首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The synthesis and detailed enzymatic analysis of fluorescence resonance energy transfer (FRET)-based peptides as substrates for chymopapain are reported. The design of these substrates arose from a massively parallel high-throughput microarray screening process using peptide nucleic acid (PNA) encoding technology, allowing the identification of detailed substrate specificities of any protease. Two peptides so identified with chymopapain were observed to be excellent substrates with low micromolar Km values and turnover numbers on the order of hundreds per second. Mass spectroscopy studies showed unequivocally the specificity of chymopapain toward Ala, Pro, Val, and Lys for positions P4 to P1 while not presenting high specificity for residues in position P1′.  相似文献   

2.
《Autophagy》2013,9(7):936-947
Atg4 cysteine proteases (autophagins) play crucial roles in autophagy by proteolytic activation of Atg8 paralogs for targeting to autophagic vesicles by lipid conjugation, as well as in subsequent deconjugation reactions. However, the means to measure the activity of autophagins is limited. Herein, we describe two novel substrates for autophagins suitable for a diversity of in vitro assays, including (i) fluorogenic tetrapeptide acetyl-L-Gly-L-Thr-L-Phe-Gly-AFC (Ac-GTFG-AFC) and (ii) a fusion protein comprised of the natural substrate LC3B appended to the N-terminus of phospholipase A2 (LC3B-PLA2), which upon cleavage releases active PLA2 for fluorogenic assay. To generate the synthetic tetrapeptide substrate, the preferred tetrapeptide sequence recognized by autophagin-1/Atg4B was determined using a positional scanning combinatorial fluorogenic tetrapeptide library. With the LC3B-PLA2 substrate, we show that mutation of the glycine proximal to the scissile bond in LC3B abolishes activity. Both substrates showed high specificity for recombinant purified autophagin-1/Atg4B compared to closely related proteases, and the LC3B-PLA2 substrate afforded substantially higher catalytic rates (kcat/Km 5.26 x 105 M-1/sec-1) than Ac-GTFG-AFC peptide (0.92 M-1/sec-1), consistent with substrate induced activation. Studies of autophagin-1 mutants were also performed, including the protease lacking a predicted autoinhibitory domain at residues 1 to 24, and lacking a regulatory loop at residues 259 to 262. The peptide and fusion protein substrates were also employed for measuring autophagin activity in cell lysates, showing a decrease in cells treated with autophagin-1/Atg4B siRNA or transfected with a plasmid encoding Atg4B (Cys74Ala) dominant-negative. Therefore, the synthetic substrates for autophagins reported here provide new research tools for studying autophagy.  相似文献   

3.
4.
Proteolysis constitutes a major post-translational modification but specificity and substrate selectivity of numerous proteases have remained elusive. In this review, we highlight how advanced techniques in the areas of proteomics and activity-based probes can be used to investigate i) protease active site specificity; ii) protease in vivo substrates; iii) protease contribution to proteome homeostasis and composition; and iv) detection and localization of active proteases. Peptide libraries together with genetical or biochemical selection have traditionally been used for active site profiling of proteases. These are now complemented by proteome-derived peptide libraries that simultaneously determine prime and non-prime specificity and characterize subsite cooperativity. Cell-contextual discovery of protease substrates is rendered possible by techniques that isolate and quantitate protein termini. Here, a novel approach termed Terminal Amine Isotopic Labeling of Substrates (TAILS) provides an integrated platform for substrate discovery and appropriate statistical evaluation of terminal peptide identification and quantification. Proteolytically generated carboxy-termini can now also be analyzed on a proteome-wide level. Proteolytic regulation of proteome composition is monitored by quantitative proteomic approaches employing stable isotope coding or label free quantification. Activity-based probes specifically recognize active proteases. In proteomic screens, they can be used to detect and quantitate proteolytic activity while their application in cellular histology allows to locate proteolytic activity in situ. Activity-based probes – especially in conjunction with positron emission tomography – are also promising tools to monitor proteolytic activities on an organism-wide basis with a focus on in vivo tumor imaging. Together, this array of methodological possibilities enables unveiling physiological protease substrate repertoires and defining protease function in the cellular- and organism-wide context.  相似文献   

5.
The substrate specificity of the crystalline acid protease obtained from Rhizopus chinensis was determined using B-chain of oxidized beef insulin and numerous synthetic peptides, comparing with that of several acid proteases from various sources. The peptide bonds susceptible to the action of Rhiz. acid protease were found to be mainly those involving the amino group of bulky amino acids. The enzyme split the B-chain of oxidized insulin at twelve sites of the peptide linkages and a certain similarity in the specificity was observed among the three acid proteases, Rhiz. protease, rennin and pepsin, all of which were known to show potent milk clotting activities.  相似文献   

