首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cell wall of the same type - phloem fibers (Linum usitatissimum L.), active forming the thick secondary cell wall, - was obtained. Weakly bound cell wall proteins of phloem fibers were extracted and it subsequent separation and obtaining mass spectra was carried out. For identification and attachment of identified proteins to a specific cell compartments a variety ofbioinformatics methods was used. Were identified 93 proteins, many of which were defined as predicted, putative or hypothetical. At the same 21 proteins were identified as cell-wall protein. The absence of such marker proteins of the primary cell wall as xyloglucan-endotransglycosilase, expansins indirectly confirms that in the sample for extraction of proteins dominated the secondary cell wall.  相似文献   

2.
Using a comprehensive approach, we have identified a tissue-specific β-galactosidase from flax (Linum usitatissimum L.) phloem fibers forming a gelatinous cell wall. It was found that when fibers started to develop gelatinous cell wall, β-galactosidase gene expression was enhanced.. Using the antibodies against β-galactosidase, we showed that the enzyme was located in flax phloem fibers where it was detected together with tissue-specific galactan in secreted Golgi vesicles and in gelatinous secondary cell wall. Similar β-galactosidase present in gelatinous cell wall of fibers was found in plants belonging to various taxa and produced by different meristems; these data presume the identical mechanisms of gelatinous cell wall formation and an important role of β-galactosidase. The role of this enzyme in developing the supramolecular structure of gelatinous cell wall is discussed.  相似文献   

3.
The structure of the secondary phloem and the development of the crystaleiferous phloem fibers in the stem of Torrey grandis were observed under the ligth microscope and SEM. The secondary phloem is composed of sieve cells, phloem parenchyma cells, crystalliferous phloem fibers and stone cells in the longitudinal system, and the uniserite homogeneous phloem rays consisting of parenchyma cells only in the radial system. In the cross section, there are 3–9 sieve cells in radial rows forming discontinuous tangential layers, the crystalliferous phloem fibers often in a single discontinuous tangential layer and the stone cells dispersed in rangential layer of phloem parenchyma. The developmental process of crystalliferous phloem fibers is as follows: initial cells appeared in the end of April and were well differentiated in the first week of May. Some crystals were deposited in the primary wall, while others were free in the cell. At the end of May, the secondary wall of most crysalliferous phloem fibers started to be thickened. With the thickening of the secondary wall, all the crystals were embedded in the wall from June to August From the end of September to the early days of October, the crystalliferous phloem fibers reached their full maturation. It is shown by microchemical identification and EDAX analysis that the crystals embedded in the wail of crystalliferous phloem fibers are calcium oxalate crystals.  相似文献   

4.
REALLY INTERESTING NEW GENE (RING) proteins play important roles in the regulation of many processes by recognizing target proteins for ubiquitination. Previously, we have shown that the expression of PtaRHE1, encoding a Populus tremula × Populus alba RING‐H2 protein with E3 ubiquitin ligase activity, is associated with tissues undergoing secondary growth. To further elucidate the role of PtaRHE1 in vascular tissues, we have undertaken a reverse genetic analysis in poplar. Within stem secondary vascular tissues, PtaRHE1 and its corresponding protein are expressed predominantly in the phloem. The downregulation of PtaRHE1 in poplar by artificial miRNA triggers alterations in phloem fibre patterning, characterized by an increased portion of secondary phloem fibres that have a reduced cell wall thickness and a change in lignin composition, with lower levels of syringyl units as compared with wild‐type plants. Following an RNA‐seq analysis, a biological network involving hormone stress signalling, as well as developmental processes, could be delineated. Several candidate genes possibly associated with the altered phloem fibre phenotype observed in amiRPtaRHE1 poplar were identified. Altogether, our data suggest a regulatory role for PtaRHE1 in secondary phloem fibre development.  相似文献   

