首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To analyze relationships between the ternary and primary structures of the beta subunit of Escherichia coli F1 ATPase, we prepared two monoclonal antibodies beta 12 and beta 31 against the beta peptide. These antibodies bind to the beta subunit but do not bind to the F1 ATPase, resulting in no inhibition of the ATPase activities. Several different portions of the beta subunit peptide were prepared by constructing expression plasmids carrying the corresponding DNA segment of the beta subunit gene amplified by the polymerase chain reaction. Western blotting analysis using these peptides revealed that the antibodies bound to a peptide of 104 amino acid residues from the amino terminal end, which is outside the previously estimated catalytic domain between residues 140 and 350. These results indicated that the amino terminal portion of the maximal 104 residues is not exposed to the surface of the F1 ATPase. The binding spectrum of the antibodies to the subunit from various species including Vibrio alginolyticus and thermophilic bacterium PS3 indicated possible epitope sequences within the 104 residues. The ternary structure of the beta subunit, in terms of cleavage sites by endopeptidases, was analyzed using the antibodies. A 43-kDa peptide without binding ability to beta 12 and beta 31 appeared upon cleavage by lysyl endopeptidase. The results suggested that lysyl residues from around 70 to 100 from the amino terminus are exposed to the surface of the beta subunit.  相似文献   

2.
Three monoclonal antibodies (mAbs) recognizing distinct epitopes on the delta-subunit of beef heart mitochondrial F1-ATPase were studied for their reactivity towards the delta-subunit both in isolated F1 and in the F0-F1 complex of submitochondrial particles. Two of the antibodies termed mAb delta 195 and mAb delta 239 had free access to delta in F1 and the F0-F1 complex. Partial hindrance was observed for the third antibody mAb delta 22. By a double antibinding assay, it was found that the binding sites for mAb delta 195 and mAb delta 239 were close to each other and possibly overlapping. Mapping studies conducted with the isolated delta-subunit showed that mAb delta 195 and mAb delta 239 interacted with the N-terminal portion of delta extending from Ala-1 to Met-16, whereas mAb delta 22 interacted with the fragment spanning Ser-17-Glu-68. It was concluded that the Ala-1-Met-16 segment of the delta-subunit in F1 and the F0-F1 complex is freely accessible from the outside, whereas the Ser-17-Glu-68 segment of delta is partially hidden, possibly as a result of interactions with other subunits.  相似文献   

3.
The preparation of anti-OSCP monoclonal antibodies is described for the first time. One of these antibodies prevents the activating effect of OSCP in reconstitution experiments. These antibodies and antibodies previously obtained against the alpha- and beta-subunits of pig heart mitochondrial F1-ATPase have been used to look for well conserved epitopes in various species. One anti-beta antibody can recognize all species tested while the anti-OSCP antibodies only recognize the pig or beef enzyme. The above anti-beta antibody inhibits ATP synthesis without modifying the rate of ATP hydrolysis. This antibody also prevents the ADP-induced hysteretic inhibition of F1-ATPase.  相似文献   

4.
In the crystal structure of mitochondrial F1-ATPase, two beta subunits with a bound Mg-nucleotide are in "closed" conformations, whereas the third beta subunit without bound nucleotide is in an "open" conformation. In this "CCO" (beta-closed beta-closed beta-open) conformational state, Ile-390s of the two closed beta subunits, even though they are separated by an intervening alpha subunit, have a direct contact. We replaced the equivalent Ile of the alpha3beta3gamma subcomplex of thermophilic F1-ATPase with Cys and observed the formation of the beta-beta cross-link through a disulfide bond. The analysis of conditions required for the cross-link formation indicates that: (i) F1-ATPase takes the CCO conformation when two catalytic sites are filled with Mg-nucleotide, (ii) intermediate(s) with the CCO conformation are generated during catalytic cycle, (iii) the Mg-ADP inhibited form is in the CCO conformation, and (iv) F1-ATPase dwells in conformational state(s) other than CCO when only one (or none) of catalytic sites is filled by Mg-nucleotide or when catalytic sites are filled by Mg2+-free nucleotide. The alpha3beta3gamma subcomplex containing the beta-beta cross-link retained the activity of uni-site catalysis but lost that of multiple catalytic turnover, suggesting that open-closed transition of beta subunits is required for the rotation of gamma subunit but not for hydrolysis of a single ATP.  相似文献   