6.
Atg4 cysteine proteases (autophagins) play crucial roles in autophagy by proteolytic activation of Atg8 paralogs for targeting to autophagic vesicles by lipid conjugation, as well as in subsequent deconjugation reactions. However, the means to measure the activity of autophagins is limited. Herein, we describe two novel substrates for autophagins suitable for a diversity of in vitro assays, including (i) fluorogenic tetrapeptide acetyl-Gly-L-Thr-L-Phe-Gly-AFC (Ac-GTFG-AFC) and (ii) a fusion protein comprised of the natural substrate LC3B appended to the N-terminus of phospholipase A2 (LC3B-PLA2), which upon cleavage releases active PLA2 for fluorogenic assay. To generate the synthetic tetrapeptide substrate, the preferred tetrapeptide sequence recognized by autophagin-1/Atg4B was determined using a positional scanning combinatorial fluorogenic tetrapeptide library. With the LC3B-PLA2 substrate, we show that mutation of the glycine proximal to the scissile bond in LC3B abolishes activity. Both substrates showed high specificity for recombinant purified autophagin-1/Atg4B compared to closely related proteases and the LC3B-PLA2 substrate afforded substantially higher catalytic rates (kcat/Km 5.26 × 105 M−1/sec−1) than Ac-GTFG-AFC peptide (0.92 M−1/sec−1), consistent with substrate-induced activation. Studies of autophagin-1 mutants were also performed, including the protease lacking a predicted autoinhibitory domain at residues 1 to 24 and lacking a regulatory loop at residues 259 to 262. The peptide and fusion protein substrates were also employed for measuring autophagin activity in cell lysates, showing a decrease in cells treated with autophagin-1/Atg4B siRNA or transfected with a plasmid encoding Atg4B (Cys74Ala) dominant-negative. Therefore, the synthetic substrates for autophagins reported here provide new research tools for studying autophagy.Key words: autophagin, fluorogenic assay, tetrapeptide, phospholipase A2, LC3  相似文献   

7.
Panning of a substrate phage library with an -lytic protease mutant showed that substrate phage display can be used to isolate sequences with improved protease sensitivity even for proteases of relatively broad specificity. Two panning experiments were performed with an engineered -lytic protease mutant known to have a preference for cleavage after His or Met residues. Both experiments led to the isolation of protease-sensitive phage containing linker sequences in which His and Met residues were enriched compared with the initial library. Despite the relatively hydrophobic substrate binding site of the enzyme, the predominant protease-sensitive sequence isolated from the second library panning had the sequence Asp-Ser-Thr-Met. Kinetic studies showed that this sequence was cleaved up to 4.5-fold faster than rationally designed positive controls. Protease-resistant phage particles were also selected and characterized, with the finding that Gly and Pro appeared frequently at the putative P4 positions, whereas Asp dominated the putative P1 position.  相似文献   

8.
Bacterial proteases play an important role in a broad spectrum of processes, including colonization, proliferation, and virulence. In this respect, bacterial proteases are potential biomarkers for bacterial diagnosis and targets for novel therapeutic protease inhibitors. To investigate these potential functions, the authors designed and used a protease substrate fluorescence resonance energy transfer (FRET) library comprising 115 short d- and l-amino-acid-containing fluorogenic substrates as a tool to generate proteolytic profiles for a wide range of bacteria. Bacterial specificity of the d-amino acid substrates was confirmed using enzymes isolated from both eukaryotic and prokaryotic organisms. Interestingly, bacterial proteases that are known to be involved in housekeeping and nutrition, but not in virulence, were able to degrade substrates in which a d-amino acid was present. Using our FRET peptide library and culture supernatants from a total of 60 different bacterial species revealed novel, bacteria-specific, proteolytic profiles, although in-species variation was observed for Pseudomonas aeruginosa, Porphyromonas gingivalis, and Staphylococcus aureus. Overall, the specific characteristic of our substrate peptide library makes it a rapid tool to high-throughput screen for novel substrates to detect bacterial proteolytic activity.  相似文献   