5.
In extraxylary tissues of the stem Gnetum gnemon produces gelatinous fibers that can also function as reaction or tension fibers. These gelatinous fibers occur in all axes in the outer cortex and in displaced axes progressively in the middle and inner cortex and finally in the secondary phloem. Early cell differentiation in the cortex produces initials of laticifers that are unique in gymnosperms. Subsequently narrow fibers differentiate from cells that undergo both extensive passive elongation, as a result of internodal elongation, together with their active apical intrusive growth. Outer fibers always complete secondary wall development and become an important mechanical component of stems. Differentiation of fiber initials continues in the middle and inner cortex, but secondary wall formation can only be determined by a gravimorphic stimulus that produces eccentric development of fibers. Further eccentric development of fibers then continues in the outer secondary phloem from dedifferentiated phloem parenchyma cells that initially undergo extensive intrusive growth. All such cells have characteristic features of tension fibers of angiosperms. They exhibit a pronounced purely cellulosic innermost layer of the secondary wall (Sg layer). In addition, fiber initials are coenocytic, including up to eight nuclei that become distributed uniformly throughout the length of the cell. Mature macerated fibers are markedly brittle, making accurate length measurements difficult. Although cytologically uniform, these fibers thus originate from two kinds of initial (primary and secondary). They also differ in their response to a gravimorphic stimulus determined by their times of inception and their eccentric location. These cells show a suite of positional and gravimorphic responses that illustrate the complexity of plant cell differentiation.  相似文献   

6.
Summary Early responses of legume roots toRhizobium inoculation include new cell wall synthesis and induction of some putative wall protein genes. Although the predicted amino acid sequences of several early nodulins indicate that they encode proline-rich proteins (PRPs), the proteins have been neither isolated nor has their presence been demonstrated in cell walls. We have used polyclonal antibodies against PRP2 from soybean to identify and localize proline-rich proteins in pea nodules. On immunoblots, several PRPs were detected, ranging from less than 20 kDa to 110 kDa. Immunocytochemistry revealed that tissues of the vascular cylinder contained abundant PRPs, particularly in the secondary cell walls of xylem elements and phloem fibers. PRPs were also found within the primary wall of the nodule endodermis and within Casparian strips of the vascular endodermis. Of symbiotic importance, PRPs were a prominent component of the infection thread matrix in newly infected root cells and in nodules. PRPs were also secreted by cells in the uninfected nodule parenchyma, where they were found occluding intercellular spaces outside the middle lamella. Despite structural conservation among members of this class of cell wall proteins, PRPs were targeted to distinct layers of the extracellular matrix dependent upon cell type, and may thus play separate roles in the biology of plant cells. The putative functions and the potential for interactions between PRPs and other wall polymers are discussed.Abbreviations DTT dithiothreitol - EDTA ethylenediamine tetraacetate - GRP glycine-rich protein - PCR polymerase chain reaction - PGA polygalacturonic acid - PMSF phenylmethylsulfonyl fluoride - PRP proline-rich protein - SDS-PAGE sodium dodecylsulfate-polyacrylamide gel electrophoresis - Tris tris(hydroxylmethyl) aminomethane - Tween 20 polyoxyethylene sorbitan monolaurate Dedicated to the memory of Professor John G. Torrey  相似文献   

7.
8.
Intrusive growth is a type of cell elongation when the rate of its longitudinal growth is higher than that of surrounding cells; therefore, these cells intrude between the neighboring cells penetrating the middle lamella. The review considers the classical example of intrusive growth, e.g., elongation of sclerenchyma fibers when the cells achieve the length of several centimeters. We sum the published results of investigations of plant fiber intrusive growth and present some features of intrusive growth characterized by the authors for flax (Linum usitatissimum L.) and hemp (Cannabis sativa L.) fibers. The following characteristics of intrusive growth are considered: its rate and duration, relationship with the growth rate of surrounding cells, the type of cell elongation, peculiarities of the fiber primary cell wall structure, fibers as multinucleate cells, and also the control of intrusive growth. Genes, which expression is sharply reduced at suppression of intrusive growth, are also considered. Arguments for separation of cell elongation and secondary cell wall formation in phloem fibers and also data indicating diffuse type of cell enlargement during intrusive growth are presented.  相似文献   