5.
One of the two main causes of acetylcholine-receptor loss in myasthenia gravis is antigenic modulation, i.e. accelerated internalization and degradation rate by antibody-crosslinking. This phenomenon has been studied only in animal tissues. Therefore, we tested antigenic modulation of the acetylcholine receptor on human embryonic myotubes in cultures. Several monoclonal antibodies to the alpha, beta and gamma subunits of the receptor reduced its concentration, in some cases down to one-third of the control. Some of these antibodies only form complexes of one antibody with two receptor molecules; consequently such small complexes are sufficient to accelerate internalization of the human acetylcholine receptor. This technique might be proved valuable for clinical screening of sera from myasthenic patients.  相似文献   

6.
The effect of aurovertin on the binding parameters of ADP and ATP to native F1 from beef heart mitochondria in the presence of EDTA has been explored. Three exchangeable sites per F1 were titrated by ADP and ATP in the absence or presence of aurovertin. Curvilinear Scatchard plots for the binding of both ADP and ATP were obtained in the absence of aurovertin, indicating one high affinity site (Kd for ADP = 0.6-0.8 microM; Kd for ATP = 0.3-0.5 microM) and two lower affinity sites (Kd for ADP = 8-10 microM; Kd for ATP = 7-10 microM). With a saturating concentration of aurovertin capable of filling the three beta subunits of F1, the curvilinearity of the Scatchard plots was decreased for ATP binding and abolished for ADP binding, indicating homogeneity of ADP binding sites in the F1-aurovertin complex (Kd for ADP = 2 microM). When only the high affinity aurovertin site was occupied, maximal enhancement of the fluorescence of the F1-aurovertin complex was attained with 1 mol of ADP bound per mol of F1 and maximal quenching for 1 mol of ATP bound per mol of F1. When the F1-aurovertin complex was incubated with [3H]ADP followed by [14C]ATP, full fluorescence quenching was attained when ATP had displaced the previously bound ADP. In the case of the isolated beta subunit, both ADP and ATP enhanced the fluorescence of the beta subunit-aurovertin complex. The Kd values for ADP and ATP in the presence of EDTA were 0.6 mM and 3.7 mM, respectively; MgCl2 decreased the Kd values to 0.1 mM for both ADP and ATP. It is postulated that native F1 possesses three equivalent interacting nucleotide binding sites and exists in two conformations which are in equilibrium and recognize either ATP (T conformation) or ADP (D conformation). The negative interactions between the nucleotide binding sites of F1 are strongest in the D conformation. Upon addition of aurovertin, the site-site cooperativity between the beta subunits of F1 is decreased or even abolished.  相似文献   

7.
8.
9.
The uncB, E, F, and H genes of the Escherichia coli unc operon were cloned behind the lac promoter of plasmid pUC9, generating plasmid pBP101. These unc loci code, respectively, for the chi, omega, and psi subunits of the F0 sector and the delta subunit of the F1 sector of the H+-ATP synthase complex. Induction of expression of the four unc genes by the addition of isopropyl-beta-D-thiogalactoside resulted in inhibition of growth. During isopropyl-beta-D-thiogalactoside induction, the three subunits of F0 were integrated into the cytoplasmic membrane with a resultant increase in H+ permeability. A functional F0 was formed from plasmid pBP101 in a genetic background lacking all eight of the unc structural genes coding the F1F0 complex. In the unc deletion background, a reasonable correlation was observed between the amount of F0 incorporated into the membrane and the function measured, i.e., high-affinity binding of F1 and rate of F0-mediated H+ translocation. This correlation indicates that most or all of the F0 assembled in the membrane is active. Although the F0 assembled under these conditions binds F1, only partial restoration of NADH-dependent or ATP-dependent quenching of quinacrine fluorescence was observed with these membranes. Proteolysis of a fraction of the psi subunit may account for this partial deficiency. The experiments described demonstrate that a functional F0 can be assembled in vivo in E. coli strains lacking genes for the alpha, beta, gamma, and epsilon subunits of F1.  相似文献   

