are localized in the cytoplasmic compartment, the remainder residing in the mitochondria. In contrast, 3-hydroxy-3 methylglutaryl-CoA lyase, an enzyme unique to the "3-hydroxy-3-methylglutaryl-CoA cycle" of ketogenesis, appears to be localized in the mitochondrion. The small proportion, 4 to 8 percent, of this enzyme found in the cytoplasmic fraction appears to arise via leakage from the mitochondria during cell fractionation in that its properties, pI and stability, are identical to those of the mitochondrial lyase. These results are consistent with the view that ketogenesis which involves all three enzymes, acetoacetyl-CoA thiolase, 3-hydroxy-3-methylglutaryl-CoA synthase and 3-hydroxy-3-methylglutaryl-CoA lyase, occurs exclusively in the mitochondrion, whereas cholesterogenesis, a pathway which involves only the 3-hydroxy-3-methylglutaryl-CoA synthesizing enzymes, is restricted to the cytoplasm. Further fractionation of isolated mitochondria from chicken and rat liver showed that all three of the 3-hydroxy-3-methylglutaryl-CoA cycle enzymes are soluble and are localized within the matrix compartment of the mitochondrion. Likewise, cytoplasmic acetoacetyl-CoA thiolase and 3-hydroxy-3-methylglutaryl-CoA synthase are soluble cytosolic enzymes, no thiolase or synthase activity being detectable in the microsomal fraction. Chicken liver mitochondrial 3-hydroxy-3methylglutaryl-CoA synthase activity consists of a single enzymic species with a pI of 7.2, whereas the cytoplasmic activity is composed of at least two species with pI values of 4.8 and 6.7. Thus it is evident that the mitochondrial and cytoplasmic species are molecularly distinct as has been shown to be the case for the mitochondrial and cytoplasmic acetoacetyl-CoA thiolases from avian liver (Clinkenbeard, K. D., Sugiyama, T., Moss, J., Reed, W. D., and Lane, M. D. (1973) J. Biol. Chem. 248, 2275). Substantial mitochondrial 3-hydroxy-3-methylglutaryl-CoA lyase activity is present in all tissues surveyed, while only liver and kidney possess significant mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase activity. Therefore, it is proposed that tissues other than liver and kidney are unable to generate acetoacetate because they lack the mitochondrial synthase.  相似文献   

11.
1. Beta-Ketothiolase of Clostridium pasteurianum was purified 130-fold by ammonium sulphate fractionation and by column chromatography using DEAE-Sephadex A-50 and hydroxylapatite. Subjected to gel electrophoresis beta-ketothiolase revealed two distinct bands; by isoelectric focusing two enzymes with isoelectric points at pH 4.5 and 7.6 were separated. As established by sucrose density gradient centrifugation the molecular weight of both enzymes was found to be 158000. 2. The condensation reaction was measured by a coupled optical test using beta-hydroxybutyryl-CoA dehydrogenase as auxiliary enzyme and either acetyl-CoA or free coenzyme A plus acetyl-phosphate and phosphotransacetylase (regenerating system) or acetyl-CoA plus regenerating system as substrates. Beta-Ketothiolase from C. pasteurianum used only 20% of the chemically synthesized acetyl-CoA; the enzyme from Alcaligenes eutrophus H 16 used 25%. When the regenerating system was added the condensation reaction continued. The enzyme from C. pasteurianum was inactivated by free coenzyme A, while the enzyme from A. eutrophus was inhibited. When acetyl-CoA was added as the substrate the initial velocity determination was impeded by the lack of linearity. With acetyl-CoA as the substrate the Km-value was found to be 2.5 mM acetyl-CoA. If free CoASH (or acetyl-CoA) plus regenerating system was added the Km was 0.44 mM (0.42 mM) acetyl-CoA. 3. The beta-ketothiolase activity was measured in the direction of acetoacetyl-CoA cleavage by an optical assay following the decrease of the enol and chelate form of acetoacetyl-CoA by absorption measurement at 305 nm. The activity was maximal at 24 nM MgCl2. The apparent Km values for acetoacetyl-CoA were 0.133 mM and 0.105 mM with 0.065 and 0.016 mM CoASH, respectively. The Km-values as calculated for only the keto form of acetoacetyl-CoA were 0.0471 and 0.0372 mM, respectively. The cleavage reaction was inhibited by high acetoacetyl-CoA concentrations; the inihibition was partially relieved by CoASH. In the range of low concentrations of acetoacetyl-CoA only a slight inhibition by CoASH was observed. The Km for CoASH was found to be 0.0288 and 0.0189 mM with 0.09 and 0.045 mM acetoacetyl-CoA, respectively. High concentrations of CoASH exerted an inhibitory effect on the cleavage reaction. With respect to enzyme kinetics and sensitivity to inhibitors and metabolites the beta-ketothiolases of C. pasteurianum and A. eutrophus were rather similar.  相似文献   

