首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Protein glycosylation, the most universal and diverse post-translational modification, can affect protein secretion, stability, and immunogenicity. The structures of glycans attached to proteins are quite diverse among different organisms and even within yeast species. In yeast, protein glycosylation plays key roles in the quality control of secretory proteins, and particularly in maintaining cell wall integrity. Moreover, in pathogenic yeasts, glycans assembled on cell-surface glycoproteins can mediate their interactions with host cells. Thus, a comprehensive understanding of protein glycosylation in various yeast species and defining glycan structure characteristics can provide useful information for their biotechnological and clinical implications. Yeast-specific glycans are a target for glyco-engineering; implementing human-type glycosylation pathways in yeast can aid the production of recombinant glycoproteins with therapeutic potential. The virulenceassociated glycans of pathogenic yeasts could be exploited as novel targets for antifungal agents. Nowadays, several glycomics techniques facilitate the generation of species-and strain-specific glycome profiles and the delineation of modified glycan structures in mutant and engineered yeast cells. Here, we present the protocols employed in our laboratory to investigate the N-and O-glycan chains released from purified glycoproteins or cell wall mannoproteins in several yeast species.  相似文献   

2.
N-Glycans from major glycoproteins of pigeon egg white (ovotransferrin, ovomucoid, and ovalbumins) were enzymatically released and were reductively aminated with 2-aminopyridine, separated, and structurally characterized by mass spectrometry and a three-dimensional mapping technique using three different columns of high performance liquid chromatography (HPLC) (Takahashi, N., Nakagawa, H., Fujikawa, K., Kawamura, Y., and Tomiya, N. (1995) Anal. Biochem. 226, 139-146). Twenty-five major N-glycan structures, all of them hitherto unknown, were identified as pyridylamino derivatives. Of these, 13 were neutral, 10 were monosialyl, and 2 were disialyl oligosaccharides. All N-glycans contain from one to four Galalpha(1,4)Galbeta(1,4) sequences at the nonreducing terminal positions and are devoid of fucose residues. N-Acetylneuraminic acids were alpha(2,6)-linked only to beta-galactose. The HPLC profiles of the N-glycans from four different glycoproteins were qualitatively very similar to each other, but not identical in the peak distributions. Monosialyl glycans were most abundant in all four glycoproteins, followed by neutral glycans. Disialyl glycans were lowest in ovotransferrin, and highest in ovomucoid. Triantennary structures with bisecting GlcNAc were predominant in ovotransferrin, and tetra-antennary (with and without bisecting GlcNAc-containing) structures were predominant in other glycoproteins. Penta-antennary structures (with a sialic acid and without bisecting GlcNAc residue) were also found in small quantities in all four glycoproteins. In contrast to the chicken egg white counterparts, which contain mostly high mannose and hybrid types, all N-glycan structures in the major pigeon egg white glycoproteins are complex type.  相似文献   

3.
A sensitive, rapid, quantitative strategy has been developed for O-glycan analysis. A structural database has been constructed that currently contains analytical parameters for more than 50 glycans, enabling identification of O-glycans at the subpicomole level. The database contains the structure, molecular weight, and both normal and reversed-phase HPLC elution positions for each glycan. These observed parameters reflect the mass, three-dimensional shape, and hydrophobicity of the glycans and, therefore, provide information relating to linkage and arm specificity as well as monosaccharide composition. Initially the database was constructed by analyzing glycans released by mild hydrazinolysis from bovine serum fetuin, synthetic glycopeptides, human glycophorin A, and serum IgA1. The structures of the fluorescently labeled sugars were determined from a combination of HPLC data, mass spectrometric composition and mass fragmentation data, and exoglycosidase digestions. This approach was then applied to human neutrophil gelatinase B and secretory IgA, where 18 and 25 O-glycans were identified, respectively, and the parameters of these glycans were added to the database. This approach provides a basis for the analysis of subpicomole quantities of O-glycans from normal levels of natural glycoproteins.  相似文献   

