首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
生态条件的多样性变化对蜜蜂生存的影响   总被引:1,自引:0,他引:1  
侯春生  张学锋 《生态学报》2011,31(17):5061-5070
蜜蜂在整个生态系统中起着重要的传花授粉作用,是生态链中不可或缺的物种。随着现代农业的发展,蜜蜂赖以生存的环境遭到破坏,继而引发蜜蜂数量大幅减少,影响了蜂种的生存与可持续发展。总结了近年来生态条件的变化,归纳了影响蜜蜂生存的主要因素,分析了蜜蜂生存艰难的原因,提出了蜜蜂生存的关键问题,并展望了未来维持蜜蜂强群的主要研究方向。  相似文献   

2.
A hopelessly queenless honeybee colony has only one reproductive option: some workers must produce sons before the colony dies. This requires the workers to curtail egg policing (removal of worker-produced eggs), rendering the colony vulnerable to non-natal reproductive parasitism. In the Western honeybee, Apis mellifera, guarding (prevention of foreign workers from entering a colony) increases in queenless colonies, providing a defence against non-natal parasitism. However, in the closely related Eastern honeybee A. cerana, queenless colonies appear to be more tolerant of bees from other colonies. We presented guards of four A. cerana colonies with three types of workers: nestmate returning foragers, non-nestmate returning foragers and non-nestmates from a laying-worker colony. The latter are likely to have active ovaries, allowing us to test whether guard bees can detect which potential invaders are more likely to be reproductive parasites. After assessing guards’ reactions, we recaptured test bees and dissected them to determine levels of ovary activation. We found that nestmates were accepted significantly more frequently than the other two types of workers. However, there was no difference in the overall acceptance rates of non-nestmate returning foragers and bees from within laying-worker colonies. In addition, ovary-activated workers were no less likely to be accepted than those with inactive ovaries. Interestingly, colonies were more accepting of all three types of test bee after being made queenless. We conclude that, as has been previously suggested, guarding has no specific role in the prevention of non-natal parasitism in A. cerana.  相似文献   

3.
How natural infection by Nosema ceranae causes honeybee colony collapse   总被引:1,自引:0,他引:1  
In recent years, honeybees (Apis mellifera) have been strangely disappearing from their hives, and strong colonies have suddenly become weak and died. The precise aetiology underlying the disappearance of the bees remains a mystery. However, during the same period, Nosema ceranae, a microsporidium of the Asian bee Apis cerana, seems to have colonized A. mellifera, and it's now frequently detected all over the world in both healthy and weak honeybee colonies. For first time, we show that natural N. ceranae infection can cause the sudden collapse of bee colonies, establishing a direct correlation between N. ceranae infection and the death of honeybee colonies under field conditions. Signs of colony weakness were not evident until the queen could no longer replace the loss of the infected bees. The long asymptomatic incubation period can explain the absence of evident symptoms prior to colony collapse. Furthermore, our results demonstrate that healthy colonies near to an infected one can also become infected, and that N. ceranae infection can be controlled with a specific antibiotic, fumagillin. Moreover, the administration of 120 mg of fumagillin has proven to eliminate the infection, but it cannot avoid reinfection after 6 months. We provide Koch's postulates between N. ceranae infection and a syndrome with a long incubation period involving continuous death of adult bees, non-stop brood rearing by the bees and colony loss in winter or early spring despite the presence of sufficient remaining pollen and honey.  相似文献   

4.
The exo- and endogenous water content in the honeybee body was studied in relation to age, season, and the physiological state of the bee colony. The water content in the carbohydrate food consumed by the bees was shown to affect brood production in the colony. The behavior of the bees supplying the colony with water was investigated and the amount of water used for larval food dilution and nest cooling was estimated. Seasonal interruption and resumption of the reproductive functions of the queen were shown to depend on the dynamics of the water content in the digestive tract of worker bees.  相似文献   