12.
The analysis of the initial-rate kinetics of the liver mitochondrial acetyl-CoA acetyltransferase (acetoacetyl-CoA thiolase) in the direction of acetoacetyl-CoA synthesis under product inhibition was performed. 1. Acetyl-CoA acetyltransferase shows a hyperbolic response of reaction velocity to changes in acetyl-CoA concentrations with an apparent Km of 0.237 +/- 0.001 mM. 2. CoASH is a (non-competitive) product inhibitor with a Kis of 22.6 microM and shifts the apparent Km for acetyl-CoA to the physiological concentration of this substrate in mitochondria (S0.5 = 1.12 mM in the presence of 121 microM CoASH). 3. CoASH causes a transformation of the Michaelis-Menten kinetics into initial-rate kinetics with four intermediary plateau regions. 4. The product analogue desulpho-CoA triggers a negative cooperativity as to the dependence of the reaction velocity on the acetyl-CoA concentration. These product effects drastically desensitize the acetyl-CoA acetyltransferase in its reaction velocity response to the acetyl-CoA concentrations and simultaneously extend the substrate dependence range. Thus a control of acetoacetyl-CoA synthesis by the substrate is established over the physiological acetyl-CoA concentration range. We suggest that this control mechanism is the key in establishing the rates of ketogenesis.  相似文献   

13.
1. CoA-thioether analogues of 3-hydroxy-3-methylglutaryl-CoA containing an additional methyl group at positions 2, 6(methyl at C3) or 4 of the acyl residue were prepared. To probe for hydrophobic interaction, their inhibitory properties were determined with 3-hydroxy-3-methylglutaryl-CoA reductase purified from baker's yeast. The CoA-thioethers were purely competitive inhibitors whose affinity to the reductase was near to that of the physiological substrate. 2. CoA-sulfoxides derived from the CoA-thioethers displayed affinities to the reductase superior to that of the physiological substrate (Km = 7 microM). Depending on the degree of recognition of diastereomers by the enzyme, the inhibitor constants of the two best inhibitors vary from Ki = 200 nM and Ki = 80 nM (diastereomeric mixtures) to 25 nM and 20 nM, respectively (if only one diastereomer would interact with the enzyme).  相似文献   

14.
1. Data are provided that indicate that the rat brain acetoacetyl-CoA deacylase is almost exclusively mitochondrial. Developmental studies show that this enzyme more than doubles its activity during suckling (0--21 days) and then maintains this activity in adults (approx. 1.1 units/g wet wt.). 2. Kinetic studies (on the acetoacetyl-CoA deacylase) in a purified brain mitochondrial preparation give a Vmax. of 47 nmol/min per mg of protein, and a Km for acetoacetyl-CoA of 5.2 micron and are compatible with substrate inhibition by acetoacetyl-CoA above concentrations of 47 micron. 3. The total brain 3-hydroxy-3-methyl-glutaryl-CoA synthase remains constant in the developing and adult rat brain (approx. 1.2 units/g wet wt.). This enzyme is located in both the mitochondrial and cytosolic fractions. During suckling (0--21 days) the mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase represents approx. one-third of the total, but this increases markedly to about 60% of the total in the adult. The cytosolic enzyme correspondingly falls to approx. 40% of the total. 4. The role of the acetoacetyl-CoA deacylase in providing cytosolic acetoacetate for biosynthetic activities in the developing brain is discussed.  相似文献   