4.
It is well known that most protein therapeutics such as monoclonal antibody pharmaceuticals and other biopharmaceuticals including cancer biomarkers are glycoproteins, and thus the development of high-throughput and sensitive analytical methods for glycans is essential in terms of their determination and quality control. We previously reported a novel alternative labeling method for glycans involving 9-fluorenylmethyl chloroformate (Fmoc-Cl) instead of the conventional reductive amination procedure. The derivatives were analyzed by high-performance liquid chromatography (HPLC) (Kamoda S, Nakano M, Ishikawa R, Suzuki S, Kakehi K. 2005. Rapid and sensitive screening of N-glycans as 9-fluorenylmethyl derivatives by high-performance liquid chromatography: A method which can recover free oligosaccharides after analysis. J Proteome Res. 4:146-152). This method was rapid and simple; however, it was time-consuming in terms of analysis by HPLC and did not provide so much information such as the detailed structures and mass numbers of glycans. Here we have developed a high-throughput and highly sensitive method. It comprises three steps, i.e., release of glycans, derivatization with Fmoc, and capillary electrophoresis-electrospray ionization mass spectrometry (CE-ESI MS) analysis. We analyzed several glycoproteins such as fetuin, alpha1 acid glycoprotein, IgG, and transferrin in order to validate this method. We were able to analyze the above glycoproteins with the three-step procedure within only 5 h, which provided detailed N-glycan patterns. Moreover, the MS/MS analysis allowed identification of the N-glycan structures. As novel applications, the method was employed for the analysis of N-glycans derived from monoclonal antibody pharmaceuticals and also from alpha-fetoprotein; the latter is known as one of the tumor markers of hepatocellular carcinomas. We were able to easily and rapidly determine the detailed structures of the N-glycans. The present method is very useful for the analysis of large numbers of samples such as a routine analysis.  相似文献   

5.
A surface plasmon resonance (SPR) based natural glycan microarray was developed for screening of interactions between glycans and carbohydrate-binding proteins (CBPs). The microarray contained 144 glycan samples and allowed the real-time and simultaneous screening for recognition by CBPs without the need of fluorescent labeling. Glycans were released from their natural source and coupled by reductive amination with the fluorescent labels 2-aminobenzamide (2AB) or anthranilic acid (AA) followed by high-performance liquid chromatography (HPLC) fractionation making use of the fluorescent tag. The released and labeled glycans, in addition to fluorescently labeled synthetic glycans and (neo)glycoproteins, were printed on an epoxide-activated chip at fmol amounts. This resulted in covalent immobilization, with the epoxide groups forming covalent bonds to the secondary amine groups present on the fluorescent glycoconjugates. The generated SPR glycan array presented a subset of the glycan repertoire of the human parasite Schistosoma mansoni. In order to demonstrate the usefulness of the array in the simultaneous detection of glycan-specific serum antibodies, the anti-glycan antibody profiles from sera of S. mansoni-infected individuals as well as from non-endemic uninfected controls were recorded. The SPR screening was sensitive for differences between infection sera and control sera, and revealed antibody titers and antibody classes (IgG or IgM). All SPR analyses were performed with a single SPR array chip, which required regeneration and blocking of the chip before the application of a serum sample. Our results indicate that SPR-based arrays constructed from glycans of natural or synthetic origin, pure or as mixture, can be used for determining serum antibody profiles as possible markers for the infection status of an individual.  相似文献   

6.
Our previous studies suggest that the α2,3sialylated T-antigen (NeuAcα2,3Galβ1,3GalNac-) and associated glycan structures are likely to be elevated during cancer. An easy and reliable strategy to label mucinous glycans that contain such carbohydrates can enable the identification of novel glycoproteins that are cancer associated. To this end, the present study demonstrates that the exchange sialylation property of mammalian ST3Gal-II can facilitate the labeling of mucin glycoproteins in cancer cells, tumor specimens, and glycoproteins in cancer sera. Results show that (i) the radiolabeled mucin glycoproteins of each of the cancer cell lines studied (T47D, MCF7, LS180, LNCaP, SKOV3, HL60, DU4475, and HepG2) is distinct either in terms of the specific glycans presented or their relative distribution. While some cell lines like T47D had only one single sialylated O-glycan, others like LS180 and DU4475 contained a complex mixture of mucinous carbohydrates. (ii) [14C]sialyl labeling of primary tumor cells identified a 25-35 kDa mucin glycoprotein unique to pancreatic tumor. Labeled glycoproteins for other cancers had higher molecular weight. (iii) Studies of [14C] sialylated human sera showed larger mucin glycopeptides and >2-fold larger mucin-type chains in human serum compared to [14C]sialyl labeled glycans of fetuin. Overall, the exchange sialylation property of ST3Gal-II provides an efficient avenue to identify mucinous proteins for applications in glycoproteomics and cancer research.  相似文献   