9.
 以辽东栎(Quercus liaotungensis)的13年生幼树为材料,分别培养在大气CO2浓度加倍(700μl·L-1)与对照(350μl·L-1)的开顶式熏气室中,研究CO2浓度升高对其茎次生木质部和次生韧皮部结构的影响。结果表明:经CO2浓度加倍处理的两个生长季内,辽东栎的年轮宽度明显增加,为对照的300%~370%,其中晚材宽度的增加更为显著,为对照的750%~830%。另外,晚材中导管的密度和径向直径分别比对照增加50%和20%;木纤维细胞的比例约为对照的170%。但早材的导管分子和木纤维细胞与对照相比均无显著变化。在CO2浓度加倍条件下,辽东栎的次生韧皮部中含晶韧皮薄壁细胞的数目,每条韧皮纤维切向带中韧皮纤维细胞的数目,以及韧皮纤维长度均有显著增加(p≤0.05)。相反地,韧皮纤维细胞的直径和筛管分子长度却无明显变化。值得提出的是,在CO2浓度加倍的条件下,次生韧皮部的宽度、筛管分子的直径、以及每年形成的韧皮部细胞总数分别为对照的82%、87%和80%。综上所述,大气CO2浓度加倍对辽东栎次生木质部的生长发育具明显的正效应,而对次生韧皮部的细胞总数与筛管分子的影响则呈负效应。  相似文献   

10.

Background  

Bast fibres from the phloem tissues of flax are scientifically interesting and economically useful due in part to a dynamic system of secondary cell wall deposition. To better understand the molecular mechanisms underlying the process of cell wall development in flax, we extracted proteins from individually dissected phloem fibres (i.e. individual cells) at an early stage of secondary cell wall development, and compared these extracts to protein extracts from surrounding, non-fibre cells of the cortex, using fluorescent (DiGE) labels and 2D-gel electrophoresis, with identities assigned to some proteins by mass spectrometry.  相似文献   

11.
Comparative localization of three classes of cell wall proteins.   总被引:15,自引:1,他引:14  
The localization of the cell wall proline-rich proteins (PRPs), and the gene expression of the cell wall glycine-rich proteins (GRPs) and the hydroxyproline-rich glycoproteins (HRGPs) were examined in several dicot species. The PRPs are accumulated in the corner walls of the cortex where several cells are joined together and in the protoxylem cell walls of 3-day-old soybean root. In 1-month-old soybean plants, the PRPs are specifically deposited in xylem vessel elements of the young stem, and they are accumulated in both phloem fibers and xylem vessel elements and fibers of the older stem. Likewise, the PRPs are localized in xylem vessel elements and fibers in tomato, petunia, potato and tobacco stems. They are also found in outer and inner phloem fiber cell walls of tomato stem and in outer phloem fiber cell walls of petunia stem. The gene expression of the HRGPs and the GRPs is developmentally regulated in tomato, petunia and tobacco stems. HRGP mRNAs are abundant in outer and inner phloem regions, while GRP mRNAs are present mostly in primary xylem and in the cambium region. Immunocytochemical localization showed that the GRPs have a localization pattern similar to that of the PRPs in tomato, petunia and tobacco stems.  相似文献   

12.
The review sums data indicating that, in many plant fibers, the secondary cell wall contains so-called gelatinous layers of peculiar structure along with those of common (xylan) structure. Sometimes these gelatinous layers comprise the main bulk of the cell wall. Key characteristics of gelatinous cell wall are presented and compared with those of classic xylan-type cell wall. The process of gelatinous cell wall formation is considered in detail for flax phloem fibers; several characteristic features of this process were revealed: intense rearrangement of already deposited cell-wall layers, unusual dynamics of Golgi vesicles, the occurrence of the stage-specific polysaccharide with specific properties, high activity of β-galactosidase, and the presence of substantial amount of free galactose. Similarity and differences in the gelatinous cell wall formation in the fibers of various plant species are discussed.  相似文献   

13.
14.
Changes in stem anatomy with radial position and height were studied for the arborescent palms Welfia georgii, Iriartea gigantea, Socratea durissima, Euterpe macrospadix, Prestoea decurrens, and Cryosophila albida. Vascular bundles are concentrated toward the stem periphery and peripheral bundles contain more fibers than central bundles. Expansion and cell wall thickening of fibers within vascular bundles continues throughout the life of a palm, even in the oldest tissue. Within individual vascular bundles, the fibers nearest the phloem expand first and fiber cell walls become heavily thickened. A front of expanding fibers moves outward from the phloem until all fibers within a vascular bundle are fully expanded and have thick cell walls. Peripheral vascular bundles differentiate first and inner bundles later. In the stem beneath the crown, vascular bundles and ground tissue cells show little or no size increase, but marked cell wall thickening during development for Welfia georgii. Beneath the crown, diameters of peripheral vascular bundles increase more than twofold for Iriartea gigantea, while diameters of central bundles do not increase. In Iriartea stems, ground tissue cells at the periphery elongate to accommodate expanding vascular bundles and cell walls become thickened to a lesser degree than in fibers; central ground tissue cells elongate markedly, but cell walls do not become thickened; and large lacunae form between central parenchyma cells. For Iriartea, Socratea, and Euterpe, sustained cell expansion results in limited, but significant increases in stem diameter. For all species, sustained cell wall thickening results in dramatic increases in stem stiffness and strength.  相似文献   

