首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The low specificity of anti-phosphoprotein antibodies is often a problem in immunoblotting analyses. We introduce a simple pretreatment procedure for cell lysates to give more specific detection of phosphoproteins in immunoblotting. Cellular phosphoproteins were preferentially trapped on Phos-tag agarose phosphate-affinity beads in a homemade spin-centrifuge microtube unit, and nonphosphorylated proteins were excluded in the filtrate. The phosphoprotein-bound beads suspended in a sample-loading dye solution were subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis, followed by Western blotting. We demonstrated improved detection of phosphorylated Shc and mitogen-activated protein kinase isoforms in A431 cell lysates by this new technique.  相似文献   

2.
3.
We have developed a method for on-membrane direct identification of phosphoproteins, which are detected by a phosphate-binding tag (Phos-tag) that has an affinity to phosphate groups with a chelated Zn2+ ion. This rapid profiling approach for phosphoproteins combines chemical inkjet technology for microdispensing of reagents onto a tiny region of target proteins with mass spectrometry for on-membrane digested peptides. Using this method, we analyzed human epidermoid carcinoma cell lysates of A-431 cells stimulated with epidermal growth factor, and identified six proteins with intense signals upon affinity staining with the phosphate-binding tag. It was already known that these proteins are phosphorylated, and our new approach proved to be effective at rapid profiling of phosphoproteins. Furthermore, we tried to determine their phosphorylation sites by MS/MS analysis after in-gel digestion of the corresponding spots on the 2DE gel to the rapid on-membrane identifications. As one example of use of information gained from the rapid-profiling approach, we successfully characterized a phosphorylation site at Ser-113 on prostaglandin E synthase 3.  相似文献   

4.
5.
6.
We introduce two methods for the visualization of phosphorylated proteins using alkoxide-bridged dinuclear metal (i.e. Zn(2+) or Mn(2+)) complexes as novel phosphate-binding tag (Phos-tag) molecules. Both Zn(2+)- and Mn(2+)-Phos-tag molecules preferentially capture phosphomonoester dianions bound to Ser, Thr, and Tyr residues. One method is based on an ECL system using biotin-pendant Zn(2+)-Phos-tag and horseradish peroxidase-conjugated streptavidin. We demonstrate the electroblotting analyses of protein phosphorylation status by the phosphate-selective ECL signals. Another method is based on the mobility shift of phosphorylated proteins in SDS-PAGE with polyacrylamide-bound Mn(2+)-Phos-tag. Phosphorylated proteins in the gel are visualized as slower migration bands compared with corresponding dephosphorylated proteins. We demonstrate the kinase and phosphatase assays by phosphate affinity electrophoresis (Mn(2+)-Phos-tag SDS-PAGE).  相似文献   

7.

Protein phosphorylation is a fundamental post-translational modification in all organisms. In photoautotrophic organisms, protein phosphorylation is essential for the fine-tuning of photosynthesis. The reversible phosphorylation of the photosystem II (PSII) core and the light-harvesting complex of PSII (LHCII) contribute to the regulation of photosynthetic activities. Besides the phosphorylation of these major proteins, recent phosphoproteomic analyses have revealed that several proteins are phosphorylated in the thylakoid membrane. In this study, we utilized the Phos-tag technology for a comprehensive assessment of protein phosphorylation in the thylakoid membrane of Arabidopsis. Phos-tag SDS-PAGE enables the mobility shift of phosphorylated proteins compared with their non-phosphorylated isoform, thus differentiating phosphorylated proteins from their non-phosphorylated isoforms. We extrapolated this technique to two-dimensional (2D) SDS-PAGE for detecting protein phosphorylation in the thylakoid membrane. Thylakoid proteins were separated in the first dimension by conventional SDS-PAGE and in the second dimension by Phos-tag SDS-PAGE. In addition to the isolation of major phosphorylated photosynthesis-related proteins, 2D Phos-tag SDS-PAGE enabled the detection of several minor phosphorylated proteins in the thylakoid membrane. The analysis of the thylakoid kinase mutants demonstrated that light-dependent protein phosphorylation was mainly restricted to the phosphorylation of the PSII core and LHCII proteins. Furthermore, we assessed the phosphorylation states of the structural domains of the thylakoid membrane, grana core, grana margin, and stroma lamella. Overall, these results demonstrated that Phos-tag SDS-PAGE is a useful biochemical tool for studying in vivo protein phosphorylation in the thylakoid membrane protein.