7.
Glycan microarray technology has become a successful tool for studying protein–carbohydrate interactions, but a limitation has been the laborious synthesis of glycan structures by enzymatic and chemical methods. Here we describe a new method to generate quantifiable glycan libraries from natural sources by combining widely used protease digestion of glycoproteins and Fmoc chemistry. Glycoproteins including chicken ovalbumin, bovine fetuin, and horseradish peroxidase (HRP) were digested by Pronase, protected by FmocCl, and efficiently separated by 2D-HPLC. We show that glycans from HRP glycopeptides separated by HPLC and fluorescence monitoring retained their natural reducing end structures, mostly core α1,3-fucose and core α1,2-xylose. After simple Fmoc deprotection, the glycans were printed on NHS-activated glass slides. The glycans were interrogated using plant lectins and antibodies in sera from mice infected with Schistosoma mansoni, which revealed the presence of both IgM and IgG antibody responses to HRP glycopeptides. This simple approach to glycopeptide purification and conjugation allows for the development of natural glycopeptide microarrays without the need to remove and derivatize glycans and potentially compromise their reducing end determinants.  相似文献   

8.
Wang C  Fan W  Zhang P  Wang Z  Huang L 《Proteomics》2011,11(21):4229-4242
A novel one-pot procedure for the nonreductive release of O-linked glycans from glycoproteins and the simultaneous derivatization of released glycans with 1-phenyl-3-methyl-5-pyrazolone (PMP) is described. Unlike the traditional reductive β-elimination, which produces alditols, this new method employs PMP/ammonia aqueous solution as the reaction medium. The O-glycans are released from glycoproteins and derivatized with PMP nonreductively, specifically, and quantitatively. Samples can be easily purified from ammonia, excess PMP, and peptide residues by evaporation, chloroform extraction, and solid-phase extraction (SPE) column fractionation for HPLC, CE, or MS analysis. The procedure has been elaborated with two purified glycoproteins, porcine stomach mucin and bovine fetuin, and successfully applied to O-glycan profiling of a challenging biological specimen, healthy human plasma. This new procedure has shown methodological significance in O-glycan analysis.  相似文献   

9.
Separation of proteins by SDS-PAGE followed by in-gel proteolytic digestion of resolved protein bands has produced high-resolution proteomic analysis of biological samples. Similar approaches, that would allow in-depth analysis of the glycans carried by glycoproteins resolved by SDS-PAGE, require special considerations in order to maximize recovery and sensitivity when using mass spectrometry (MS) as the detection method. A major hurdle to be overcome in achieving high-quality data is the removal of gel-derived contaminants that interfere with MS analysis. The sample workflow presented here is robust, efficient, and eliminates the need for in-line HPLC clean-up prior to MS. Gel pieces containing target proteins are washed in acetonitrile, water, and ethyl acetate to remove contaminants, including polymeric acrylamide fragments. O-linked glycans are released from target proteins by in-gel reductive β-elimination and recovered through robust, simple clean-up procedures. An advantage of this workflow is that it improves sensitivity for detecting and characterizing sulfated glycans. These procedures produce an efficient separation of sulfated permethylated glycans from non-sulfated (sialylated and neutral) permethylated glycans by a rapid phase-partition prior to MS analysis, and thereby enhance glycomic and sulfoglycomic analyses of glycoproteins resolved by SDS-PAGE.  相似文献   

