首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Chromomycin A3 (CHR) is an antitumor antibiotic that inhibits macromolecular biosynthesis by reversibly binding to double stranded DNA via the minor groove, with GC-base specificity. At and above physiological pH when CHR is anionic, interaction of CHR with DNA requires the presence of divalent metal ions like Mg2+. However, at acidic pHthe molecule is neutral and it binds DNA even in absence of Mg2+. Molecular dynamics simulation studies at 300K of neutral CHR and 1:1 CHR:Mg2+ complexes formed at pH 5.2 and 8.0 show that hydrophobicity of CHR:Mg2+ complex formed with the neutral drug is greater than that of the two other species. Interactions of CHR with DNA in presence and absence of Mg2+ have been studied by simulated annealing to understand the role of Mg2+ in the DNA binding potential of CHR. This shows that the antibiotic has the structural potential to bind to DNA even in the absence of metal ion. Evaluation of the direct interaction energy between the ligand and DNA does not explain the observed GC-base specificity of the antibiotic. When energy contributions from structural alteration of the interacting ligand and DNA as a sequel to complex formation are taken into account, atrue picture of the theoretical binding propensity emerges. This implies that DNA and/or the ligand undergo significant structural alterations during the process of association, particularly in presence of Mg2+. Accessible surface area calculations give idea about the entropy contribution to the binding free energy which is found to be different depending upon the presence and absence of Mg2+.  相似文献   

3.
Mithramycin (MTR), an aureolic acid group of antitumor antibiotic is used for the treatment of several types of tumors. We have reported here the association of MTR with an essential micronutrient, manganese (Mn2+). Spectroscopic methods have been used to characterize and understand the kinetics and mechanism of complex formation between them. MTR forms a single type of complex with Mn2+ in the mole ratio of 2:1 [MTR: Mn2+] via a two step kinetic process. Circular dichroism (CD) spectroscopic study indicates that the complex [(MTR)2 Mn2+] has a right-handed twist conformation similar in structure with the complexes reported for Mg2+ and Zn2+. This conformation allows binding via minor groove of DNA with (G, C) base preference during the interaction with double-stranded B-DNA. Using absorbance, fluorescence, and CD spectroscopy we have shown that [(MTR)2 Mn2+] complex binds to double-stranded DNA with an apparent dissociation constant of 32?μM and binding site size of 0.2 (drug/nucleotide). It binds to chicken liver chromatin with apparent dissociation constant value 298?μM. Presence of histone proteins in chromatin inhibits the accessibility of the complex for chromosomal DNA. We have also shown that MTR binds to Mn2+ containing metalloenzyme manganese superoxide dismutase from Escherichia coli.  相似文献   

4.
Severe acidosis caused death of cultured cerebellar granule neurons (CGNs). Acidosis was accompanied by a progressive increase of the intracellular zinc ions ([Zn2+]i) and decrease of [Ca2+]i. Zn2+ chelator, N,N,N′,N′-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN), prevented the increase of [Zn2+]i and acidosis-induced neuronal death. However, neuronal death was insensitive to blockade of ASIC1 channels with amiloride, as CGNs display considerably lower expression of ASIC1a than other neurons. The antioxidant trolox and menadione significantly protected neurons from acidotic death. Earlier, we demonstrated that menadione rescues neurons from the deleterious effect of inhibition of mitochondrial complex I (Isaev et al. Neuroreport 15:2227–2231, 2004). We speculate that excessive Zn2+-dependent production of reactive oxygen species by mitochondrial complex I may be a general motive for the induction of cell death in CGNs under acidotic conditions.  相似文献   

5.
《Inorganica chimica acta》2006,359(2):718-720
The effect of Cu2+ on the DNA interaction of [(bpy)2Ru(μ-bipp)Ru(bpy)2]4+ (bpy = 2,2′-bipyridine, bipp = 2,9-bis(2-imidazo[4,5-f][1,10]phenanthroline)-1,10-phenanthroline) was studied by electronic absorption and emission methods. Bipp has vacant chelating sites in the middle phenanthroline moiety and can bite a Cu2+ in the absence of DNA, as evidenced by the absorptive and emissive decrease of diruthenium complex. The resulted heterometallic complex binds to DNA via intercalation of the middle part of bipp into the DNA base pairs, demonstrated by the dramatic hypochromism and emission enhancement. The maximum emission enhancement is 1.9-fold, larger than the case without copper. The DNA bound [(bpy)2Ru(μ-bipp)Ru(bpy)2]4+ cannot bite Cu2+ due to the difficult access of the vacant chelating sites of bipp caused by the deep insertion of bipp in the DNA base pairs, as can be told since Cu2+ did not disturb the absorption and emission spectra of the DNA bound diruthenium complex.  相似文献   

