首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We developed a peptide microarray based on surface plasmon resonance (SPR) imaging for monitoring protein kinase activities in cell lysates. The substrate peptides of kinases were tethered to the microarray surface modified with a self-assembled monolayer of an alkanethiol with triethylene glycol terminus to create a low nonspecific binding surface. The phosphorylation of the substrate peptides immobilized on the surface was detected with the following phosphate specific binders by amplifying SPR signals: anti-phosphotyrosine antibody for tyrosine kinases and Phos-tag biotin (a phosphate-specific ligand with biotin tag) for serine/threonine kinases. Using the microarray, 9 kinds of protein kinases were evaluated as a pattern of phosphorylation of 26 kinds of substrate peptides. The pattern was unique for each protein kinase. The microarray could be used to evaluate the inhibitory activities of kinase inhibitors. The microarray was applied successfully for kinase activity monitoring of cell lysates. The chemical stimuli responsive activity changes of protein kinases in cell lysates could also be monitored by the peptide microarray. Thus, the peptide microarray based on SPR imaging would be applicable to cell-based drug discovery, diagnosis using tissue lysates, and biochemical studies to reveal signal transduction pathways.  相似文献   

2.
The purpose of this study was to screen for peptides that bind herbicides with a chlorinated aniline chemical structure. A tetrapeptide library was constructed using a solid phase split synthesis approach. Peptide beads were suspended in a buffer containing fluorescent-labeled dichloroaniline (DCA) as the bait. Eighteen fluorescent peptide beads were selected which bound to the bait after two rounds of staining screenings. The beads were then stained and suspended in a solution containing an excess of DCA and five quenched peptide beads were subsequently selected that recognized the DCA moiety. The screened peptides had many sequence similarities. The binding affinity of the screened peptides to herbicides was analyzed using surface plasmon resonance (SPR). N′-(3,4-dichlorophenyl)-N,N-dimethylurea [3-(3,4-dichlorophenyl)-1,1-dimethylurea] solution was injected over the peptide immobilized SPR chip. The SPR signal was found to increase in proportion to the DCMU concentration, whereas no signal was obtained from the negative control, 2-(2-methyl-4-chlorophenoxy) propionic acid (MCPP). From these results it is suggested that the screened peptide selectively recognizes the chemical structure of DCA.  相似文献   

3.
The activation of caspase-3 plays an important role in the apoptotic process. In this study, we describe a novel method by which caspase-3-dependent proteolytic cleavage can be monitored, using a surface plasmon resonance (SPR) imaging protein chip system. To the best of our knowledge, this is the first report regarding the SPR imaging-based monitoring of caspase-3 activation. In order to evaluate the performance of this protocol, we constructed a chimeric caspase-3 substrate (GST:DEVD:EGFP) comprised of glutathione S transferase (GST) and enhanced green fluorescent protein (EGFP) with a specialized linker peptide harboring the caspase-3 cleavage sequence, DEVD. Using this reporter, we assessed the cleavage of the artificial caspase-3 substrate in response to caspase-3 using an SPR imaging sensor. The purified GST:DEVD:EGFP protein was initially immobilized onto a glutathionylated gold chip surface, and subsequently analyzed using an SPR imaging system. As a result, caspase-3 activation predicated on the proteolytic properties inherent to substrate specificity could be monitored via an SPR imaging system with a detection performance similar to that achievable by the conventional method, including fluorometric assays. Collectively, our data showed that SPR imaging protein chip system can be effectively utilized to monitor the proteolytic cleavage in caspase-3, thereby potentially enabling the detection of other intracellular protease activation via the alteration of the protease recognition site in the linker peptides.  相似文献   

4.
The specificity of 10 recombinant caspases was investigated using a set of competitive substrates. The caspase activity was determined by high-performance liquid chromatography using highly fluorescent peptides containing 2-aminoacridone (AMAC) as reporting group. The sequences of the used substrates were designed according to literature data for being specific for 10 of the caspases. The described approach allows the concentration changes of several substrates to be monitored simultaneously in a single sample. Because the substrates are in competitive conditions, the preferences of particular caspases to given peptide sequences are most clearly demonstrated. In the studied competitive assay conditions, all tested caspases except caspase 2 exhibit activity toward more than one substrate. None of the used peptide sequences was found to be highly specific for a defined caspase. The results obtained indicate that there is well-expressed group specificity among the caspases.  相似文献   

