首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Continuous cultures ofComamonas sp SGLY2 were grown anaerobically prior to establishing steady states at different oxygen flow rates. At a low oxygen transfer rate, no dissolved oxygen accumulated in the medium and all nitrate was reduced to dinitrogen. Concurrently with the increase of dissolved oxygen concentration in the liquid phase, the rate of denitrification decreased. However, at a dissolved oxygen concentration near saturation (33 mg L–1), a part of the electron flow always diverted to nitrate with production of dinitrogen: the aerobic denitrification rate was equivalent to 35% of that calculated under anaerobic conditions. These experiments reflected the co-utilization of oxygen and N-oxides and the production of dinitrogen, up to saturated conditions, which implied synthesis and activity of the four denitrifying enzymes under various aeration conditions.  相似文献   

2.
Denitrification of nitrate and nitric acid with methanol as carbon source   总被引:6,自引:0,他引:6  
Summary A methanol/nitrate-medium and anaerobic conditions yielded an enrichment culture which consisted ofHyphomicrobium andParacoccus. This mixed culture proved to be very effective in denitrification of solutions containing high concentrations of nitrate and free nitric acid when grown in a chemostat (D=0.04 h-1). With 0.1 mol/l nitric acid solution as feed medium the pH in the culture vessel adjusted itself to 5.8. For the reduction of 1 g NO3–N 2.6 g methanol were consumed and 0.56 g cells were produced.  相似文献   

3.
Shim H  Hwang B  Lee SS  Kong SH 《Biodegradation》2005,16(4):319-327
Pseudomonas putida and Pseudomonas fluorescens present as a coculture were studied for their abilities to degrade benzene, toluene, ethylbenzene, and xylenes (collectively known as BTEX) under various growth conditions. The coculture effectively degraded various concentrations of BTEX as sole carbon sources. However, all BTEX compounds showed substrate inhibition to the bacteria, in terms of specific growth, degradation rate, and cell net yield. Cell growth was completely inhibited at 500mgl–1 of benzene, 600mgl–1 of o-xylene, and 1000mgl–1 of toluene. Without aeration, aerobic biodegradation of BTEX required additional oxygen provided as hydrogen peroxide in the medium. Under hypoxic conditions, however, nitrate could be used as an alternative electron acceptor for BTEX biodegradation when oxygen was limited and denitrification took place in the culture. The carbon mass balance study confirmed that benzene and toluene were completely mineralized to CO2 and H2O without producing any identifiable intermediate metabolites.  相似文献   

4.
The degradation of dichloromethane by the pure strainHyphomicrobium GJ21 and by an enrichment culture, isolated from a continuously operating biological trickling filter system, as well as the corresponding growth rates of these organisms were investigated in several batch experiments. By fitting the experimental data to generally accepted theoretical expressions for microbial growth, the maximum growth rates were determined. The effect of NaCl was investigated at salt concentrations varying from 0 to 1000 mM. Furthermore the dichloromethane degradation was investigated separately in experiments in which a high initial biomass concentration was applied. The results show that microbial growth is strongly inhibited by increased NaCl concentrations (50% reduction of max at 200–250 mM NaCl), while a certain degree of adaptation has taken place within an operational system eliminating dichloromethane. A critical NaCl concentration for growth of 600 mM was found for the microbial culture isolated from an operational trickling filter, while a value of 375 mM was found for the pure cultureHyphomicrobium GJ21. The substrate degradation appears to be much less susceptible to inhibition by NaCl. Even at 800 mM NaCl relatively high substrate degradation rates are still observed, although this process is again dependent on the NaCl concentration. Here the substrate elimination is due to the maintenance requirements of the microorganisms. The inhibition of the dichloromethane elimination was also investigated in a laboratory scale trickling filter. The results of these experiments confirmed those obtained in the batch experiments. At NaCl concentrations exceeding 600 mM a considerable elimination of dichloromethane was still observed for during several months of operation. These observations indicate that the inhibition of microbial growth offers a significant control parameter against excessive biomass growth in biological trickling filters for waste gas treatment.  相似文献   