10.
Streptococcus oralis is the agent of a large number of infections in immunocompromised patients, but little is known regarding the mechanisms by which this fermentative organism proliferates in vivo. Glycoproteins are widespread within the circulation and host tissues, and could provide a source of fermentable carbohydrate for the growth of those pathogenic organisms with the capacity to release monosaccharides from glycans via the production of specific glycosidases. The ability of acute phase serum alpha1-acid glycoprotein to support growth of S.oralis in vitro has been examined as a model for growth of this organism on N-linked glycoproteins. Growth was accompanied by the production of a range of glycosidases (sialidase, N-acetyl-beta-D-glucosaminidase, and beta-D-galactosidase) as measured using the 4-methylumbelliferone-linked substrates. The residual glycoprotein glycans remaining during growth of this organism were released by treatment with hydrazine and their analysis by HPAEC-PAD and MALDI demonstrated extensive degradation of all glycan chains with only terminal N-acetylglucosamine residues attached to asparagines of the protein backbone remaining when growth was complete. Monosaccharides were released sequentially from the glycans by S.oralis glycosidases in the order sialic acid, galactose, fucose, nonterminal N-acetylglucosamine, and mannose due to the actions of exo-glycosidic activities, including mannosidases which have not previously been reported for S.oralis. All released monosaccharides were metabolized during growth with the exception of fucose which remained free in culture supernatants. Direct release of oligosaccharides was not observed, indicating the absence of endo-glycosidases in S.oralis. We propose that this mechanism of deglycosylation of host glycoproteins and the subsequent utilization of released monosaccharides is important in the survival and persistence of this and other pathogenic bacteria in vivo.  相似文献   

11.
We present a detailed protocol for the structural analysis of protein-linked glycans. In this approach, appropriate for glycomics studies, N-linked glycans are released using peptide N-glycosidase F and O-linked glycans are released by reductive alkaline beta-elimination. Using strategies based on mass spectrometry (matrix-assisted laser desorption/ionization-time of flight mass spectrometry and nano-electrospray ionization mass spectrometry/mass spectrometry (nano-ESI-MS-MS)), chemical derivatization, sequential exoglycosidase digestions and linkage analysis, the structures of the N- and/or O-glycans are defined. This approach can be used to study the glycosylation of isolated complex glycoproteins or of numerous glycoproteins encountered in a complex biological medium (cells, tissues and physiological fluids).  相似文献   

12.
Negative ion electrospray (ESI) fragmentation spectra derived from anion-adducted glycans were evaluated for structural determination of N-linked glycans and found to be among the most useful mass spectrometric techniques yet developed for this purpose. In contrast to the more commonly used positive ion spectra that contain isobaric ions formed by losses from different regions of the molecules and often lead to ambiguous deductions, the negative ion spectra contain ions that directly reflect structural features such as the branching pattern, location of fucose, and the presence of bisecting GlcNAc. These structural features are sometimes difficult to determine by traditional methods. Furthermore, the spectra give structural information from mixtures of isomers and from single compounds. The method was evaluated with well-characterized glycans from IgG and used to explore structures of N-linked glycans released from serum glycoproteins with the aim of identifying biomarkers for cancer. Quantities of glycans were measured by ESI and by matrix-assisted laser desorption ionization mass spectrometry; each technique produced virtually identical results for the neutral desialylated glycans.  相似文献   

13.
Many reports show that N-glycans of glycoproteins play important roles in vectorial transport in MDCK cells. To assess whether structural differences in N-glycans exist between secretory glycoproteins and membrane glycoproteins, we studied the N-glycan structures of the glycoproteins isolated from MDCK cells. Polarized MDCK cells were metabolically labeled with [3H]glucosamine, and (3)H-labeled N-glycans of four glycoprotein fractions, secretory glycoproteins in apical and basolateral media, and apical and basolateral membrane glycoproteins, were released by glycopeptidase F. The structures of the free N-glycans were comparatively analyzed using various lectin column chromatographies and sequential glycosidase digestion. The four samples commonly contained high-mannose-type glycans and bi- and tri-antennary glycans with a bisected or non-bisected trimannosyl core. However, secretory glycoproteins in both media predominantly contained (sialyl)LacdiNAc sequences, +/-Sia alpha 2-->6GalNAc beta 1-->4GlcNAc beta 1-->R, which linked only to a non-bisected trimannosyl core. beta1-->4N-acetylgalactosaminyltransferase (beta 4GalNAc-T) activity in MDCK cells preferred non-bisected glycans to bisected ones in accordance with the proposed N-glycan structures. This secretory glycoprotein-predominant LacdiNAc sequence was also found in the case of human embryonic kidney 293 cells. These results suggest that the secretory glycoprotein-specific (sialyl)LacdiNAc sequence and the corresponding beta 4GalNAc-T are involved in transport of secretory glycoproteins.  相似文献   