5.
Apoptosis can be routinely characterized using biomolecular markers such as in the TUNEL and the annexin V assays or by using fluorescent caspase substrates. Apoptosis can also be semi-quantitatively characterized using microscopy, which targets morphological features such as cell rounding, nuclear condensation and fragmentation as well as cell membrane blebbing. This label-free approach provides a limited resolution for the evolution of these events in time and relies heavily on subjective identification of the morphological features. Here we propose a label-free assay based on surface plasmon resonance (SPR) detection of minute morphology changes occurring as a result of apoptosis induction in an endothelial cell model (EA.hy926). At first, annexin V assays confirmed that our cellular model was responsive to TRAIL over a 12-hour period. Then, we show that SPR allows accurate monitoring of apoptosis by measuring (1) the duration of the latency period during which the apoptotic signal is integrated by the initiator caspases and transmitted to the executioner caspases, (2) the rate of the execution phase in which death substrates are cleaved and morphological changes occur, and (3) the total extent of apoptosis. Using these parameters, we characterized the responses obtained with TRAIL (EA.hy926, HeLa, AD-293) and the anti-Fas antibody (HeLa) for the extrinsic pathways and UV exposure (HeLa) for the intrinsic pathways. By comparing the SPR time-course of apoptosis with phase contrast micrographs, we demonstrate that the cell morphological hallmarks of apoptosis are the major contributors to the SPR signal. Altogether, our results validate the use of SPR as an accurate label-free assay for the real-time monitoring of apoptosis-triggered cell morphological changes.  相似文献   

6.
The interaction between human cytomegalovirus (HCMV) protease and a peptide substrate was studied using a surface plasmon resonance (SPR)-based biosensor. Immobilization of the enzyme to the sensor chip surface by amine coupling resulted in an active enzyme with a higher catalytic efficiency than the enzyme in solution, primarily due to a lower K(m) value. The interaction between immobilized protease and substrate was characterized by a biphasic SPR signal. Rate constants for the formation of the initial enzyme-substrate complex could be determined from the sensorgrams. Simulated binding curves based on the determined k(cat) and the rate constants indicated that the complex binding signal did not originate from the accumulation of intermediates in the catalytic reaction. By chemical crosslinking of the immobilized HCMV protease, which was shown to limit the enzyme's structural flexibility, it was revealed that the obtained sensorgrams were composed of a signal caused by substrate binding and considerable structural alterations in the immobilized enzyme. Furthermore, HCMV protease was inactivated by chemical crosslinking, indicating that structural flexibility is essential for this enzyme. Parallel experiments with immobilized alpha-chymotrypsin revealed that it does not undergo similar conformational changes on peptide binding and that crosslinking did not inactivate the enzyme. The simultaneous detection of binding and conformational changes using optical biosensor technology is expected to be of importance for further characterization of the enzymatic properties of HCMV protease and for identification of inhibitors of this enzyme. It can also be of use for studies of other flexible proteins.  相似文献   

7.
One-step immobilization method for peptides and proteins is developed by using modified parylene film with formyl groups which is suitable for microplate-based immunoassay and SPR biosensor application. The immobilization of peptides and proteins is achieved through the covalent bonding of the formyl group with the primary amine groups of peptides and proteins, which no additional activation step is required. In this work, the immobilization efficiency of parylene-H is estimated in comparison with parylene-A and physical adsorption, using biotinylated-cyclic citrullinated peptide (biotinylated-CCP), human chorionic gonadotropin (hCG) and horseradish peroxidase (HRP) as model proteins. The applicability of parylene-H film to SPR biosensor is demonstrated by estimating the detection range and sensitivity of SPR biosensor at various thicknesses. The immobilization efficiency of parylene-H film for SPR biosensor was compared with physical adsorption by using HRP as a model protein.  相似文献   