10.
The hydrolysis of MgATP and MgITP by mitochondrial F1-ATPase from Saccharomyces cerevisiae is competitively inhibited by alpha, beta-CrADP, alpha, beta, gamma-CrATP and beta, gamma-CrATP. The apparent K1 values of the three complexes are in the range of the half-saturating MgATP concentration. The negative cooperativity (nH = 0.7) of MgATP hydrolysis is totally abolished by alpha, beta-CrADP (nH = 1.0), while it is not affected by the CrATP. It is concluded that alpha, beta-CrADP binds exclusively at the regulatory site and that CrATP binds exclusively to the catalytic site.  相似文献   

11.
12.
The modeling of the rotatory mechanism performed by the F(1)-ATPase complex during ATP synthesis shows that the beta, but not the alpha subunit, undergoes large conformational changes that depend on the occupancy of the catalytic site. Here we determined by fluorescence spectroscopy the changes in tertiary structure and hydrophobic exposed area of the isolated alpha and beta subunits of the F(1)-ATPase complex from Escherichia coli upon adenine nucleotide binding. The results show that in the absence of intersubunit contacts, the two subunits exhibit markedly similar conformational movements.  相似文献   

13.
The conformation of adenine nucleotides bound to bovine mitochondrial F1-ATPase was investigated using transfer nuclear Overhauser enhancement measurements. It is shown that all nucleotides investigated adopt a predominantly anti conformation when bound to the catalytic sites. Furthermore, the experiment suggests that 8-azido-ADP and 8-azido-ATP, which are predominantly in the syn conformation in solution, are in the anti conformation when bound to F1 catalytic sites.  相似文献   

14.
The properties of the nucleotides tightly bound with mitochondrial F1-ATPase were examined. One of three bound nucleotide molecules is localized at the site with Kd approximately 10(-7) M and released with koff approximately 0.1 s-1. The second nucleotide molecule is bound with the enzyme with Kd approximately 10(-8) M and koff for its dissociation is 3 X 10(-4) s-1. The third is never released even in the presence of 1 mM ATP or ADP. The last two nucleotides are believed to be bound at the noncatalytic sites of F1-ATPase. Pyrophosphate promotes liberation of two releasable nucleotide molecules, decreasing the affinity of the enzyme to AD(T)P. From the results obtained it follows that the only suitable criterion for localization of the nucleotide at the F1-ATPase catalytic site is the high rate (koff greater than or equal to 0.1 s-1) of its spontaneous release.  相似文献   

15.
Summary Five subunits (-, -, -, - and -subunits) of the six -and -subunits) in the F1 portion (F1ATPase) of sweet potato (Ipomoea batatas) mitochondrial adenosine triphosphatase were isolated by an electrophoretic method. The - and -subunits were not distinguishable immunologically but showed completely different tryptic peptide maps, indicating that they were different molecular species. In vitro protein synthesis with isolated sweet potato root mitochondria produced only the -subunit when analyzed with anti-sweet potato F1ATPase antibody reacting with all the subunits except the -subunit. Sweet potato root poly(A)+RNA directed the synthesis of six polypeptides which were immunoprecipitated by the antibody: two of them immunologically related to the -subunit and the others to the - and -subunits. We conclude that the -subunit of the F1ATPase is synthesized only in the mitochondria and the -, - and -subunits are in the cytoplasm.  相似文献   

16.
F1-ATPase is a rotary molecular motor crucial for various cellular functions. In F1-ATPase, the rotation of the gammadeltaepsilon subunits against the hexameric alpha(3)beta(3) subunits is highly coordinative, driven by ATP hydrolysis and structural changes at three beta subunits. However, the dynamical and coordinating structural transitions in the beta subunits are not fully understood at the molecular level. Here we examine structural transitions and domain motions in the active subunits of F1-ATPase via dynamical domain analysis of the alpha(3)beta(3)gammadeltaepsilon complex. The domain movement and hinge axes and bending residues have been identified and determined for various conformational changes of the beta-subunits. P-loop and the ATP-binding pocket are for the first time found to play essential mechanical functions additional to the catalytic roles. The cooperative conformational changes pertaining to the rotary mechanism of F1-ATPase appears to be more complex than Boyer's 'bi-site' activity. These findings provide unique molecular insights into dynamic and cooperative domain motions in F1-ATPase.  相似文献   