5.
Transformants of Methylobacterium dichloromethanicum DM4 (DM4-2cr/pME 8220 and DM4-2cr/pME8221) and of Methylobacterium extorquens AM1 (AM1/pME8220 and AM1/pME8221) that express the dcm A gene of dichloromethane dehalogenase undergo lysis when incubated in the presence of dichloromethane and are sensitive to acidic shock. The lysis of the transformants was found to be related neither to the accumulation of Cl ions, CH2O, or HCOOH, nor to the impairment of glutathione synthesis or to the disturbance of intracellular pH homeostasis. The (exo) Klenow fragment–mediated incorporation of [-32P]dATP into the DNA of the transformants DM4-2cr/pME8220 and AM1/pME8220 was considerably greater when the transformed cells were incubated with CH2Cl2 than when they were incubated with CH3OH, indicating the occurrence of a significant increase in the total length of gaps. At the same time, the strain AM1 (which lacks dichloromethane dehalogenase) and the dichloromethane-degrading strain DM4 incubated with CH2Cl2 showed an insignificant increase in the total length of the gaps. The transformed cells are likely to lyse due to the relatively inefficient repair of DNA lesions that are induced in response to the alkylating action of S-chloromethylglutathione, an intermediate product of CH2Cl2 degradation. The data obtained suggest that the bacterial mineralization of dichloromethane requires an efficient DNA repair system.  相似文献   

6.
A thermotolerant methylotrophicBacillus sp. (KISRI TM1A, NCIMB 40040), isolated from the Kuwaiti environment and belonging to the group II spore-forming, bacilli, could not be correlated with any knownBacillus sp. It may, therefore, be a new species. It grew at temperatures from 37° to 58°C from pH 6.5 to 9.0 and on methanol up to 40 g l–1. It grew well in a chemostat. Its biomass yield coefficient was improved by about 30% by optimization of medium and growth conditions, reaching a maximum of 0.44g g–1 at 45°C pH 6.8 to 7.0, dilution rate 0.25 h–1 with methanol at 10 g l–1. Average crude protein and amino acid content were 84% and 60%, respectively, and maximum productivity attained under laboratory conditions was 5.06 g l–1h–1. It was concluded that this strain has good potential for use in single-cell protein production.  相似文献   

7.
The methylotrophic bacteriumHyphomicrobium VS was enriched and isolated, using activated sewage sludge as inoculum in mineral medium containing dimethylsulfide (DMS) at a low concentration to prevent toxicity. DMS concentrations above 1 mM proved to be growth inhibiting.Hyphomicrobium VS could use DMS, dimethylsulfoxide (DMSO), methanol, formaldehyde, formate, and methylated amines as carbon and energy source. Carbon was assimilated via the serine pathway. DMS-grown cells respired sulfide, thiosulfate, methanethiol, dimethyldisulfide and dimethyltrisulfide.To testHyphomicrobium VS for application in biofiltration of air polluted with volatile sulfur compounds two laboratory scale trickling biofilters with polyurethane and lava stone as carrier material were started up by inoculation with this bacterium. Both methanol- and DMS-grown cells could be used. Only a short adaptation period was needed. Short term experiments showed that high concentrations of DMS (1–2 µmol 1–1) were removed very efficiently by the biofilters at space velocities up to 100 h–1.Abbreviations VSC volatile sulfur compounds - DMS dimethylsulfide - DMDS dimethyldisulfide - DMTS dimethyltrisulfide - MT methanethiol - DMSO dimethylsulfoxide  相似文献   