9.
Panning of a substrate phage library with an α-lytic protease mutant showed that substrate phage display can be used to isolate sequences with improved protease sensitivity even for proteases of relatively broad specificity. Two panning experiments were performed with an engineered α-lytic protease mutant known to have a preference for cleavage after His or Met residues. Both experiments led to the isolation of protease-sensitive phage containing linker sequences in which His and Met residues were enriched compared with the initial library. Despite the relatively hydrophobic substrate binding site of the enzyme, the predominant protease-sensitive sequence isolated from the second library panning had the sequence Asp-Ser-Thr-Met. Kinetic studies showed that this sequence was cleaved up to 4.5-fold faster than rationally designed positive controls. Protease-resistant phage particles were also selected and characterized, with the finding that Gly and Pro appeared frequently at the putative P4 positions, whereas Asp dominated the putative P1 position.  相似文献   

10.
Activated factor XIII (FXIIIa) catalyzes the formation of γ-glutamyl-ε-lysyl cross-links within the fibrin blood clot network. Although several cross-linking targets have been identified, the characteristic features that define FXIIIa substrate specificity are not well understood. To learn more about how FXIIIa selects its targets, a matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI–TOF MS)-based assay was developed that could directly follow the consumption of a glutamine-containing substrate and the formation of a cross-linked product with glycine ethylester. This FXIIIa kinetic assay is no longer reliant on a secondary coupled reaction, on substrate labeling, or on detecting only the final deacylation portion of the transglutaminase reaction. With the MALDI–TOF MS assay, glutamine-containing peptides derived from α2-antiplasmin, Staphylococcus aureus fibronectin binding protein A, and thrombin-activatable fibrinolysis inhibitor were examined directly. Results suggest that the FXIIIa active site surface responds to changes in substrate residues following the reactive glutamine. The P−1 substrate position is sensitive to charge character, and the P−2 and P−3 substrate positions are sensitive to the broad FXIIIa substrate specificity pockets. The more distant P−8 to P−11 region serves as a secondary substrate anchoring point. New knowledge on FXIIIa specificity may be used to design better substrates or inhibitors of this transglutaminase.  相似文献   

11.
Protease secretion in Neurospora crassa   总被引:1,自引:0,他引:1  
Secreted and constitutive intracellular proteases of Neurospora crassa differ with regard to inhibitor sensitivity, substrate specificity, isoelectric points and other properties. Upon the induction of protease secretion the enzymes released from the mycelium are formed de novo as demonstrated by density labelling with D2O. Vesicles which contain the constitutive intracellular proteases are, therefore, not involved in the secretion of proteases.  相似文献   

12.
MAP kinase ERK maintains specificity by binding to docking sites such as the DEF domain or D domain. It was previously shown that appending peptides derived from D domains to a substrate peptide increased apparent efficiency of peptide phosphorylation while preserving its apparent specificity for ERK. Here we determine the effect of the DEF motif on efficiency and specificity of peptide phosphorylation by ERK. The DEF motif modulated the apparent affinity of the peptide for ERK while the substrate motif dominated the apparent catalytic rate. Attachment of the DEF sequence improved apparent phosphorylation efficiency by 60-fold. Addition of peptides possessing both the DEF and D motif to a substrate sequence did not yield additive effects on the KM of the substrate for ERK. Further, the DEF motif diminished the apparent specificity for ERK and increased the apparent efficiencies of phosphorylation of the substrate peptide by p38α kinase and JNK1.  相似文献   

13.
A vector projection method is proposed to predict the cleavability of oligopeptides by extended-specificity site proteases. For an enzyme with eight specificity subsites the substrate octapeptide can be uniquely expressed as a vector in an 8-dimensional space, whose eight bases correspond to the amino acids at the eight subsites, P1, P1′, P2′, P3′ and P4′, respectively. The component of such a characteristic vector on each of the eight bases is defined as the frequency of an amino acid occurring at a given site. These frequencies were derived from a set of octapeptides known to be cleaved by HIV protease. The cleavability of an octapeptide can then be estimated from the projection of its characteristic vector on an idealized, optimally cleavable vector. The high ratio of correct prediction vs. total prediction for the data in both the training and the testing sets indicates that the new method is self-consistent and efficient. It provides a rapid and accurate algorithm for analyzing the specificity of any multisubsite enzyme for which there is no coupling between subsites. In particular, it is useful for predicting the cleavability of an oligopeptide by either HIV-1 or HIV-2 protease, and hence offers a supplementary means for finding effective inhibitors of HIV protease as potential drugs against AIDS. © Wiley-Liss, Inc.  相似文献   

14.

Background

A family of secreted cathepsin L proteases with differential activities is essential for host colonization and survival in the parasitic flatworm Fasciola hepatica. While the blood feeding adult secretes predominantly FheCL1, an enzyme with a strong preference for Leu at the S2 pocket of the active site, the infective stage produces FheCL3, a unique enzyme with collagenolytic activity that favours Pro at P2.