14.
Protein glycosylation involves the addition of monosaccharides in a stepwise process requiring no glycan template. Therefore, identifying the numerous glycoforms, including isomers, can help elucidate the biological function(s) of particular glycans. A method to assess the diversity of the N‐linked oligosaccharides released from human serum without derivatization has been developed using on‐line nanoLC and high resolution TOF MS. The N‐linked oligosaccharides were analyzed with MALDI FT‐ICR MS and microchip LC MS (HPLC–Chip/TOF MS). Two microfluidic chips were employed, the glycan chip (40 nL enrichment column, 43×0.075 mm2 i.d. analytical column) and the high capacity chip (160 nL enrichment column, 140×0.075 mm2 i.d. analytical column), both with graphitized carbon as the stationary phase. Both chips offered good sensitivity and reproducibility in separating a heterogeneous mixture of neutral and anionic oligosaccharides between injections. Increasing the length and volume of the enrichment and the analytical columns improved resolution of the peaks. Complex type N‐linked oligosaccharides were the most abundant oligosaccharides in human serum accounting for ∼96% of the total glycans identified, while hybrid and high mannose type oligosaccharides comprise the remaining ∼4%.  相似文献   

15.
Faid V  Chirat F  Seta N  Foulquier F  Morelle W 《Proteomics》2007,7(11):1800-1813
Glycosylation of proteins is a very complex process which involves numerous factors such as enzymes or transporters. A defect in one of these factors in glycan biosynthetic pathways leads to dramatic disorders named congenital disorders of glycosylation (CDG). CDG can affect the biosynthesis of not only protein N-glycans but also O-glycans. The structural analysis of glycans on serum glycoproteins is essential to solving the defect. For this reason, we propose in this paper a strategy for the simultaneous characterization of both N- and O-glycan chains isolated from the serum glycoproteins. The serum (20 microL) is used for the characterization of N-glycans which are released by enzymatic digestion with PNGase F. O-glycans are chemically released by reductive elimination from whole serum glycoproteins using 10 microL of the serum. Using strategies based on mass spectrometric analysis, the structures of N- and O-glycan chains are defined. These strategies were applied on the sera from one patient with CDG type IIa, and one patient with a mild form of congenital disorder of glycosylation type II (CDG-II) that is caused by a deficiency in the Cog1 subunit of the complex.  相似文献   

16.
Differences in the fertilization behavior of Xenopus borealis from X. laevis and X. tropicalis suggest differences in the glycosylation of the egg jellies. To test this assumption, O-linked glycans were chemically released from the egg jelly coat glycoproteins of X. borealis. Over 50 major neutral glycans were observed, and no anionic glycans were detected from the released O-glycan pool. Preliminary structures of ~30 neutral oligosaccharides were determined using matrix-assisted laser desorption/ionization (MALDI) infrared multiphoton dissociation tandem mass spectrometry (MS). The mass fingerprint of a group of peaks for the core-2 structure of O-glycans was conserved in the tandem mass spectra and was instrumental in rapid and efficient structure determination. Among the 29 O-glycans, 22 glycans contain the typical core-2 structure, 3 glycans have the core-1 structure and 2 glycans contained a previously unobserved core structure with hexose at the reducing end. There were seven pairs of structural isomers observed in the major O-linked oligosaccharides. To further elucidate the structures of a dozen O-linked glycans, specific and targeted exoglycosidase digestions were carried out and the products were monitored with MALDI-MS. Reported here are the elucidated structures of O-linked oligosaccharides from glycoproteins of X. borealis egg jelly coats. The structural differences in O-glycans from jelly coats of X. borealis and its close relatives may provide a better understanding of the structure-function relationships and the role of glycans in the fertilization process within Xenopodinae.  相似文献   

17.
M Gohlke  U Mach  R Nuck  B Volz  C Fieger  R Tauber  W Reutter 《FEBS letters》1999,450(1-2):111-116
In the present study we show that the H (0) blood group determinant Fuc alpha1-2Gal beta1-4GlcNAc beta1-R is present on N-linked glycans of soluble human L-selectin recombinantly expressed in baby hamster kidney (BHK) cells. The glycans were isolated using complementary HPLC techniques and characterized by a combination of exoglycosidase digestion and mass spectrometry. The linkage of the fucose residues was determined by incubation of the glycans with specific fucosidases. The H blood determinant Fuc alpha1-2Gal beta1-4GlcNAc beta1 was detected for bi-, 2,4 branched tri- and tetraantennary structures. To our knowledge, the proposed oligosaccharide structures represent a new glycosylation motif for recombinant glycoproteins expressed on BHK cells.  相似文献   