8.
The inhibition of substrate and product on the growth of Klebsiella pneumoniae in anaerobic and aerobic batch fermentation for the production of 1,3-propanediol was studied. The cells under anaerobic conditions had a higher maximum specific growth rate of 0.19 h–1 and lower tolerance to 110 g glycerol l–1, compared to the maximum specific growth rate of 0.17 h–1 and tolerance to 133 g glycerol l–1 under aerobic conditions. Acetate was the main inhibitory metabolite during the fermentation under anaerobic conditions, with lactate and ethanol the next most inhibitory. The critical concentrations of acetate, lactate and ethanol were assessed to be 15, 19, 26 g l–1, respectively. However, cells grown under aerobic conditions were more resistant to acetate and lactate but less resistant to ethanol. The critical concentrations of acetate, lactate and ethanol were assessed to be 24, 26, and 17 g l–1, respectivelyRevisions requested 8 september; Revisions received 2 November 2004  相似文献   

9.
Dehalogenation of dichloromethane by cell extracts of hyphomicrobium DM2   总被引:1,自引:0,他引:1  
A facultatively methylotrophic bacterium was isolated from enrichment cultures containing dichloromethane as the sole carbon source. It was identified as a Hyphomicrobium species. The organism grew exponentially in batch cultures with 10 mM dichloromethane at a specific growth rate of 0.07 h-1. The release of Cl- from dichloromethane and the disapperance of substrate paralleled growth. Resting dichloromethane-grown cells, in the presence of potassium sulphite as a trapping agent, converted cichloromethane methane quantitatively to formaldehyde. The conversion of dichloromethane to formaldehyde by cell extracts was stricly dependent on glutathione. Other thiols were inactive. Glutathione was not consumed in the course of the reaction. The specific activity of the enzymic dehalogenation of dichloromethane amounted to 3.8 mkat/kg protein in extracts of dichloromethane-grown cells and to less than 0.1 mkat/kg protein in extracts from cells grown on methanol.  相似文献   

10.
A new hydrogen producing bacterium, Rhodopseudomonas palustris P4, originally isolated under an anaerobic/phototrophic condition, grew well under aerobic/chemoheterotrophic or anaerobic/chemoheterotrophic conditions and showed CO-dependent, H2 production activity when transferred to anaerobic conditions. Cell growth was best under an aerobic/chemoheterotrophic condition as the doubling time of 1 h, while the H2 production activity was highest in the cells grown under an aerobic/chemoheterotrophic condition at 20 mmol g–1 cell–1 h–1.  相似文献   

11.
For Hyphomicrobium 53-49 capable of growing under various conditions, aerobic methanol, anaerobic methanol (with denitrification), autotrophic (H2-O2-CO2), aerobic ethanol and aerobic acetate, investigation and comparison of the specific activities of the following enzymes were performed: alcohol dehydrogenase (NAD-ethanol linked and NAD-methanol linked), primary alcohol dehydrogenase, formaldehyde dehydrogenase (NAD-GSH linked and DCPIP linked), formate dehydrogenase, serine hydroxymethyl transferase, hydroxypyruvate reductase, isocitrate lyase (icl), malate lyase, malate dehydrogenase, ribulosebisphosphate (RuBP) carboxylase, phos-phoenolpyruvate (PEP) carboxykinase (ADP linked), PEP carboxylase (phosphorylating), pyruvate carboxylase (NADH linked and NADPH linked) and α-ketoglutarate carboxylase (NADH linked and NADPH linked). On the basis of the data obtained, it was concluded that during growth on methanol, aerobically and anaerobically, the icl+ serine pathway operated, while during autotrophic growth on H2-O2-CO2, CO2 was incorporated through the RuBP pathway and others, and during growth on ethanol or acetate, neither the serine pathway nor the RuBP pathway operated. The organism changed its metabolism through the regulation of the metabolic enzymes according to the growth conditions.  相似文献   

12.
Of 14 potential sulfur-oxidizing strains, Pseudomonas sp. B21 and Agrobacterium sp. B19 were considered as denitrifiers. Under aerobic conditions, with S0 as electron donor, maximum cell growth rates were 0.022 (B21) and 0.043 h–1 (B19). Both grew optimally at pH 7.5 and 28 °C. When NO3-N was increased from 10 to 200 mg l–1 the efficiency of nitrate removal of each strain gradually decreased, from 60 to 40%. Addition of suitable organic compounds (C/N < 4.2) increased the nitrate removal efficiencies of both strains, indicating their mixotrophic characters.  相似文献   