  相似文献   

8.
9.
The RNA-binding protein 8A (RBM8A)–mago-nashi homolog, proliferation-associated (Magoh) complex is a component of the exon junction complex (EJC) required for mRNA metabolism involving nonsense-mediated mRNA decay (NMD). RBM8A is a phosphorylated protein that plays some roles in NMD. However, the detailed status and mechanism of the phosphorylation of RBM8A is not completely understood. Therefore, in this study, we analyzed in detail RBM8A phosphorylation in human cells. Accordingly, analysis of the phosphorylation status of RBM8A protein in whole-cell lysates by using Phos-tag gels revealed that the majority of endogenous RBM8A was phosphorylated throughout the cell-cycle progression. Nuclear and cytoplasmic RBM8A and RBM8A in the EJC were also found to be mostly phosphorylated. We also screened the phosphorylated serine by mutational analysis using Phos-tag gels to reveal modifications of serine residues 166 and 168. A single substitution at position 168 that concomitantly abolished the phosphorylation of serine 166 suggested the priority of kinase reaction between these sites. Furthermore, analysis of the role of the binding protein Magoh in RBM8A phosphorylation revealed its inhibitory effect in vitro and in vivo. Thus, we conclude that almost all synthesized RBM8A proteins are rapidly phosphorylated in cells and that phosphorylation occurs before the complex formation with Magoh.  相似文献   

10.
Information about phosphorylation status can be used to prioritize and characterize biological processes in the cell. Various analytical strategies have been proposed to address the complexity of phosphorylation status and comprehensively identify phosphopeptides. In this study, we evaluated four strategies for phosphopeptide enrichment, using titanium dioxide (TiO2) and Phos-tag ligand particles from in-gel or in-solution digests prior to mass spectrometry-based analysis. Using TiO2 and Phos-tag magnetic beads, it was possible to enrich phosphopeptides from in-gel digests of phosphorylated ovalbumin separated by Phos-tag SDS-PAGE or in-solution serum digests, while minimizing non-specific adsorption. The tip-column strategy with TiO2 particles enabled enrichment of phosphopeptides from in-solution digests of whole-cell lysates with high efficiency and selectivity. However, the tip-column strategy with Phos-tag agarose beads yielded the greatest number of identified phosphopeptides. The strategies using both types of tip columns had a high degree of overlap, although there were differences in selectivity between the identified phosphopeptides. Together, our results indicate that multi-enrichment strategies using TiO2 particles and Phos-tag agarose beads are useful for comprehensive phosphoproteomic analysis.  相似文献   

11.
12.

Background

Proper phosphate signaling is essential for robust growth of Escherichia coli and many other bacteria. The phosphate signal is mediated by a classic two component signal system composed of PhoR and PhoB. The PhoR histidine kinase is responsible for phosphorylating/dephosphorylating the response regulator, PhoB, which controls the expression of genes that aid growth in low phosphate conditions. The mechanism by which PhoR receives a signal of environmental phosphate levels has remained elusive. A transporter complex composed of the PstS, PstC, PstA, and PstB proteins as well as a negative regulator, PhoU, have been implicated in signaling environmental phosphate to PhoR.

Results

This work confirms that PhoU and the PstSCAB complex are necessary for proper signaling of high environmental phosphate. Also, we identify residues important in PhoU/PhoR interaction with genetic analysis. Using protein modeling and docking methods, we show an interaction model that points to a potential mechanism for PhoU mediated signaling to PhoR to modify its activity. This model is tested with direct coupling analysis.

Conclusions

These bioinformatics tools, in combination with genetic and biochemical analysis, help to identify and test a model for phosphate signaling and may be applicable to several other systems.
  相似文献   

13.
In our experiments the phosphorylation of actin was studied. Similar investigations have been published in the literature, however very long incubation time was applied in these studies and even so a low incorporation of phosphate concentration was found. The present phosphorylation experiments were performed using short incubation periods as usual in our myosin investigations and was characterized by an unexpectedly high phosphate saturation. We suggest that in suitable incubation medium the nucleotide- and phosphate-free actin prepared by using phosphate- and ATP-free solutions takes only 1 minute to become saturated, while in its peptide chain a N-P bond type acid labile phosphate is formed. On maximum saturation 9 M P-arginine, 0.4 M P-histidine and some minor phosphorylated derivatives can be observed. After a longer period of incubation, with a lower incorporation of phosphate (3 mol P) a more stable phosphorylated actin is formed. As a result of preparation and gel filtration a dimer and a monomer form of actin can be obtained. Both of them exhibit the basic properties of actin (polymerization, myosin-ATPase activation) and the phosphate incorporation described in this paper.  相似文献   