8.
We have designed novel short peptides expressing both antimicrobial and Shiga-toxin (Stx) neutralization activities by combining nuclear localization signal (NLS) peptides (RIRKKLR, PKKKRKV, and PRRRK) tandemly with globotriaoside (Gb3) mimic peptide (WHWTWL). These fusion peptides exhibited excellent antimicrobial activity against both gram-positive and gram-negative bacteria. A peptide WHWTWLRIRKKLR (Trp-His-Trp-Thr-Trp-Leu-Arg-Ile-Arg-Lys-Lys-Leu-Arg), especially, exhibited about 100 times higher activity than the original NLS peptide. SPR analysis demonstrated that the binding of this peptide to both Stxs was strong: K(d) = 6.6 x 10(-6) to Stx-1 and 6.8 x 10(-6) to Stx-2. The in vitro assay against Stx-1 using HeLa cells showed that this peptide increased the survival rate of HeLa cells against the infection of Stx-1. The peptide has been found to maintain high antimicrobial activity, Stx neutralization activity, and no cytotoxicity at its concentration of 7.8-31.3 microg/mL (4.2-16.7 microM). The present peptide design has a prospect of developing potent multifunctional drugs to destroy proteinaceous toxin-producing bacteria and to simultaneously neutralize the toxins released by bacteriolysis.  相似文献   

9.
The interaction of two helical antimicrobial peptides, HPA3 and HPA3P with planar supported lipid membranes was quantitatively analysed using two complementary optical biosensors. The peptides are analogues of Hp(2-20) derived from the N-terminus of Helicobacter pylori ribosomal protein L1 (RpL1). The binding of these two peptide analogues to zwitterionic dimyristoyl-phosphatidylcholine (DMPC) and negatively charged membranes composed of DMPC/dimyristoylphosphatidylglycerol (DMPG) (4:1) was determined using surface plasmon resonance (SPR) and dual polarisation interferometry (DPI). Using SPR analysis, it was shown that the proline substitution in HPA3P resulted in much lower binding for both zwitterionic and anionic membranes than HPA3. Structural changes in the planar DMPC and DMPC/DMPG (4:1) bilayers induced by the binding of both Hp(2-20) analogues were then resolved in real-time with DPI. The overall process of peptide-induced changes in membrane structure was analysed by the real-time changes in bound peptide mass as a function of bilayer birefringence. The insertion of both HPA3 and HPA3P into the supported lipid bilayers resulted in a decrease in birefringence with increasing amounts of bound peptide which reflects a decrease in the order of the bilayer. The binding of HPA3 to each membrane was associated with a higher level of bound peptide and greater membrane lipid disordering and a faster and higher degree of insertion into the membrane than HPA3P. Furthermore, the binding of both HPA3 and HPA3P to negatively charged DMPC/DMPG bilayers also leads to a greater disruption of the lipid ordering. These results demonstrate the geometrical changes in the membrane upon peptide insertion and the extent of membrane structural changes can be obtained quantitatively. Moreover, monitoring the effect of peptides on a structurally characterised bilayer has provided further insight into the role of membrane structure changes in the molecular basis of peptide selectivity and activity and may assist in defining the mode of antimicrobial action.  相似文献   

10.
The hydrophobic domain of the signal peptide of OmpF-Lpp, a model secretory protein, was systematically engineered so as to be composed of different lengths of polyleucine residues or polymers with alternate leucine and alanine residues, and the effects of the length and nature of the hydrophobic stretch on the rate of in vitro translocation were studied using everted membrane vesicles of Escherichia coli. The translocation reaction exhibited high substrate specificity as to the number of hydrophobic residues. The results suggest that the hydrophobic domain is recognized specifically by a component(s) of the secretory machinery rather than nonspecifically by the hydrophobic region of the membrane. The in vitro translocation thus demonstrated required SecA and ATP and was markedly enhanced upon imposition of the proton motive force, as in the case of secretory proteins possessing a natural signal peptide. The highest translocation rate was obtained with the octamer in the case of polyleucine-containing signal peptides, whereas it was the decamer in the case of ones containing both leucine and alanine. These results suggest that the total hydrophobicity of the hydrophobic region of the signal peptides is an important determinant of the substrate specificity.  相似文献   