6.
Effects of six divalent metal cations: Fe2+, Ca2+, Zn2+, Mg2+, Cu2+and Mn2+ on fungal cell growth and lovastatin biosynthesis were investigated by submerged cultivation of Aspergillus terreus in a modified chemically defined medium. The influences of different initial concentrations of the above six metal cations were also examined at 1, 2, and 5 mM, respectively. Cu2+ apparently inhibited the cell growth, but had no influence on biosynthesis of lovastatin. All of Fe2+, Ca2+, Zn2+, Mg2+ and Mn2+ promoted the cell growth and lovastatin biosynthesis in different extents. The highest biomass of 13.8 ± 0.5 g l−1 and specific lovastatin titres of 49.2 ± 1.4 mg gDCW−1 were obtained at the level of 2 and 5 mM in the presence of Zn2+, respectively. The values were improved double and 14.4-fold. Excess Zn2+ inhibited the cell growth, but enhanced lovastatin biosynthesis with an increment of 17.6 mg l−1 per mM. The interactions of all metal cations slightly inhibited the lovastatin production comparing with the existence of Zn2+, Fe2+ and Mg2+ solely, yet remarkably improved the cell growth. These results suggest that the divalent metal ions Zn2+ or Fe2+ influence the production by regulating the action of key enzymes such as LovD or LovF in lovastatin biosynthesis.  相似文献   

7.
The reactive disulfide 4,4′-dithiodipyridine (4,4′DTDP) was added to single cardiac ryanodine receptors (RyRs) in lipid bilayers. The activity of native RyRs, with cytoplasmic (cis) [Ca2+] of 10−7 m (in the absence of Mg2+ and ATP), increased within ∼1 min of addition of 1 mm 4,4′-DTDP, and then irreversibly ceased 5 to 6 min after the addition. Channels, inhibited by either 1 mm cis Mg2+ (10−7 m cis Ca2+) or by 10 mm cis Mg2+ (10−3 m cis Ca2+), or activated by 4 mm ATP (10−7 m cis Ca2+), also responded to 1 mm cis 4,4′-DTDP with activation and then loss of activity. P o and mean open time (T o ) of the maximally activated channels were lower in the presence of Mg2+ than in its absence, and the number of openings within the long time constant components of the open time distribution was reduced. In contrast to the reduced activation by 1 mm 4,4′-DTDP in channels inhibited by Mg2+, and the previously reported enhanced activation by 4,4′-DTDP in channels activated by Ca2+ or caffeine (Eager et al., 1997), the activation produced by 1 mm cis 4,4′-DTDP was the same in the presence and absence of ATP. These results suggest that there is a physical interaction between the ATP binding domain of the cardiac RyR and the SH groups whose oxidation leads to channel activation. Received: 8 September 1997/Revised: 20 January 1998  相似文献   

8.
The effects of some metal ions on amidolytic and fibrinogenolytic activities of highly purified human plasmin were investigated in vitro. In the presence of Zn2+, Cu2+, Cd2+, and Au+ in the incubation mixture at the concentrations of 1×10−5−1×10−3 M, the anidolytic plasmin activity was strongly inhibited, whereas Ca2+ and Mg2+ at the same concentrations were not effective. The analysis of the kinetic study has shown that Zn2+ or Cu2+ acts as mixed-type inhibitors of plasmin activity. The inhibition of amidolytic plasmin activity by Zn2+ and Cu2+ was reduced in the presence of EDTA, histidine, or albumin. Incubation of plasmin with Zn2+ or Cu2+ (at the concentration of 5×10−4 M) resulted in complete loss of its proteolytic action on fibrinogen, whereas Cd2+ and Au+ under the same conditions only partially inhibited this process.  相似文献   

9.
The anti- and pro-oxidative effects of phenolic compounds and antioxidants were studied in two different in vitro model systems utilizing ethyl linoleate and 2′-deoxyguanosine (2′-dG) as oxidative substrates, and a Fenton reaction (H2O2, Fe2+) to initiate oxidation. Oxidation of the biomolecules in both model systems exhibited dose dependency. In the 2′-dG assay, oxidation was closely related to H2O2 generation, which occurred during autoxidation of the phenolics. Hydroxylating activity was greatly enhanced by Mn2+ and Cu2+, but not by Zn2+ or Co2+. Ethyl linoleate peroxidation was inhibited by low concentrations of catechol, quercitin, and instant coffee. However, peroxidation was promoted by high concentrations of the same compounds, probably by recycling of chelated inactive Fe3+ to the active Fe2+ state.  相似文献   