15.
Mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase (EC 4.1.3.5) was purified from ox liver, and obtained essentially free from 3-oxoacyl-CoA thiolases. The kinetic behaviour, like that of the synthases from chicken liver and yeast, is compatible with a reaction pathway involving condensation of an acetyl-enzyme with acetoacetyl-CoA. The Km for acetoacetyl-CoA, less than 1 micronM at pH 7.8, may possibly be low enough to permit rapid ketogenesis under physiological conditions without the need for a binary complex between the synthase and oxoacyl-CoA thiolase.  相似文献   

16.
3-Hydroxy-3-methylglutaryl-CoA (HMG-CoA) synthase catalyzes the first physiologically irreversible step in biosynthesis of isoprenoids and sterols from acetyl-CoA. Inhibition of enzyme activity by β-lactone-containing natural products correlates with substantial diminution of sterol synthesis, identifying HMG-CoA synthase as a potential drug target and suggesting that identification of effective inhibitors would be valuable. A visible wavelength spectrophotometric assay for HMG-CoA synthase has been developed. The assay uses dithiobisnitrobenzoic acid (DTNB) to detect coenzyme A (CoASH) release on acetylation of enzyme by the substrate acetyl-CoA, which precedes condensation with acetoacetyl-CoA to form the HMG-CoA product. The assay method takes advantage of the stability of recombinant enzyme in the absence of a reducing agent. It can be scaled down to a 60 μl volume to allow the use of 384-well microplates, facilitating high-throughput screening of compound libraries. Enzyme activity measured in the microplate assay is comparable to values measured by using conventional scale spectrophotometric assays with the DTNB method (412 nm) for CoASH production or by monitoring the use of a second substrate, acetoacetyl-CoA (300 nm). The high-throughput assay method has been successfully used to screen a library of more than 100,000 drug-like compounds and has identified both reversible and irreversible inhibitors of the human enzyme.  相似文献   

17.
Reactions that generate and remove acetoacetyl-CoA and acetoacetate were measured in mitochondria and cytosol of rat liver. The activities surveyed include acetoacetyl-CoA hydrolase, acetoacetyl-glutathione hydrolase, acetoacetyl-CoA:glutathione acyl transferase, 3-ketothiolases I and II, 3-hydroxy-3-methylglutaryl-CoA lyase and synthase, and acetoacetyl-CoA synthetase. Phosphocellulose chromatography shows that cytosol contains at least four acetoacetyl-CoA hydrolase activities, two of which do not coincide with 3-ketothiolases or 3-hydroxy-3-methylglutaryl-CoA lyase, while mitochondria contain at least three acetoacetyl-CoA hydrolase activities that overlap partially or completely with 3-ketothiolases and 3-hydroxy-3-methyl-glutaryl-CoA lyase. Two of the mitochondrial acetoacetyl-CoA hydrolase activities are not found in cytosol. Cytosol contains at least two and mitochondrial extracts at least six acetoacetyl-glutathione hydrolase activities. Mitochondria and cytosol both contain two isozymes of 3-ketoacyl-CoA thiolase (thiolases Ia and Ib). Chain length specificities show that the mitochondrial and cytosolic forms of thiolase Ia differ from each other. We report a new isozyme of 3-ketoacyl-CoA thiolase (thiolase I) in rat liver cytosol.  相似文献   

18.
A simple and sensitive assay for the quantitative determination of acetoacetyl-CoA (AcAc-CoA) in liver and heart is described. The method is based on incorporation of [14C]acetyl-CoA into acid-stable nonvolatile material in the presence of avian HMG-CoA synthase. The specificity of this procedure for the measurement of AcAc-CoA was demonstrated by pretreating tissue extracts with 3-hydroxyacyl-CoA dehydrogenase or CoA transferase from Escherichia coli to deplete. AcAc-CoA prior to assay. Acid-stable nonvolatile 14C activity measured in the assay was proportional to the amount of tissue extract added. Satisfactory recovery of AcAc-CoA added at the initial extraction step further validated this procedure. This radioactive assay for acetoacetyl-CoA using a highly purified avian 3-hydroxy-3-methylglutaryl-CoA synthase has the advantages of both extreme specificity for AcAc-CoA as substrate and high sensitivity, facilitating the determination of this metabolite under a variety of physiological conditions.  相似文献   