5.
This study was conducted at the apiary of the Agricultural and Veterinary Training and Research Station of King Faisal University in the Al-Ahsa oasis of eastern Saudi Arabia. We performed a comparison between Carniolan (Apis mellifera carnica Pollmann) and Yemeni (Apis mellifera jemenitica Ruttner) honeybee races to determine the monthly fluctuations in foraging activity, pollen collection, colony growth and honey yield production under the environmental conditions of the Al-Ahsa oasis of eastern Saudi Arabia. We found three peaks in the flight activity of the two races, and the largest peaks occurred during September and October. Compared to Carniolan bee colonies, the performance of Yemeni bee colonies was superior in terms of stored pollen, worker and drone brood rearing, and the adult population size. The Carniolan bee colonies produced 27.77% and 27.50% more honey than the Yemeni bee colonies during the flow seasons of alfalfa and sidir, respectively, with an average increase of 27.64%. It could be concluded that the race of bees is an important factor affecting the activity and productivity of honeybee colonies. The Yemeni bee race produced more pollen, a larger brood and more bees, which exhibited a longer survival. The imported Carniolan bees can be reared in eastern Saudi Arabia, but the Yemeni bee race is still better.  相似文献   

6.
Recent work has demonstrated considerable benefits of intracolonial genetic diversity for the productivity of honeybee colonies: single-patriline colonies have depressed foraging rates, smaller food stores and slower weight gain relative to multiple-patriline colonies. We explored whether differences in the use of foraging-related communication behaviour (waggle dances and shaking signals) underlie differences in foraging effort of genetically diverse and genetically uniform colonies. We created three pairs of colonies; each pair had one colony headed by a multiply mated queen (inseminated by 15 drones) and one colony headed by a singly mated queen. For each pair, we monitored the production of foraging-related signals over the course of 3 days. Foragers in genetically diverse colonies had substantially more information available to them about food resources than foragers in uniform colonies. On average, in genetically diverse colonies compared with genetically uniform colonies, 36% more waggle dances were identified daily, dancers performed 62% more waggle runs per dance, foragers reported food discoveries that were farther from the nest and 91% more shaking signals were exchanged among workers each morning prior to foraging. Extreme polyandry by honeybee queens enhances the production of worker-worker communication signals that facilitate the swift discovery and exploitation of food resources.  相似文献   

7.
Honeybee larvae and pupae are extremely stenothermic, i.e. they strongly depend on accurate regulation of brood nest temperature for proper development (33–36°C). Here we study the mechanisms of social thermoregulation of honeybee colonies under changing environmental temperatures concerning the contribution of individuals to colony temperature homeostasis. Beside migration activity within the nest, the main active process is “endothermy on demand” of adults. An increase of cold stress (cooling of the colony) increases the intensity of heat production with thoracic flight muscles and the number of endothermic individuals, especially in the brood nest. As endothermy means hard work for bees, this eases much burden of nestmates which can stay ectothermic. Concerning the active reaction to cold stress by endothermy, age polyethism is reduced to only two physiologically predetermined task divisions, 0 to ∼2 days and older. Endothermic heat production is the job of bees older than about two days. They are all similarly engaged in active heat production both in intensity and frequency. Their active heat production has an important reinforcement effect on passive heat production of the many ectothermic bees and of the brood. Ectothermy is most frequent in young bees (<∼2 days) both outside and inside of brood nest cells. We suggest young bees visit warm brood nest cells not only to clean them but also to speed up flight muscle development for proper endothermy and foraging later in their life. Young bees inside brood nest cells mostly receive heat from the surrounding cell wall during cold stress, whereas older bees predominantly transfer heat from the thorax to the cell wall. Endothermic bees regulate brood comb temperature more accurately than local air temperature. They apply the heat as close to the brood as possible: workers heating cells from within have a higher probability of endothermy than those on the comb surface. The findings show that thermal homeostasis of honeybee colonies is achieved by a combination of active and passive processes. The differential individual endothermic and behavioral reactions sum up to an integrated action of the honeybee colony as a superorganism.  相似文献   