10.
The adsorption of 5′-AMP onto precipitated calcium phosphate (CaPi) requires the presence of soluble calcium and this dependence exhibits a Michaelian-like behavior. This result suggests that the formation of a complex between 5′-AMP and free Ca2+ (CaAMP) is a prelude to the adsorption of the nucleotide in the solid matrix. At concentrations one order of magnitude higher, Mn2+ and Mg2+ can substitute for soluble Ca2+ in the adsorption of 5′-AMP onto solid CaPi. However, when added simultaneously with 5′-AMP to a heterogeneous mixture that contains CaPi and soluble Ca2+, Mn2+ and Mg2+ inhibit the adsorption of 5′-AMP in a concentration-dependent manner. This suggests the formation of complexes that are much less effective for 5′-AMP adsorption than the CaAMP complex. On the other hand, Mn2+ and Mg2+ cannot promote desorption of the nucleotide attached to the precipitate in the presence of soluble Ca2+ if they are added after adsorption has attained equilibrium. Although desorption of 5′-AMP can be obtained by a sequential dilution of the soluble phase with buffer and no nucleotide in a process that obeys a Langmuir equation, the lack of effect of Mn2+ or Mg2+ when adsorption has attained its maximal value suggests strong interactions between the CaAMP complex and the solid matrix when adsorption equilibrium is reached. The divalent cations present in the matrix also participate with different selectivity in the attachment of the CaAMP complex, indicating that a cation-exchange mechanism could have acted in the modulation of adsorptive/desorptive processes involving biomonomers and phosphate surfaces in primitive aqueous environments. Received: 11 December 1995 / Accepted: 5 April 1996  相似文献   

11.
The 3′-exonuclease from human plasma is a soluble form of nucleotide pyrophosphatase/phosphodiesterase 1 (NPP1) (EC 3.1.4.1/EC 3.6.1.9). Here, the possibility of divalent cation influence for the 3′-exonuclease activity was investigated using the phosphorothioate congener of oligonucleotide containing all phosphorothioate internucleotide linkages of the [RP]-configuration ([RP-PS]-d[T12]) as the substrate for this enzyme. It was found that the 3′-exonuclease is a metalloenzyme, i.e. its phosphodiesterase activity was completely abolished at 0.8 mM concentration EDTA and, in turn, it was restored in the presence of Mg2+ or Mn2+ ions. In addition, Mg2+ can be replaced effectively by Ca2+, Mn2+, or Co2+, but not by Ni2+ and Cd2+ during the hydrolysis of the phosphorothioate substrate in human plasma. In addition, the mechanism is postulated, by which a single internucleotide phosphorothioate bond of the SP-configuration at the 3′-end of unmodified phosphodiesters (PO-oligos), or their phosporothioate analogs (PS-oligos) protects these compounds against degradation in blood.  相似文献   

12.
The physiological and pathological importance of cell death by apoptosis has recently been recognized. One of the hallmarks of apoptosis is the enzymatic cleavage of genomic DNA into nucleosomal oligomers. The identification of an endonuclease responsible for apoptosis might help to explain how this cell suicide is regulated and why DNA is cleaved. Here, we found that γ type of DNase was retained in apoptotic rat thymocyte nuclei. Homogeneously purified DNase γ (Mr = 33 kDa) from the apoptotic nuclei was revealed to be a Ca2+/Mg2+-dependent endonuclease and inhibited by Zn2+. This enzyme cleaved chromosomal DNA with 3′-hydroxyl (OH) and 5′-phosphoryl (P) ends. The cleavage ends and its divalent cation dependencies match those observed in apoptotic thymocytes induced by X-irradiation or glucocorticoid treatment, indicating that this endonuclease is a central component of the thymic apoptosis machinery.  相似文献   

13.
The effect of Cr2+ ions on the Tm (melting temperature) of DNA has been investigated under appropriate conditions for the stabilization of DNA by Mg2+ ions. A significant lowering of Tm, analogous to that observed for Cu2+ under normal conditions, was found, for Cr2+ at pH = 4.2 and [Mg2+] = 5.3 mol per mole of DNA base pair. Cu2+ also lowers Tm under similar conditions. The similarity of the effects of Cr2+ and Cu2+ under comparable conditions may be related to similarities in their coordination properties. It is proposed that Cr2+ and Cu2+ ions facilitate denaturation by holding together groups on the DNA chains in such a manner that base pairing and base stacking are inhibited. Comparative results for Cr3+ and Co2+ are also given for these low pH/Mg2+ ion conditions.  相似文献   