19.
Acetyl-CoA reacts stoichiometrically with a cysteinyl sufhydryl group of avian liver 3-hydroxy-3-methylglutaryl (HMG)-CoA synthase to yield acetyl-S-enzyme (Miziorko H.M., Clinkenbeard, K.D., Reed, W.D., and Lane, M.D. (1975) J. Biol. Chem. 250, 5768-5773). Evidence that acetyl-S-enzyme condenses with the second substrate, acetoacetyl CoA, to form enzyme-S-HMG-SCoA has been obtained by trapping and characterizing this putative intermediate. [14C]Acetyl-S-enzyme was incubated briefly at -25 degrees with acetoacetyl-CoA, precipitated with trichloroacetic acid, and the labeled acylated enzyme species were isolated. Performic acid oxidation of the precipitated [14C]acyl-S-enzyme intermediates produced volatile [14C]acetic acid from unreacted [14C]acetyl-S-enzyme and nonvolatile [14C]3-hydroxy-3-methyl glutaric acid from enzyme-S-[14C]HMG-SCoA. Condensation of unlabeled acetyl-S-enzyme with [14C]aceto-acetyl-CoA or acetoacetyl-[3H]CoA also produced labeled enzyme-S-HMG-SCoA. Thus, the acetyl moiety from acetyl-CoA and the acetoacetyl and CoA moieties from acetoacetyl-CoA all are incorporated into the HMG-CoA which is covalently-linked to the enzyme. Enzyme-S-[14C]HMG-SCoA was subjected to proteolytic digestion under conditions favorable for intramolecular S to N acyl transfer in the predicted cysteine-S-[14C]HMG-SCoA fragment. Performic acid oxidation of the protease-digested material yields N-[14C]HMG-cysteic acid indicating that HMG-CoA had been covalently bound to the enzyme via the -SH of an active site cysteine. An isotope trapping technique was employed to test the kinetic competence of acetyl-S-enzyme as an intermediate in the HMG-CoA synthase-catalyzed reaction. Evidence is presented which indicates that the rate of condensation of acetoacetyl-CoA with acetyl-S-enzyme to form enzyme-S-HMG-SCoA is more rapid than either the acetylation of the synthase by acetyl-CoA or the overall forward reaction leading to HMG-CoA. These observations, together with indirect evidence that hydrolysis of enzyme-S-HMG-SCoA is extremely rapid, suggest that acetylation of synthase is the rate-limiting step in HMG-CoA synthesis.  相似文献   

20.
Oeljeklaus S  Fischer K  Gerhardt B 《Planta》2002,214(4):597-607
Following chromatography on hydroxyapatite, the elution profile of the thiolase activity of the glyoxysomal fraction from sunflower (Helianthus annuus L.) cotyledons exhibited two peaks when the enzyme activity was assayed with acetoacetyl-CoA as substrate. Only one of these two activity peaks was detectable when a long-chain thiolase substrate was used in the activity assay. The proteins (thiolase I and thiolase II) underlying the two activity peaks detected with acetoacetyl-CoA were of glyoxysomal origin. They were purified using glyoxysomal matrices as starting material, and biochemically characterized. Thiolase I is an acetoacetyl-CoA thiolase (EC 2.3.1.9) exhibiting activity only towards acetoacetyl-CoA (Km = 11 microM). Its contribution to the total glyoxysomal thiolytic activity towards acetoacetyl-CoA amounted to about 15%. Thiolase II is a 3-oxoacyl-CoA thiolase (EC 2.3.1.16). The activity of the enzyme towards 3-oxoacyl-CoAs increased with increasing chain length of the substrate. Thiolase II exhibited a Km value of 27 microM with acetoacetyl-CoA as substrate. and Km values between 3 and 7 microM with substrates having a carbon chain length from 6 to 16 carbon atoms. The thiolase activity of the glyoxysomes towards acetoacetyl-CoA and 3-oxopalmitoyl-CoA exceeded the glyoxysomal butyryl-CoA and palmitoyl-CoA beta-oxidation rates, respectively, by about 10-fold at all substrate concentrations employed (1-15 microM).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号