8.
The widespread use of protective covers in horticulture represents a novel landscape‐level change, presenting the challenges for crop pollination. Honeybees (Apis mellifera L) are pollinators of many crops, but their behavior can be affected by conditions under covers. To determine how netting crop covers can affect honeybee foraging dynamics, colony health, and pollination services, we assessed the performance of 52 nucleus honeybee colonies in five covered and six uncovered kiwifruit orchards. Colony strength was estimated pre‐ and postintroduction, and the foraging of individual bees (including pollen, nectar, and naïve foragers) was monitored in a subset of the hives fitted with RFID readers. Simultaneously, we evaluated pollination effectiveness by measuring flower visitation rates and the number of seeds produced after single honeybee visits. Honeybee colonies under cover exhibited both an acute loss of foragers and changes in the behavior of successful foragers. Under cover, bees were roughly three times less likely to return after their first trip outside the hive. Consequently, the number of adult bees in hives declined at a faster rate in these orchards, with colonies losing on average 1,057 ± 274 of their bees in under two weeks. Bees that did forage under cover completed fewer trips provisioning their colony, failing to reenter after a few short‐duration trips. These effects are likely to have implications for colony health and productivity. We also found that bee density (bees/thousand flowers) and visitation rates to flowers were lower under cover; however, we did not detect a resultant change in pollination. Our findings highlight the need for environment‐specific management techniques for pollinators. Improving honeybee orientation under covers and increasing our understanding of the effects of covers on bee nutrition and brood rearing should be primary objectives for maintaining colonies and potentially improving pollination in these systems.  相似文献   

9.
Social insect colonies face the challenge of adjusting the behavior of individuals performing various tasks to a changing environment. It has been shown in several species that characteristics of interaction patterns between nestmates provide social information that allows individuals to adjust their behavior in adaptive ways. A well-studied example is the modulation of recruitment by dancing in honeybees ( Apis mellifera ) in response to the time, the foragers have to search for unloading partners and the number of unloading bees. Here we tested if experiences that hive bees acquired during past social interactions affect interactions with the incoming foragers. Bees returning with food containing a floral scent that was familiar to the hive bees from previous interactions had more food receivers during unloading and more followers during dancing displays compared with foragers returning with food containing a novel scent or unscented food. We also confirm that the number of receivers during food unloading is positively related to the motivation to dance immediately after unloading. Our results show that prior social experiences affect the ways in which individuals interact in the context of honeybee nectar collection and, therefore, how learning in hive bees contributes to the organization of this collective task.  相似文献   

10.
蜜蜂病毒学研究进展   总被引:4,自引:2,他引:4  
张炫  陈彦平  和绍禹 《昆虫知识》2012,49(5):1095-1116
蜜蜂是自然界最重要的授粉昆虫,对维护自然生态系统的生物多样性和保持农业生态系统的增产效应发挥着巨大的作用。作为世界第一养蜂大国,中国养蜂业健康发展的意义不仅在于获取大量高品质的蜂产品,更重要的是发挥蜜蜂授粉的农业增产效应,保证我国的粮食安全。和其他动物一样,蜜蜂健康也受到多种病害的威胁,近年来蜜蜂病毒病在世界范围内的广泛流行与传播,是导致世界蜂群持续下降的一个重要原因。蜜蜂病毒长期广泛的以无明显发病症状的低浓度隐性感染方式存在于蜜蜂蜂群中,但多数蜜蜂病毒在特定环境条件下可被激活,在寄主体细胞内快速复制,表现出强烈的致病性,引发致死性蜜蜂病毒病的流行与爆发。蜜蜂病毒病知识的缺乏,以及复杂的蜜蜂病毒鉴定技术使得蜜蜂病毒病难以及时确诊和防治,因此每年在养蜂生产上造成的巨大损失已严重阻碍了我国养蜂业的健康发展。本文将综述这一领域的研究成果和学科发展趋势,为在我国开展蜜蜂病毒学研究提供参考,并介绍国外的一些蜜蜂病毒病诊断方法与防治经验服务于我国养蜂生产实践。  相似文献   