11.
Biosensor technology employing surface plasmon resonance (SPR) detection provides a highly-sensitive (sub ng), non-extrinsic labelling approach for monitoring protein interactions in real-time. We have used this approach to map the binding sites on human interleukin-6 (hIL-6) for a series of anti-hIL-6 monoclonal antibodies (mAbs). Epitopes were localised by monitoring the ability of ten synthetic peptides, spanning the sequence of hIL-6, to inhibit the binding of anti-hIL-6 mAbs to immobilised hIL-6. Peptide P8 (Pro139-Gln153) inhibited binding of anti-IL-6-mAbs 1, 2 and 7. To increase the sensitivity of detection of antibody-synthetic peptide interactions, a procedure was developed for immobilising the synthetic peptides directly to the sensor surface of the SPR instrument. From this study, association equilibrium constants of 2.1 x 10(6)M-1 and 3.6 x 10(4)M-1 were calculated for the mAb7-immobilised P8 and mAb7-free P8 interactions, respectively.  相似文献   

12.
In order to examine the possibility of the use of a surface plasmon resonance (SPR) sensor for real-time monitoring of the process of refolding of immobilized proteins, the refolding of firefly luciferase immobilized on a carboxymethyldextran matrix layer was analyzed. The SPR signal of the immobilized luciferase decreased after unfolding induced by GdnCl and increased gradually in the refolding buffer, while there was no signal change in the reference surface lacking the immobilized protein. The decrease in the SPR signal on unfolding was consistent with the difference between the refractive indices of the native and unfolded protein solutions. The effects of blocking of the excess NHS-groups of the matrix layer on the refolding yield were examined by means of an SPR sensor. The results were consistent with those obtained with the enzymatic activity assay, indicating that the changes in the SPR signal reflected the real-time conformational changes of the immobilized protein. Hence, an SPR biosensor might be used for monitoring of the process of refolding of immobilized proteins and as a novel tool for optimization of the refolding conditions. This is the first demonstration that SPR signal changes reflect the conformational changes of an immobilized protein upon unfolding and refolding.  相似文献   

13.
Synthetic peptides based on amino-acid residues 27-38 of human serum amyloid P component represent a novel type of heparin binders as they do not contain clusters of basic amino acids or other known features associated with protein or peptide heparin binding. Here, we characterize the binding using capillary electrophoresis (CE), surface plasmon resonance (SPR), and isothermal titration calorimetry (ITC). By CE, heparin-binding activity was readily apparent for both a regular peptide and a slightly N-terminally modified form, while a sequence-scrambled peptide had no measurable binding. Dissociation constants in the 1-15 microm range were estimated, but only a minor part of the binding isotherm was covered by the experiments. SPR measurements using immobilized peptides verified heparin binding, the range of the binding constants, and the reduced binding of the sequence-scrambled peptide. Structurally defined heparin oligosaccharides were used to establish that while the tetrasaccharide is too small to exhibit strong binding, little difference in binding strength is observed between hexa- and tetradeca-saccharides. These experiments also confirmed the almost complete lack of activity of the sequence-scrambled peptide. The amino-acid sequence-dependent binding and the importance of a disulfide bond in the peptide were verified by ITC, but the experimental conditions had to be modified because of peptide precipitation and ITC yielded significantly weaker binding constants than the other methods. While the precise function of the peptide in the intact protein remains unclear, the results confirm the specificity of the glycosaminoglycan interaction with regard to peptide sequence by applying two additional biophysical techniques and showing that the N-terminal part of the peptide may be modified without changing the heparin binding capabilities.  相似文献   

14.
During the last years native chemical ligation (NCL) gained in popularity as a method allowing the chemical synthesis of large peptides and entire proteins. NCL is particularly well-suited for chemoselective and nondenaturing attachment of biomolecules on solid substrates. In the present work, we show the feasibility of monitoring of peptide synthesis, NCL and its catalysis on silicon oxide modified gold surfaces by surface plasmon resonance (SPR). NCL of a model peptide-bradykinin thioester-was carried out and monitored with a custom-built SPR apparatus. Solid-phase produced bradykinin thioester was ligated to the surface in the presence of variable concentrations of 4-mercaptophenylacetic acid as transthioesterification catalyst. At catalyst concentration of 48 mM and above, the NCL reaction was maximal and identical to the reaction of the purified peptide-mercaptophenylacetic acid thioester. SPR curves indicate typical first-order kinetics with t(1/2) of 81 s for this aryl thioester, but of 104 min for the primary alkyl thioester.  相似文献   