Methodology/Principal Findings

Using a novel unbiased multiplex substrate profiling and mass spectrometry methodology (MSP-MS), we compared the preferences of FheCL1 and FheCL3 along the complete active site cleft and confirm that while the S2 imposes the greatest influence on substrate selectivity, preferences can be indicated on other active site subsites. Notably, we discovered that the activity of FheCL1 and FheCL3 enzymes is very different, sharing only 50% of the cleavage sites, supporting the idea of functional specialization. We generated variants of FheCL1 and FheCL3 with S2 and S3 residues by mutagenesis and evaluated their substrate specificity using positional scanning synthetic combinatorial libraries (PS-SCL). Besides the rare P2 Pro preference, FheCL3 showed a distinctive specificity at the S3 pocket, accommodating preferentially the small Gly residue. Both P2 Pro and P3 Gly preferences were strongly reduced when Trp67 of FheCL3 was replaced by Leu, rendering the enzyme incapable of digesting collagen. In contrast, the inverse Leu67Trp substitution in FheCL1 only slightly reduced its Leu preference and improved Pro acceptance in P2, but greatly increased accommodation of Gly at S3.

Conclusions/Significance

These data reveal the significance of S2 and S3 interactions in substrate binding emphasizing the role for residue 67 in modulating both sites, providing a plausible explanation for the FheCL3 collagenolytic activity essential to host invasion. The unique specificity of FheCL3 could be exploited in the design of specific inhibitors selectively directed to specific infective stage parasite proteinases.  相似文献   

15.

Background

Aspartic proteases Cathepsin (Cath) E and D are two different proteases, but they share many common characteristics, including molecular weight, catalytic mechanism, substrate preferences, proteolytic conditions and inhibition susceptibility. To define the biological roles of these proteases, it is necessary to elucidate their substrate specificity. In the present study, we report a new peptide–substrate that is only sensitive to Cath E but not Cath D.

Methods

Substrate e, Mca-Ala-Gly-Phe-Ser-Leu-Pro-Ala-Lys(Dnp)-DArg-CONH2, designed in such a way that due to the close proximity of a Mca-donor and a Dnp-acceptor, near complete intramolecular quenching effect was achieved in its intact state. After the proteolytic cleavage of the hydrophobic motif of peptide substrate, both Mca and Dnp would be further apart, resulting in bright fluorescence.

Results

Substrate e showed a 265 fold difference in the net fluorescence signals between Cath E and D. This Cath E selectivity was established by having -Leu**Pro- residues at the scissile peptide bond. The confined cleavage site of substrate e was confirmed by LC-MS. The catalytic efficiency (Kcat/KM) of Cath E for substrate e was 16.7 μM1 S1. No measurable catalytic efficiency was observed using Cath D and no detectable fluorescent changes when incubated with Cath S and Cath B.

Conclusions

This study demonstrated the promise of using the developed fluorogenic substrate e as a selective probe for Cath E proteolytic activity measurement.

General significance

This study forms the foundation of Cath E specific inhibitor development in further studies.  相似文献   

16.
Summary The design, synthesis and catalytic properties of a cyclic branched peptide carrier that possesses the catalytic triad residues of the serine proteases is reported. The synthesis of the peptide model was totally completed on solid support using three different orthogonal amino protecting groups. Hydrolytic activity measurements against Suc-Ala-Ala-Ala-pNA substrate showed that it is hydrolysed by the peptide model to a small extent. Despite this small hydrolytic activity, it is the first time, to our knowledge, that hydrolysis of such a substrate is reported by an enzyme model compound. Contrary, this enzyme model peptide showed considerable activity against the Boc-Ala-pNP substrate (k cat =0.414 min−1 andK m =0.228 mm). These results suggest that the designed carrier brings in appropriate contact the catalytic triad residues (Ser, His, Asp) resulting in the obtained hydrolytic activity.  相似文献   