13.
Heterotrophic nitrification and aerobic and anaerobic denitrification byAlcaligenes faecalis strain TUD were studied in continuous cultures under various environmental conditions. Both nitrification and denitrification activities increased with the dilution rate. At dissolved oxygen concentrations above 46% air saturation, hydroxylamine, nitrite and nitrate accumulated, indicating that both the nitrification and denitrification were less efficient. The overall nitrification activity was, however, essentially unaffected by the oxygen concentration. The nitrification rate increased with increasing ammonia concentration, but was lower in the presence of nitrate or nitrite. When present, hydroxylamine, was nitrified preferentially. Relatively low concentrations of acetate caused substrate inhibition (KI=109 M acetate). Denitrifying or assimilatory nitrate reductases were not detected, and the copper nitrite reductase, rather than cytochrome cd, was present. Thiosulphate (a potential inhibitor of heterotrophic nitrification) was oxidized byA. faecalis strain TUD, with a maximum oxygen uptake rate of 140–170nmol O2·min-1·mg prot-1. Comparison of the behaviour ofA. faecalis TUD with that of other bacteria capable of heterotrophic nitrification and aerobic denitrification established that the response of these organisms to environmental parameters is not uniform. Similarities were found in their responses to dissolved oxygen concentrations, growth rate and ammonia concentration. However, they differed in their responses to externally supplied nitrite and nitrate.  相似文献   

14.
Aerobic denitrification: a controversy revived   总被引:37,自引:0,他引:37  
During studies on the denitrifying mixotroph, Thiosphaera pantotropha, it has been found that this organism is capable of simultaneously utilizing nitrate and oxygen as terminal electron acceptors in respiration. This phenomenon, termed aerobic denitrification, has been found in cultures maintained at dissolved oxygen concentrations up to 90% of air saturation.The evidence for aerobic denitrification was obtained from a number of independant experiments. Denitrifying enzymes were present even in organisms growing aerobically without nitrate. Aerobic yields on acetate were higher (8.1 g protein/mol) without than with (6.0 g protein/mol) nitrate, while the anaerobic yield with nitrate was even lower (4 g protein/mol). The maximum specific growth rate of Tsa. pantotropha was higher (0.34 h-1) in the presence of both oxygen (>80% air saturation) and nitrate than in similar cultures not supplied with nitrate (0.27 h-1), indicating that the rate of electron transport to oxygen was limiting. This was confirmed by oxygen uptake experiments which showed that although the rate of respiration on acetate was not affected by nitrate, the total oxygen uptake was reduced in its presence. The original oxygen uptake could be restored by the addition of denitrification inhibitors.Dedicated to Professor Dr. H.-G. Schlegel on the occasion of his 60th birthday  相似文献   

15.
Production of nitrate reductase was studied in 15 species of microscopic fungi grown on a nitrate-containing medium. Experiments were performed with Fusarium oxysporum 11dn1, a fungus capable of producing nitrous oxide as the end product of denitrification. Moreover, a shift from aerobic to anaerobic conditions of growth was accompanied by a sharp increase in the activity of nitrate reductase. Studies of nitrate reductase from the mycelium of Fusarium oxysporum 11dn1, grown under aerobic and anaerobic conditions, showed that this enzyme belongs to molybdenum-containing nitrate reductases. The enzymes under study differed in the molecular weight, temperature optimum, and other properties. Nitrate reductase from the mycelium grown under aerobic conditions was shown to belong to the class of assimilatory enzymes. However, nitrate reductase from the mycelium grown anaerobically had a dissimilatory function. An increase in the activity of dissimilatory nitrate reductase, observed under anaerobic conditions, was associated with de novo synthesis of the enzyme.__________Translated from Prikladnaya Biokhimiya i Mikrobiologiya, Vol. 41, No. 3, 2005, pp. 292–297.Original Russian Text Copyright © 2005 by Morozkina, Kurakov, Nosikov, Sapova, Lvov.  相似文献   