18.
Many diseases and disorders are characterized by quantitative and/or qualitative changes in complex carbohydrates. Mass spectrometry methods show promise in monitoring and detecting these important biological changes. Here we report a new glycomics method, termed glycan reductive isotope labeling (GRIL), where free glycans are derivatized by reductive amination with the differentially coded stable isotope tags [12C6]aniline and [13C6]aniline. These dual-labeled aniline-tagged glycans can be recovered by reverse-phase chromatography and can be quantified based on ultraviolet (UV) absorbance and relative ion abundances. Unlike previously reported isotopically coded reagents for glycans, GRIL does not contain deuterium, which can be chromatographically resolved. Our method shows no chromatographic resolution of differentially labeled glycans. Mixtures of differentially tagged glycans can be directly compared and quantified using mass spectrometric techniques. We demonstrate the use of GRIL to determine relative differences in glycan amount and composition. We analyze free glycans and glycans enzymatically or chemically released from a variety of standard glycoproteins, as well as human and mouse serum glycoproteins, using this method. This technique allows linear relative quantitation of glycans over a 10-fold concentration range and can accurately quantify sub-picomole levels of released glycans, providing a needed advancement in the field of glycomics.  相似文献   

19.
The characterization of the repertoire of glycans at the quantitative and qualitative levels on cells and glycoproteins is a necessary step to the understanding of glycan functions in biology. In addition, there is an increasing demand in the field of biotechnology for the monitoring of glycosylation of recombinant glycoproteins, an important issue with regard to their safety and biological activity. The enzymatic release followed by fluorescent derivatization of glycans and separation by normal phase high-performance liquid chromatography (HPLC) has proven for many years to be a powerful approach to the quantification of glycans. Characterization of glycans has classically been performed by mass spectrometry (MS) with external standardization. Here, we report a new method for the simultaneous quantification and characterization of the N-glycans on glycoproteins without the need for external standardization. This method, which we call glycan nanoprofiling, uses nanoLC-coupled electrospray ionization (ESI)-MS with an intercalated nanofluorescence reader and provides effective single glycan separation with subpicomolar sensitivity. The method relies on the isolation and coumaric derivatization of enzymatically released glycans collected by solid phase extraction with porous graphitized carbon and their separation over polyamide-based nanoHPLC prior to serial nanofluorescence and nanoelectrospray mass spectrometric analysis. Glycan nanoprofiling is a broadly applicable and powerful approach that is sufficient to identify and quantify many glycan oligomers in a single run. Glycan nanoprofiling was successfully applied to resolve the glycans of monoclonal antibodies, showing that this method is a fast and sensitive alternative to available methods.  相似文献   

20.
Glycan structures of glycoproteins secreted in the spent medium of tobacco BY2 suspension-cultured cells were analyzed. The N-glycans were liberated by hydrazinolysis and the resulting oligosaccharides were labeled with 2-aminopyridine. The pyridylaminated (PA) glycans were purified by reversed-phase and size-fractionation HPLC. The structures of the PA sugar chains were identified by a combination of the two-dimensional PA sugar chain mapping, MS analysis, and exoglycosidase digestion. The ratio (40:60) of the amount of glycans with high-mannose-type structure to that with plant-complex-type structure of extracellular glycoproteins is significantly different from that (ratio 10:90) previously found in intracellular glycoproteins [Palacpac et al., Biosci. Biotechnol. Biochem. 63 (1999) 35-39]. Extracellular glycoproteins have six distinct N-glycans (marked by *) from intracellular glycoproteins, and the high-mannose-type structures account for nearly 40% (Man5GlcNAc2, 28.8%; Man6GlcNAc2*, 6.4%; and Man7GlcNAc2*, 3.8%), while the plant-complex-type structures account for nearly 60% (GlcNAc2Man3Xyl1GlcNAc2*, 32.1%; GlcNAc1Man3Xyl1GlcNAc2 (containing two isomers)*, 6.2%; GlcNAc2Man3GlcNAc2*, 4.9%; Man3Xyl1Fuc1GlcNAc2, 8.3%; and Man3Xyl1GlcNAc2, 3.7%).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号