11.
Abstract. 1. The adaptive significance of the timing of growth and reproduction by honeybee, Apis mellifera L., colonies in cold climates was studied by describing the seasonal patterns of food storage, brood rearing, and swarming, and then observing the consequences of experimentally perturbing the seasonal cycles of brood rearing and swarming.
2. Colonies consume large amounts of food over winter (20+ kg of honey), but have only a brief period (about 14 weeks) for food collection each year.
3. The honeybee's striking habits of starting brood rearing in midwinter and swarming in late spring evidently help colonies achieve maximum use of the short summer season. Colonies whose onset of-brood rearing was experimentally postponed until early spring showed greatly retarded colony growth and swarming. Other experiments demonstrated that late swarms starve more often during winter than do early swarms.
4. We conclude that the timings of colony growth and reproduction are essential elements in the honeybee's suite of adaptations for winter survival.  相似文献   

12.

Background

Honeybees provide economically and ecologically vital pollination services to crops and wild plants. During the last decade elevated colony losses have been documented in Europe and North America. Despite growing consensus on the involvement of multiple causal factors, the underlying interactions impacting on honeybee health and colony failure are not fully resolved. Parasites and pathogens are among the main candidates, but sublethal exposure to widespread agricultural pesticides may also affect bees.

Methodology/Principal Findings

To investigate effects of sublethal dietary neonicotinoid exposure on honeybee colony performance, a fully crossed experimental design was implemented using 24 colonies, including sister-queens from two different strains, and experimental in-hive pollen feeding with or without environmentally relevant concentrations of thiamethoxam and clothianidin. Honeybee colonies chronically exposed to both neonicotinoids over two brood cycles exhibited decreased performance in the short-term resulting in declining numbers of adult bees (−28%) and brood (−13%), as well as a reduction in honey production (−29%) and pollen collections (−19%), but colonies recovered in the medium-term and overwintered successfully. However, significantly decelerated growth of neonicotinoid-exposed colonies during the following spring was associated with queen failure, revealing previously undocumented long-term impacts of neonicotinoids: queen supersedure was observed for 60% of the neonicotinoid-exposed colonies within a one year period, but not for control colonies. Linked to this, neonicotinoid exposure was significantly associated with a reduced propensity to swarm during the next spring. Both short-term and long-term effects of neonicotinoids on colony performance were significantly influenced by the honeybees’ genetic background.

Conclusions/Significance

Sublethal neonicotinoid exposure did not provoke increased winter losses. Yet, significant detrimental short and long-term impacts on colony performance and queen fate suggest that neonicotinoids may contribute to colony weakening in a complex manner. Further, we highlight the importance of the genetic basis of neonicotinoid susceptibility in honeybees which can vary substantially.  相似文献   

13.
A honeybee colony is a superorganism that has evolved precise communication systems, which allow the colony to gather information from numerous individuals and coordinate its behavior. Alarm pheromones, such as isopentyl acetate (IPA), the main component of sting alarm pheromone, play a critical role in the coordination of individual behaviors as well as colony communication in honeybee colonies. In this study, honeybees (Apis mellifera ligustica and Apis cerana cerana) were exposed to relatively high levels of IPA at a foraging site (6–8 bee equivalents) and inside their colony (28–58 bee equivalents) to investigate the influence of alarm pheromones on foraging activity and hive flight activity. IPA reduced the number of bees that flew out the hive, foraged, and waggle danced. Under both contexts in the hive and at the food source, IPA can therefore inhibit honey bee foraging and foraging communication.  相似文献   

14.
Summary The net reproductive rate of unmanaged honeybee colonies has never been fully determined for honey bees in temperate climates. In this study, five overwintered colonies in Kansas, USA, were allowed to swarm naturally (Winston. 1980). These colonies and their swarms were studied over the winter (i.e. one generation). The net reproductive rateR 0 was estimated to be 2.18. Afterswarms were found to contribute substantially (41.2%) to this net reproductive rate. The autumn and spring food reserves and brood areas of established colonies and colonies established from prime swarms and afterswarms are compared. Winter survival of afterswarms was related to autumn honey stores, and the brood areas of surviving afterswarms were smaller than those of prime swarms or established colonies.  相似文献   

15.