16.
Three novel strains capable of heterotrophic nitrification–aerobic denitrification were isolated from the landfill leachate treatment system. Based on their phenotypic and phylogenetic characteristics, the isolates were identified as Agrobacterium sp. LAD9, Achromobacter sp. GAD3 and Comamonas sp. GAD4, respectively. Batch tests were carried out to evaluate the growth and the ammonia removal patterns. The maximum growth rates as determined from the growth curve were 0.286, 0.228, and 0.433 h−1 for LAD9, GAD3 and GAD4, respectively. The maximum aerobic nitrification–denitrification rate was achieved by the strain GAD4 of 0.381 mmol/l h, followed by LAD9 of 0.374 mmol/l h and GAD3 of 0.346 mmol/l h. Moreover, hydroxylamine oxidase and periplasmic nitrate reductase were successfully expressed in all the isolates. The relationship between the enzyme activities and the aerobic nitrification–denitrification rates revealed that hydroxylamine oxidation may be the rate-limiting step in the heterotrophic nitrification–aerobic denitrification process. The study results are of great significance to the wastewater treatment systems where simultaneous removal of carbon and nitrogen is desired.  相似文献   

17.
The effects of the specific growth rate and methanol concentration on the degradation of hirudin produced by recombinant Pichia pastoris were investigated. When a methanol-limited state and the specific growth rate of 0.02 h–1 were maintained during the fermentation, a minimum degradation of hirudin and a maximum specific hirudin production rate were achieved. By this strategy, the production of intact recombinant hirudin Hir65 reached 0.7 g l–1 in fed-batch fermentation. Its proportion was 35% to all forms of hirudin.  相似文献   

18.
Bacterial Degradation of Dichloromethane   总被引:19,自引:8,他引:11       下载免费PDF全文
Strain DM1, a facultative methylotrophic bacterium utilizing methanol, formate, mono-, di-, and trimethylamine, as well as dichloromethane as C1 substrates was isolated as an airborne contaminant. The organism is a strictly aerobic, gram-negative, oxidase-positive short rod, motile by a single lateral flagellum. Enzyme assays in crude extracts suggested that it assimilates C1 compounds by the serine/isocitrate lyase-negative pathway. Experiments with extended cultures demonstrated that dichloromethane is a growth-inhibitory substrate. The maximum specific growth rate of 0.11 h−1 was reached between 2 and 5 mM dichloromethane. The release of Cl−1 from dichloromethane paralleled growth in extended and continuous cultures. Molar growth yields on methanol and on dichloromethane were 18.6 and 15.7 g/mol, respectively. Since attempts to demonstrate dehalogenation of dichloromethane by crude extracts failed, a dehalogenation assay with resting cells was developed. Maximum dehalogenating activity of cell suspensions was at pH 9.0. The reaction was partially and reversibly inhibited by anaerobiosis. During a shift of a chemostat culture from methanol to dichloromethane as the carbon source, the dehalogenating activity of resting cells was increased at least 500-fold.  相似文献   

19.
Endostatin is a 20 kDa carboxyl-terminal fragment of collagen XVIII that strongly inhibits angiogenesis and tumor growth. The methylotrophic yeast, Pichia pastoris, is a robust expression system that can be used to study methods to improve the yields of rhEndostatin. We expressed rhEndostatin in P. pastoris under the control of the alcohol oxidase 1 (aox 1) promoter (Mut+ phenotype) as a model, and used a cell biomass of about 50 g l–1 dry cell wt as a starting point for the induction phase and varied the methanol feed rate at 8 ml l–1 h–1, 11 ml l–1 h–1 and 15 ml l–1 h–1. While the cell growth rate was proportional to the rate of methanol delivery, protein production rate was not. These findings could be used to guide parameters for large-scale production of recombinant proteins in the P. pastoris system.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号