17.
Using site-directed mutagenesis, Glu-190 or Glu-201 of the beta subunit of the F1-ATPase from the thermophilic bacterium PS3 were replaced with glutamine. It was possible to reconstitute complexes of the mutated beta subunits with alpha and gamma subunits, but the complexes did not have ATPase activity. It is concluded that carboxylic acid side chains of Glu-190 and Glu-201 of the beta subunit are essential for catalytic activity of F1-ATPase.  相似文献   

18.
Methods are described to classify nucleotide binding sites of the mitochondrial coupling factor F1 from yeast on the basis of their affinities and stability properties. High affinity sites or states for ATP and related adenine analogs and low affinity sites or states which bind a broad range of different nucleotide triphosphates are found. The results are discussed in terms of a two site, two cycle scheme, where binding of nucleotide at one site facilitates the release of nucleotide at a second site.  相似文献   

19.
The epitopes of two classes of monoclonal antibody and the binding site for the epsilon subunit have been mapped to the carboxyl-terminal region of the beta subunit of Escherichia coli F1-ATPase using partial CNBr cleavage, weak acid hydrolysis, and Western blots. One class of antibody, B-I, inhibits ATPase activity; the other class, B-II, recognizes an epitope not exposed on the surface of intact F1. Data from two-dimensional gels and blots of beta cleaved with CNBr/weak acid showed that the B-I epitope lies between Asp-381 and the carboxyl-terminal Leu-459, and the B-II epitope lies between Asp-345 and Met-380. Weak acid hydrolysis of the beta-epsilon product obtained by cross-linking F1 with a water-soluble carbodiimide yielded a fragment containing epsilon and a 13-kDa carboxyl-terminal fragment of beta indicating that epsilon interacts with this portion of beta as well. Fab fragments from the B-I antibody beta-6 could be cross-linked to the epsilon subunit in native F1 by various cross-linking agents demonstrating that the antibody and the epsilon subunit occupy adjacent, nonoverlapping sites on the beta subunit. Implications of these results for the roles of the epsilon subunit and of the carboxyl-terminal region of the beta subunit in F1 are discussed.  相似文献   

20.
Stability and conformational transitions of soluble and fully active alpha beta units of (Na,K)-ATPase in n-dodecyl octaethylene glycol monoether (C12E8) are examined. Sedimentation equilibrium centrifugation gave a molecular weight of 143 000 for the alpha beta unit eluting from TSK 3000 SW gel chromatography columns. Fluorescence analysis and phosphorylation experiments show that E1-E2 transitions between both dephospho and phospho forms of soluble (Na,K)-ATPase are similar to those previously observed in the membrane-bound state. The two conformations can also be identified by their different susceptibilities to irreversible temperature-dependent inactivation. E1 forms of both soluble and membrane-bound (Na,K)-ATPase are more thermolabile than E2 forms. Gel chromatography on TSK 3000 SW and 4000 SW columns shows that thermal inactivation of soluble (Na,K)-ATPase at 40 degrees C is accompanied by aggregation of alpha beta units to (alpha beta)2 units and higher oligomers. The aggregates are stable in C12E8 but dissolve in sodium dodecyl sulfate. Similar aggregation accompanies inactivation of membrane-bound (Na,K)-ATPase at 55-60 degrees C. These data suggest that inactivation both in the soluble and in the membrane-bound state involves exposure of hydrophobic residues to solvent. The instability of the soluble E1 form may be related to inadequate length of the dodecyl alkyl chain of C12E8 for stabilization of hydrophobic protein domains that normally associate with alkyl chains of phospholipids in the membrane. Interaction between alpha beta units-does not seem to be required for the E1-E2 conformational change, but irreversible aggregation appears to be a consequence of denaturation of (Na,K)-ATPase in both soluble and membranous states.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号