Background

Recent elevated winter loss of honey bee colonies is a major concern. The presence of the mite Varroa destructor in colonies places an important pressure on bee health. V. destructor shortens the lifespan of individual bees, while long lifespan during winter is a primary requirement to survive until the next spring. We investigated in two subsequent years the effects of different levels of V. destructor infestation during the transition from short-lived summer bees to long-lived winter bees on the lifespan of individual bees and the survival of bee colonies during winter. Colonies treated earlier in the season to reduce V. destructor infestation during the development of winter bees were expected to have longer bee lifespan and higher colony survival after winter.

Methodology/Principal Findings

Mite infestation was reduced using acaricide treatments during different months (July, August, September, or not treated). We found that the number of capped brood cells decreased drastically between August and November, while at the same time, the lifespan of the bees (marked cohorts) increased indicating the transition to winter bees. Low V. destructor infestation levels before and during the transition to winter bees resulted in an increase in lifespan of bees and higher colony survival compared to colonies that were not treated and that had higher infestation levels. A variety of stress-related factors could have contributed to the variation in longevity and winter survival that we found between years.

Conclusions/Significance

This study contributes to theory about the multiple causes for the recent elevated colony losses in honey bees. Our study shows the correlation between long lifespan of winter bees and colony loss in spring. Moreover, we show that colonies treated earlier in the season had reduced V. destructor infestation during the development of winter bees resulting in longer bee lifespan and higher colony survival after winter.  相似文献   

16.
实现对蜜蜂蜂群的实时动态监测,有助于养蜂业的数字化与智能化发展,对大幅提升养蜂管理水平具有重要意义。深度学习作为人工智能的一种新的研究方向,目前已被广泛应用于昆虫分类学、行为学、害虫生物防治等领域。随着深度学习检测算法的迅速发展,基于深度学习的蜜蜂蜂群监测技术不断涌现,为智能化养蜂提供了可能。为促进深度学习在蜜蜂领域的进一步应用,本文梳理了深度学习在蜜蜂的物种识别、行为跟踪监测、蜂群健康监测和蜂巢监测等方面的研究进展,分析了深度学习技术在蜜蜂蜂群监测研究及应用中存在的一些问题和未来发展方向,为深度学习在蜜蜂领域的应用提出了建议。  相似文献   

17.
Elevated winter losses of managed honeybee colonies are a major concern, but the underlying mechanisms remain controversial. Among the suspects are the parasitic mite Varroa destructor, the microsporidian Nosema ceranae, and associated viruses. Here we hypothesize that pathogens reduce the life expectancy of winter bees, thereby constituting a proximate mechanism for colony losses. A monitoring of colonies was performed over 6 months in Switzerland from summer 2007 to winter 2007/2008. Individual dead workers were collected daily and quantitatively analyzed for deformed wing virus (DWV), acute bee paralysis virus (ABPV), N. ceranae, and expression levels of the vitellogenin gene as a biomarker for honeybee longevity. Workers from colonies that failed to survive winter had a reduced life span beginning in late fall, were more likely to be infected with DWV, and had higher DWV loads. Colony levels of infection with the parasitic mite Varroa destructor and individual infections with DWV were also associated with reduced honeybee life expectancy. In sharp contrast, the level of N. ceranae infection was not correlated with longevity. In addition, vitellogenin gene expression was significantly positively correlated with ABPV and N. ceranae loads. The findings strongly suggest that V. destructor and DWV (but neither N. ceranae nor ABPV) reduce the life span of winter bees, thereby constituting a parsimonious possible mechanism for honeybee colony losses.  相似文献   