15.
We have developed a substrate-phage approach for examining the substrate specificities of an important group of proteases involved in apoptosis--the caspases. After establishing selection conditions with caspases-3 and caspase-8 vs control substrate-phage, we sorted X4 and X6 diversity libraries, identified consensus motifs that agree with previously defined caspase substrate motifs, confirmed the selection of active substrates using synthetic peptide rate assays under a range of buffer conditions, and compared kinetic parameters for selected substrates. The libraries produced some variations on the canonical motifs. From caspase-3 selections, a phage-derived synthetic peptide, DLVD, was hydrolyzed up to 170% faster than the canonical substrate DEVD. The P4 Asp residue was essential for good protease-sensitivity, but even substrates with substitutions at P4 were selected by phage and shown to be hydrolyzed. Caspase-8 selections, as expected, yielded predominantly clones containing a Glu at P3. In this case, the most frequent phage-derived peptide, LEVD, was cleaved at a rate of only 20% of the canonical caspase-8 substrate LETD. However, based on substitutions observed in the phage selectants at P4, a substrate peptide, AETD, was designed and shown to be hydrolyzed up to 160% faster than LETD. We consider factors that may contribute to differences in caspase substrate-phage selections vs synthetic peptide studies on the caspases, and suggest that the two approaches may offer complementary information.  相似文献   

16.
The entry of enveloped viruses involves attachment followed by close apposition of the viral and plasma membranes. Then, either on the cell surface or in an endocytotic vesicle, the two membranes fuse by an energetically unfavourable process requiring the destabilisation of membrane microenvironment in order to release the viral nucleocapsid into the cytoplasm. The core fusion machinery, conserved throughout the herpesvirus family, involves glycoprotein B (gB) and the non-covalently associated complex of glycoproteins H and L (gH/gL). Both gB and gH possess several hydrophobic domains necessary for efficient induction of fusion, and synthetic peptides corresponding to these regions are able to associate to membranes and induce fusion of artificial liposomes. Here, we describe the first application of surface plasmon resonance (SPR) to the study of the interaction of viral membranotropic peptides with model membranes in order to enhance our molecular understanding of the mechanism of membrane fusion. SPR spectroscopy data are supported by tryptophan fluorescence, circular dichroism and electron spin resonance spectroscopy (ESR). We selected peptides from gB and gH and also analysed the behaviour of HIV gp41 fusion peptide and the cationic antimicrobial peptide melittin. The combined results of SPR and ESR showed a marked difference between the mode of action of the HSV peptides and the HIV fusion peptide compared to melittin, suggesting that viral-derived membrane interacting peptides all act via a similar mechanism, which is substantially different from that of the non-cell selective lytic peptide melittin.  相似文献   

17.
Minimum substrate sequence for signal peptidase I of Escherichia coli   总被引:4,自引:0,他引:4  
The minimum substrate sequence recognized by signal peptidase I (SPase I or leader peptidase) was defined by measuring the kinetic parameters for a set of chemically synthesized peptides corresponding to the cleavage site of the precursor maltose binding protein (pro-MBP). The minimum sequence of a substrate hydrolyzed by SPase I at a measurable rate was the pentapeptide Ala-Leu-Ala decreases Lys-Ile. The rates of hydrolysis of this substrate, however, were several hundred-fold lower than those observed for the maturation of MBP in Escherichia coli, suggesting that in addition to these minimal sites involved in recognition, other features of pro-MBP are also needed for the optimal rate of signal peptide cleavage by SPase I. One parameter may be the length of the polypeptide chain. Studies of the synthetic peptides showed that decreasing the length of the polypeptide chain of substrates decreased the substrate efficiency measured as kcat/Km. However, in one case a decrease in the length of a peptide corresponding to -7 to +3 positions of pro-MBP to a nonapeptide (-7 to +2) increased the substrate efficiency by about 900-fold. The nonapeptide is the most efficient substrate for the enzyme in vitro so far reported. It is speculated that better peptide substrates are the ones which are able to adopt folded structures.  相似文献   