17.
The substrate specificity of cucumisin [EC 3.4.21.25] was identified by the use of the synthetic peptide substrates Leum-Pro-Glu-Ala-Leun (m=0-4, n=0-3). Neither Pro-Glu-Ala-Leu (m=0) nor Leu-Pro-Glu-Ala (n=0) was cleaved by cucumisin, however other analogus peptides were cleaved between Glu-Ala. The hydrolysis rates of Leum-Pro-Glu-Ala-Leu increased with the increase of m=1 to 2 and 3, but was however, essentially same with the increase of m=3 to 4. Similarly, the hydrolysis rates of Leu-Leu-Pro-Glu-Ala-Leun increased with the increase of n=0 to 1 and 2, but was essentially same with the increase of n=2 to 3. Then, it was concluded that cucumisin has a S5-S3′ subsite length. In order to identify the substrate specificity at P1 position, Leu-Leu-Pro-X-Ala-Leu (X; Gly, Ala, Val, Leu, Ile, Pro, Asp, Glu, Lys, Arg, Asn, Gln, Phe, Tyr, Ser, Thr, Met, Trp, His) were synthesized and digested by cucumisin. Cucumisin showed broad specificity at the P1 position. However, cucumisin did not cleave the C-terminal side of Gly, Ile, Pro, and preferred Leu, Asn, Gln, Thr, and Met, especially Met. Moreover, the substrates, Leu-Leu-Pro-Glu-Y-Leu (Y; Gly, Ala, Ser, Leu, Val, Glu, Lys, Phe) were synthesized and digested by cucumisin. Cucumisin did not cleave the N-terminal side of Val but preferred Gly, Ser, Ala, and Lys especially Ser. The specificity of cucumisin for naturally occurring peptides does not agree strictly with the specificity obtained by synthetic peptides at the P1 or P1′ position alone, but it becomes clear that the most of the cleavage sites on naturally occurring peptides by cucumisin contain suitable amino acid residues at P1 and (or) P1′ positions. Moreover, cucumisin prefers Pro than Leu at P2 position, indicating that the specificity at P2 position differs from that of papain.  相似文献   

18.
The intestinal fluid of Locusta migratoria was purified by ionexchange chromatography on a DEAE-cellulose column. Four fractions (PI–PIV) with endopeptidase activity have been obtained and characterized in further studies. All proteolytic fractions were found to react with PMSF. Therefore, they seem to be typical serine proteases. Two of them, PI and PIV, resemble bovine trypsin and bovine chymotrypsin, respectively. These proteases hydrolyse the B-chain of oxidized insulin and the synthetic substrates BTEE,2 APNE and BAEE, BANA with a specificity very similar to the bovine enzymes. Moreover, they show similar inhibition characteristics and pH activity profiles. Their molecular weights were found to be 17,000 and 18,200, respectively, according to gel filtration. Fraction PIII did not hydrolyse any of the applied synthetic substrates, PII was active only with GluPNA. The pH optima of these enzymes lay near neutrality. Their molecular weights were found to be 27,000 and 32,000, respectively. Probably they belong to a type of proteases hitherto scarcely described and not to be found in vertebrates.  相似文献   

19.
We explored furin substrate requirements in addition to the motif R-X-K/R-R using synthetic fluorescent resonance energy transfer (FRET) decapeptides. These decapeptides were derived from furin cleavage sites in viral coat glycoproteins and human and bacterial protein precursors. The hydrolysis by furin of most substrate was activated by K+ ion, whereas kosmotropic anions of the Hofmeister series were inhibitors. The analysis of furin hydrolytic activity showed that its efficiency is highly dependent on the particular combinations of amino acids at different substrate positions. There is a clear interdependence of furin subsites that must be taken in account in determining its specificity and also for the design of inhibitors. However, clear preferences were detected for substrates with S at P1′, and V at P2′, at P3′ the amino acids D, S, L and A are almost equally frequent. In the non-prime subsites the best substrates presented S and H at P6; basic amino acids at P5; and no clear tendency at P3. Interestingly, two amino acid substitutions on the prime side of the peptide derived from H5N1 influenza hemagglutinin furin processing site highly improved its hydrolysis. These modifications are possible by single point mutations, suggesting a potential yield of a more infectious virus.  相似文献   

20.
Fructosyl peptide oxidase is a flavoenzyme that catalyzes the oxidative deglycation of N-(1-deoxyfructosyl)-Val-His, a model compound of hemoglobin (Hb)A1C. To develop an enzymatic method for the measurement of HbA1C, we screened for a proper protease using N-(1-deoxyfructosyl)-hexapeptide as a substrate. Several proteases, including Neutral protease from Bacillus polymyxa, were found to release N-(1-deoxyfructosyl)-Val-His efficiently, however no protease was found to release N-(1-deoxyfructosyl)-Val. Neutral protease also digested HbA1C to release N-(1-deoxyfructosyl)-Val-His, and then the fructosyl peptide was detected using fructosyl peptide oxidase. The linear relationship was observed between the concentration of HbA1C and the absorbancy of fructosyl peptide oxidase reaction, hence this new method is a practical means for measuring HbA1C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号