18.
A honeybee informs her nestmates of the location of a flower by doing a waggle dance. The waggle dance encodes both the direction of and distance to the flower from the hive. To reveal how the waggle dance benefits the colony, we created a Markov model of bee foraging behavior and performed simulation experiments by incorporating the biological parameters that we obtained from our own observations of real bees as well as from the literature. When two feeders were each placed 400 m away from the hive in different directions, a virtual colony in which honeybees danced and correctly transferred information (a normal, real bee colony) made significantly greater numbers of successful visits to the feeders compared to a colony with inaccurate information transfer. Howerer, when five feeders were each located 400 m from the hive, the inaccurate information transfer colony performed better than the normal colony. These results suggest that dancing's ability to communicate accurate information depends on the number of feeders. Furthermore, because non-dancing colonies always made significantly fewer visits than those two colonies, we concluded that dancing behavior is beneficial for hives' ability to visit food sources.  相似文献   

19.
Twenty‐two honeybee (Apis mellifera) colonies were placed in four different cornfield areas in order to study the potential in situ effects of seed‐coated systemic neonicotinoid pesticides used in cornfields (Zea mays spp) on honeybee health. Two apiaries were located in two independent neonicotinoid‐treated cornfield areas and two others in two independent untreated cornfield areas used as controls. These experimental hives were extensively monitored for their performance and health traits over a period of one year. Trapped pollen was collected and microscopically identified to define the visited flowers and the amount of corn pollen collected by bees. Liquid chromatography–mass spectrometry was performed to detect pesticide residues in honeybee foragers and trapped pollen. Honeybee colonies located in neonicotinoid‐treated cornfields expressed significantly higher varroa mite loads than those in untreated cornfields. However, brood production and colony weight were less disturbed by the treatment factor. Sublethal doses of neonicotinoids were detected in the trapped corn pollen and none in bee foragers. Overall, our results show that forager bees collected 20% of corn pollen containing variable concentrations of neonicotinoids. Colonies located in treated cornfields expressed higher varroa loads and long‐term mortality than those in untreated cornfields. On the other hand, no significant differences were observed regarding the brood production and colony weight.  相似文献   

20.
Summary This study investigated the effects of colony growth and development, food storage, foraging activity and weather on the migration behavior of African honey bees in the Okavango River Delta, Botswana. Four observation colonies were studied during the honey bee migration season (November–May), at which time the availability of blooming species was reduced. Two of the colonies (colonies 1 & 2) migrated during the study period, while the remaining two (colonies 3 & 4) did not. During the 4–6 weeks preceding the onset of migration preparations, colonies 1 & 2 exhibited increasing population sizes, high levels of brood production with low brood mortality, relatively large stores of food, and increasing mass. In contrast, the populations of colonies 3 & 4 did not increase, brood-rearing activity was erratic and lower, brood mortality was higher, food stores became depleted and colony mass declined. Both colonies 3 & 4 ceased rearing brood, and colony 3 died of starvation. Colony foraging activity was examined by monitoring waggle-dance activity 2–3 days each week. For 4–6 weeks before the onset of migration in colonies 1 & 2, daily foraging areas and mean daily foraging distances became increasingly large and variable. Colonies 3 & 4 exhibited foraging patterns similar to those observed for colonies 1 & 2 preceding migration. There was no clear association between 7 weather parameters examined and migration behavior. These data suggest that migration is influenced by an interaction of intra-colony demographics, food reserves and foraging patterns. Migration may be feasible only for those colonies that possess (1) a population of appropriate size and age structure to compensate for the natural attrition of older workers during the emigration process, and (2) sufficient food reserves for long-distance travel and the establishment of a new nest. Changing foraging patterns may reflect a deteriorating foraging environment, which may trigger the onset of migration preparations, provided that colony demographics and food reserves are conducive. Colonies that show decreased brood production, higher brood mortality and reduced food stores may be incapable of migrating, even when experiencing deteriorating foraging conditions. Rather, such colonies may have a greater chance of survival if they attempt to persist in a given area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号