18.
P Novak  I K Dev 《Journal of bacteriology》1988,170(11):5067-5075
The degradation of the prolipoprotein signal peptide in vitro by membranes, cytoplasmic fraction, and two purified major signal peptide peptidases from Escherichia coli was followed by reverse-phase liquid chromatography (RPLC). The cytoplasmic fraction hydrolyzed the signal peptide completely into amino acids. In contrast, many peptide fragments accumulated as final products during the cleavage by a membrane fraction. Most of the peptides were similar to the peptides formed during the cleavage of the signal peptide by the purified membrane-bound signal peptide peptidase, protease IV. Peptide fragments generated during the cleavage of the signal peptide by protease IV and a cytoplasmic enzyme, oligopeptidase A, were identified from their amino acid compositions, their retention times during RPLC, and knowledge of the amino acid sequence of the signal peptide. Both enzymes were endopeptidases, as neither dipeptides nor free amino acids were formed during the cleavage reactions. Protease IV cleaved the signal peptide predominantly in the hydrophobic segment (residues 7 to 14). Protease IV required substrates with hydrophobic amino acids at the primary and the adjacent substrate-binding sites, with a minimum of three amino acids on either side of the scissile bond. Oligopeptidase A cleaved peptides (minimally five residues) that had either alanine or glycine at the P'1 (primary binding site) or at the P1 (preceding P'1) site of the substrate. These results support the hypothesis that protease IV is the major signal peptide peptidase in membranes that initiates the degradation of the signal peptide by making endoproteolytic cuts; oligopeptidase A and other cytoplasmic enzymes further degrade the partially degraded portions of the signal peptide that may be diffused or transported back into the cytoplasm from the membranes.  相似文献   

19.
Synthetic peptides are important tools with which to study the activities of protein kinases and phosphatases toward specific substrate sequences which are present within selected regions of a protein. Most existing assays for the phosphorylation or dephosphorylation of such peptides utilize 32P and either affinity chromatography or HPLC separation and require extensive characterization and validation. Here, we describe a method for monitoring the phosphorylation or dephosphorylation of almost any peptide of interest which does not require the use of radioactivity, making its reagents stable for a prolonged period, and which can be performed in any standard laboratory. For this, after performance of kinase or phosphatase reactions with the peptide of interest, products are derivatized with fluorescamine and are separated according to charge by agarose gel electrophoresis. Phosphorylated and nonphosphorylated peptides are readily separated and can be both identified and quantified by uv detection. The lower limit for detection of peptide in the agarose gel was 0.02 nmol using the gel-shift kinase assay with cAMP-dependent kinase and Kemptide as substrate. This had sensitivity and reproducibility similar to those of a standard assay using [γ-32P]ATP with this substrate. Dephosphorylation of a synthetic phosphopeptide corresponding to a segment of the cholecystokinin receptor was tested in an analogous assay with known amounts of protein phosphatase 2A. Phosphopeptide and dephosphopeptide were easily detected and quantified with as little as 0.03 mU/mI protein phosphatase 2A activity. Therefore, with this assay, most synthetic peptides and phosphopeptides can be used as substrates without further modification. This will be of particular interest for monitoring the purification of highly specific protein kinase and phosphatase activities.  相似文献   

20.
Prostate specific antigen (PSA) is a member of kallikrein family having serine protease-like activity and acts as a prognostic marker of prostate carcinoma. Various studies have been performed on inhibition of PSA and such targeting requires the identification of highly selective peptide inhibitors. PSA was purified from human seminal plasma by rapid and efficient methods, and binding studies for various peptides were carried out by fluorescence spectroscopy and SPR. The 'S' of PSA is predominated by hydrophobic residues, and hence many hydrophobic peptides were used to determine their binding affinity to PSA by fluorescence spectroscopy. We observed that LLFW, FFKW, and KFW binds strongly to PSA, among them LLFW showed strong binding. SPR also showed strong binding affinity of PSA toward peptides with hydrophobic and basic residues. Among the peptides used, FWYS showed dramatic increase in binding affinity (10(-10) M). The peptides analyzed for binding studies, suggests that peptide with Trp residue along with basic or hydrophobic amino acids may be useful for designing specific inhibitors for PSA. The strong affinities of designed peptides for PSA can be a valuable tool for designing therapeutic agents for prostate carcinomas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号