14.
C Zimmer  G Luck  H Triebel 《Biopolymers》1974,13(3):425-453
The effects of metal ions of the first-row transition and of alkaline earth metals on the DNA helix conformation have been studied by uv difference spectra, circular dichroism, and sedimentation measurements. At low ionic strength (10?3 M NaClO4) DNA shows a maximum in the difference absorption spectra in the presence of Zn2+, Mn2+, Co2+, Cd2+, and Ni2+ but not with Mg2+ or Ca2+. The amplitude of this maximum is dependent on GC content as revealed by detailed studies of the DNA-Zn2+ complex of eight different DNA's. Pronounced changes also occur in the CD spectra of DNA transition metal complexes. A transition appears up to a total ratio of approximately 1 Zn2+ per DNA phosphate at 10?3 M NaClO4; then no further change was observed up to high concentrations. The characteristic CD changes are strongly dependent on the double-helical structure of DNA and on the GC content of DNA. Differences were also observed in hydrodynamic properties of DNA metal complexes as revealed by the greater increase of the sedimentation coefficient of native DNA in the presence of transition metal ions. Spectrophotometric acid titration experiments and CD measurements at acidic pH clearly indicate the suppression of protonation of GC base-pair regions on the addition of transition metal ions to DNA. Similar effects were not observed with DNA complexes with alkaline earth metal ions such as Mg2+ or Ca2+. The data are interpreted in terms of a preferential interaction of Zn2+ and of other transition metal ions with GC sites by chelation to the N-7 of guanine and to the phosphate residue. The binding of Zn2+ to DNA disappears between 0.5 M and 1 M NaClO4, but complex formation with DNA is observable again in the presence of highly concentrated solutions of NaClO4 (3?7.2 M NaClO4) or at 0.5 to 2 M Mn2+. At relatively high cation concentration Mg2+ is also effective in changing the DNA comformation. These structural alterations probably result from both the shielding of negatively charged phosphate groups and the breakdown of the water structure along the DNA helix. Differential effects in CD are also observed between Mn2+, Zn2+ on one hand and Mg2+ on the other hand under these conditions. The greater sensitivity of the double-helical conformation of DNA to the action of transition metal ions is due to the affinity of the latter to electron donating sites of the bases resulting from the d electronic configuration of the metal ions. An order of the relative phosphate binding ability to base-site binding ability in native DNA is obtained as follows: Mg2+, Ba2+, < Ca2+ < Fe2+, Ni2+, Co2+ < Mn2+, Zn2+ < Cd2+ < Cu2+. The metal-ion induced conformational changes of the DNA are explained by alternation of the winding angle between base pairs as occurs in the transition from B to C conformation. These findings are used for a tentative molecular interpretation of some effects of Zn2+ and Mn2+ in DNA synthesis reported in the literature.  相似文献   

15.
Nuclease activities of the predominantly bacterial population obtained from buffalo rumen were investigated. Optimum temperature for hydrolysis of both DNA and RNA was 50°C whereas DNAase activity was observed to be stable up to 50°C, a decrease in RNAase activity was observed even after 40°C. Two pH optima, one at 5.5 and the other at 7.5, were recorded for hydrolysis of DNA. RNAase activity was maximum between pH 6.0 to 7.0. Whereas DNAase activity was stable near its optimum pH, RNAase activity was stable between pH 7.0 to 8.5. Mn2+ ions stimulated DNAase activity. It was strongly inhibited by Hg2+, Zn2+, Pb2+ and Ag+. RNAase activity was stimulated by Mg2+ ions and was strongly inhibited by Hg2+, Cu2+, Zn2+ and Ag+. Cysteine hydrochloride and 2-mercaptoethanol stimulated DNAase activity. The activity was strongly inhibited by N-ethylmaleimide, 4-chloromercuribenzoate, 8-quinolinol, iodoacetic acid and 1,10-phenanthroline. RNAase activity was stimulated by cysteine hydrochloride, reduced glutathione and 2-mercaptoethanol and was strongly inhibited by 4-chloromercuribenzoate, 8-quinolinol and 2,2′-bipyridyl. Part of PhD Thesis submitted by the first author to Kurukshetra University.  相似文献   