15.
Plant fibers represent specialized cells that perform a mechanical function. Their development includes the following phases, typical for the most plant cells: anlage, extension growth, specialization, senescence, and apoptosis. Ultrastructural analysis of these cells has been carried out at the late phases of their development (senescence and apoptosis) using flax phloem fibers, a classical object for the analysis of sclerenchyma fiber formation. The results of the performed analysis show that flax fiber protoplasts remain viable until the end ofa vegetation season. The ultrastructural analysis of flax phloem fibers has not revealed any typical apoptosis manifestations. Gradual degradation of the cytoplasm starts during the active thickening of a secondary cell wall and manifests via the intensification of autolytic processes, causing a partial loss of cell content. The final stage represents the breaking of tonoplast integrity. The obtained data allow us to suppose that the apoptosis of flax fibers occurs during their senescence, and its program is similar to the cell death program realized in the xylem fibers of woody plants.  相似文献   

16.
17.
18.
当归根显微结构及其根腐病真菌分布研究   总被引:1,自引:0,他引:1  
利用徒手切片、石蜡切片和超薄切片及显微摄像的方法,对当归根的显微结构及根腐病致病真菌的分布进行了研究。结果表明:当归的根由周皮和次生维管组织两部分组成,周皮由外向内依次分为木栓层、木栓形成层、栓内层;次生韧皮部占根径的比例在60%以上,主要成分包括筛胞、韧皮薄壁细胞、韧皮纤维和分泌道,薄壁细胞富含淀粉粒等营养物质;次生木质部由导管、木薄壁细胞和木射线组成,木质部呈多元形,木射线和韧皮射线明显。在根的周皮细胞和中柱中均有真菌分布,说明真菌由木栓层、木栓形成层、栓内层依次向里侵入到韧皮薄壁细胞,在薄壁细胞内定殖并形成菌丝结或团块状结构,进而扩展成一定的侵染区域;真菌不仅侵染周皮和韧皮部,而且还进一步侵染木质部并破坏导管。此外,研究还发现,淀粉粒是真菌定殖的主要场所,真菌穿透或缠绕在淀粉粒上,并利用其营养不断地生长与繁殖。  相似文献   

19.

Key message

The morphology and development of sumac phloem sclereid were observed, sclereid was developed from phloem parenchyma and lignin was deposited in the cell wall of parenchyma and formation sclereid.

Abstract

Sumac [Toxicodendron vernicifluum (Stokes) F.A.Barkley] is a unique economic tree species in China. Raw lacquer is the sap flowing from the phloem of sumac. Stone cell clusters exist in the secondary phloem of sumac stem. In the present study, the morphology and development of stone cell clusters in sumac phloem were observed with optical microscope and transmission electron microscope. The distribution of lignin in the composition molecules of secondary phloem was observed with histochemistry method and fluorescence microscope. The results showed that phloem stone cells of sumac were developed from phloem parenchyma cells, and that lignin was deposited in layers in the cell wall of phloem parenchyma cells which cause the formation of stone cell clusters and which have the secondary wall. Studies on the ultrastructure of stone cells indicated that there was an obvious stratification and pits during the process of lignin deposition.  相似文献   

20.
Plant fibers represent specialized cells that perform a mechanical function. Their development includes the following phases, typical for the most plant cells: determination, extension growth, specialization, senescence, and death. Ultrastructural analysis of these cells has been carried out at the late phases of their development (senescence and dying off) using flax phloem fibers, a classical object for the analysis of sclerenchyma fiber formation. The results of the performed analysis show that flax fiber protoplasts remain viable until the end of a vegetation season. The ultrastructural analysis of flax phloem fibers has not revealed any typical apoptosis features. Gradual degradation of the cytoplasm starts during the active thickening of a secondary cell wall and occurs via the intensification of autolytic processes, causing a partial loss of cell content. The rupture of tonoplast is the final stage. The obtained data allow us to suppose that the protoplast dying off occurs during process of the senescence, and its program is similar to the cell death program realized in the xylem fibers of woody plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号