14.
15.
16.
Two-component signal transduction systems, commonly found in prokaryotes, typically regulate cellular functions in response to environmental conditions through a phosphorylation-dependent process. A new type of response regulator, hp1043 (HP-RR) from Helicobacter pylori, has been recently identified. HP-RR is essential for cell growth and does not require the well known phosphorelay scheme. Unphosphorylated HP-RR binds specifically to its own promoter (P(1043)) and autoregulates the promoter of the tlpB gene (P(tlpB)). We have determined the structure of HP-RR by NMR and x-ray crystallography, revealing a symmetrical dimer with two functional domains. The molecular topology resembles that of the OmpR/PhoB subfamily, however, the symmetrical dimer is stable even in the unphosphorylated state. The dimer interface, formed by three secondary structure elements (alpha4-beta5-alpha5), resembles that of the active, phosphorylated forms of ArcA and PhoB. Several conserved residues of the HP-RR dimeric interface deviate from the OmpR/PhoB subfamily, although there are similar salt bridges and hydrophobic patches within the interface. Our findings reveal how a new type of response regulator protein could function as a cell growth-associated regulator in the absence of post-translational modification.  相似文献   

17.
We have previously shown that the dinuclear zinc(II) complex Phos-tag and its derivatives act as phosphate-capture molecules in aqueous solution under conditions of neutral pH. In this study, our aim was to develop more-advanced applications for the detection of phosphopeptides and phosphoproteins by using several newly synthesized Phos-tag derivatives, including a bisbiotinylated Phos-tag (BTL-108), a tetrakisbiotinylated Phos-tag (BTL-109), and a monobiotinylated Phos-tag with a dodeca(ethylene glycol) spacer (BTL-111), as well as the commercially available product BTL-104. Among these complexes, BTL-111 showed the best performance in Western blotting by an ECL system using HRP conjugated streptavidin. In addition, in a quartz-crystal microbalance analysis of a phosphoprotein, the presence of the long hydrophilic dodeca(ethylene glycol) spacer in a novel Phos-tag sensor chip coated with BTL-111 resulted in a greater sensitivity than was achieved with a similar chip coated with BTL-104. Moreover, a peptide microarray technique using the ECL system and BTL-111 permitted high-throughput assays for the specific and highly sensitive detection of protein kinase activities in cell lysates.  相似文献   

18.
19.
From cell membrane to nucleotides: the phosphate regulon in Escherichia coli   总被引:16,自引:0,他引:16  
Most of the essential cellular components, like nucleic acids, lipids and sugars, are phosphorylated. The phosphate equilibrium in Escherichia coli is regulated by the phosphate (Pi) input from the surrounding medium. Some 90 proteins are synthesized at an increased rate during Pi starvation and the global control of the cellular metabolism requires cross-talk with other regulatory mechanisms. Since the Pi concentration is normally low in E. coli's natural habitat, these cells have devised a mechanism for synthesis of about 15 proteins to accomplish two specific functions: transport of Pi and its intracellular regulation. The synthesis of these proteins is controlled by two genes (the phoB-phoR operon), involving both negative and positive functions. PhoR protein is a histidine protein kinase, induced in Pi starvation and is a transmembrane protein. It phosphorylates the regulator protein PhoB which is also Pi starvation-induced. The PhoB phosphorylated form binds specifically to a DNA sequence of 18 nucleotides (the pho Box), which is part of the promoters of the Pho genes. The genes controlled by phoB constitute the Pho regulon. The repression of phoA (the gene encoding alkaline phosphatase) by high Pi concentrations in the medium requires the presence of an intact Pst operon (pstS, pstC, pstA, pstB and phoU) and phoR. The products of pstA and pstC are membrane bound, whereas the product of pstS is periplasmic and PstB and PhoU proteins are cytoplasmic. The function of the PhoU protein may be regulated by cofactor nucleotides and may be involved in signaling the activation of the regulon via PhoR.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号