16.
Tripositive-pyrophosphate [M(III)-PPi] complexes were used to investigate the role of free divalent cations on the membrane-bound pyrophosphatase. Divalent cations remain free and the M(III)-PPi complexes were employed as substrates. Formation of a La-PPi complex was studied by fluorescence, and the fact that Zn2+ and Mg2+ remain free in the solution was validated. Hydrolysis of La-PPi is stimulated by the presence of fixed concentrations of free Mg2+ or Zn2+ and this stimulation depends on the concentration of the cations when the La-PPi complex is fixed. The divalent cation stimulation order is Zn2+ > Co2+ > Mg2+ > Mn2+ > Ca2+ (at 0.5 mm of free cation). With different M(III)-PPi complexes, Zn2+ produces the same K m, for all the complexes and Mg2+ stimulates with a different K m. The results suggest that both Mg2+ and Zn2+ activate the membrane-bound pyrophosphatase but through different mechanisms.  相似文献   

17.
Modified oligonucleotides are showing potential for multiple applications, including drug design, nanoscale building blocks, and biosensors. In an effort to expand the functionality available to DNA, we have placed chelating ligands directly into the backbone of DNA. Between one and three nucleosides were replaced with 2,2′-bipyridine phosphates in 23-mer duplexes of DNA. An array of metal ions were added (Fe2+, Co2+, Ni2+, Cu2+, Zn2+, and Pt2+) and the influences on duplex stability were examined by melting temperature studies. Titrations and UV–vis absorption spectroscopy were used to provide insights into the nature of the metal complexes formed. We found that Ni2+ binding to 2,2′-bipyridine typically provided the greatest increase in duplex stability relative to the other metal ions examined. For example, addition of Ni2+ to one 2,2′-bipyridine–DNA duplex increased the melting temperature by 13 °C, from 65.0 ± 0.3 to 78.4 ± 0.9 °C. These studies show that metal ions and backbone ligands can be used to regulate DNA structure and stability.  相似文献   

18.
Lomofungin inhibition of yeast growth and RNA synthesis is prevented by Cu++ or Zn++ ions which chelate with the antibiotic and prevent its uptake by the cells. EDTA potentiates the inhibition. Mg++ ions do not protect in vivo or against the inhibition of purified bacterial RNA and DNA polymerases. Lomofungin prevents formation of the RNA polymerase. DNA initiation complex, probably by chelation with the firmly bound Zn++ of the enzyme.  相似文献   

19.
Nuclease Stn α from Streptomyces thermonitrificans hydrolyses DNA and RNA at the rate of approximately 10:l. The optimum pH and temperature for RNA hydrolysis were 7.0 and 45°C. The RNase activity of nuclease Stn α had neither an obligate requirement of metal ions nor was it activated in the presence of metal ions. The enzyme was inhibited by Zn2+, Mg2+, Co2+, and Ca2+; inorganic phosphate; pyrophosphate; NaCl; KCl; and metal chelators. It was stable at high concentrations of urea but susceptible to low concentrations of Sodium dodecyl sulfate and guanidine hydrochloride. The rates by which nuclease Stn α hydrolysed polyribonucleotides occurs in the order of poly A >> RNA >> poly U > poly G > poly C. The enzyme cleaved RNA to 3′ mononucleotides with preferential liberation of 3′AMP, indicating it to be an adenylic acid preferential endonuclease.  相似文献   

20.
Vacuoles isolated from storage roots of red beet (Beta vulgaris L.) posess a Mg2+-dependent, alkaline pyrophosphatase (PPase) activity which is further stimulated by salts of monovalent cations. The requirement for Mg2+ is specific. Mn2+ and Zn2+ permitted only 20% and 12%, respectively, of the PPase activity obtained in the presence of Mg2+ while Ca2+, Co2+ and Cu2+ were ineffective. Stimulation of Mg2+-PPase activity by salts of certain monovalent cations was due to the cation and the order of effectiveness of the cations tested was K+=Rb+=NH 4 + >Cs+. Salts of Li+ and Na+ inhibited Mg2+-PPase activity by 44% and 24%, respectively. KCl-stimulation of Mg2+-PPase activity was maximal with 60–100 mM KCl. There was a sigmoidal relationship between PPase activity and Mg2+ concentrations which resulted in markedly non-linear Lineweaver-Burk plots. At pH 8.0, the optimal [Mg2+]:[PPi] ratio for both Mg2+-PPase and (Mg2++KCl)-PPase activities was approximately 1:1, which probably indicates MgP2O7 2- is the true substrate.Abbreviations BSA bovine serum albumen - EDTA ethylenediamine tetra-acetic acid, disodium salt - MES 2-(N-morpholino)ethanesulphonic acid - Mg T 2+ total magnesium - Pi inorganic phosphate - PPase inorganic pyrophosphatase - PPi inorganic pyrophosphate - TCA trichloroacetic acid - Tris tris(hydroxymethyl)methylamine  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号