首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
The grey mould fungus Botrytis cinerea produces two major phytotoxins, the sesquiterpene botrydial, for which the biosynthesis gene cluster has been characterized previously, and the polyketide botcinic acid. We have identified two polyketide synthase (PKS) encoding genes, BcPKS6 and BcPKS9, that are up-regulated during tomato leaf infection. Gene inactivation and analysis of the secondary metabolite spectra of several independent mutants demonstrated that both BcPKS6 and BcPKS9 are key enzymes for botcinic acid biosynthesis. We showed that BcPKS6 and BcPKS9 genes, renamed BcBOA6 and BcBO9 (for B. cinerea botcinic acid biosynthesis), are located at different genomic loci, each being adjacent to other putative botcinic acid biosynthetic genes, named BcBOA1 to BcBOA17. Putative orthologues of BcBOA genes are present in the closely related fungus Sclerotinia sclerotiorum, but the cluster organization is not conserved between the two species. As for the botrydial biosynthesis genes, the expression of BcBOA genes is co-regulated by the Gα subunit BCG1 during both in vitro and in planta growth. The loss of botcinic acid production does not affect virulence on bean and tomato leaves. However, double mutants that do not produce botcinic acid or botrydial (bcpks6Δbcbot2Δ) exhibit markedly reduced virulence. Hence, a redundant role of botrydial and botcinic acid in the virulence of B. cinerea has been demonstrated.  相似文献   

2.
Botrydial is produced in plant tissues infected by Botrytis cinerea   总被引:7,自引:0,他引:7  
The fungal metabolite botrydial was detected for the first time in ripe fruits of sweet pepper (Capsicum annuum) wound-inoculated with conidial suspensions of Botrytis cinerea and also in leaves of Phaseolus vulgaris and Arabidopsis thaliana inoculated without wounding. This phytotoxin was produced in soft rot regions of the infection. In C. annuum, the most aggressive isolate produced the highest botrydial concentrations in planta. The levels of botrydial produced by this isolate did not correlate with the reported relative susceptibilities of four P. vulgaris genotypes. The results suggest that botrydial is a pathogenicity factor for this fungus, but not a primary determinant of pathogenicity.  相似文献   

3.
Botrytis cinerea, as a necrotrophic fungus, kills host tissues and feeds on the remains. This fungus is able to induce the hypersensitive response (HR) on its hosts, thus taking advantage on the host's defense machinery for generating necrotic tissues. However, the identity of HR effectors produced by B. cinerea is not clear. The aim of this work was to determine whether botrydial, a phytotoxic sesquiterpene produced by B. cinerea, is able to induce the HR on plant hosts, using Arabidopsis thaliana as a model. Botrydial induced the expression of the HR marker HSR3, callose deposition, and the accumulation of reactive oxygen species and phenolic compounds. Botrydial also induced the expression of PR1 and PDF1.2, two pathogenesis-related proteins involved in defense responses regulated by salicylic acid (SA) and jasmonic acid (JA), respectively. A. thaliana and tobacco plants defective in SA signaling were more resistant to botrydial than wild-type plants, as opposed to A. thaliana plants defective in JA signaling, which were more sensitive. It can be concluded that botrydial induces the HR on its hosts and its effects are modulated by host signaling pathways mediated by SA and JA.  相似文献   

4.
Lipid peroxidation may be initiated either by lipoxygenases or by reactive oxygen species (ROS). Enzymatic oxidation of alpha-linolenate can result in the biosynthesis of cyclic oxylipins of the jasmonate type while free-radical-catalyzed oxidation of alpha-linolenate may yield several classes of cyclic oxylipins termed phytoprostanes in vivo. Previously, we have shown that one of these classes, the E1-phytoprostanes (PPE1), occurs ubiquitously in plants. In this work, it is shown that PPE1 are converted to novel cyclopentenone A1- and B1-phytoprostanes (PPA1 and PPB1) in planta. Enhanced formation of PPE1, PPA1, and PPB1 is observed after peroxide stress in tobacco cell cultures as well as after infection of tomato plants with a necrotrophic fungus, Botrytis cinerea. PPA1 and PPB1 display powerful biologic activities including activation of mitogen-activated protein kinase (MAPK) and induction of glutathione-S-transferase (GST), defense genes, and phytoalexins. Data collected so far infer that enhanced phytoprostane formation is a general consequence of oxidative stress in plants. We propose that phytoprostanes are components of an oxidant-injury-sensing, archaic signaling system that serves to induce several plant defense mechanisms.  相似文献   

5.
Klose J  Kronstad JW 《Eukaryotic cell》2006,5(12):2047-2061
The transition from yeast-like to filamentous growth in the biotrophic fungal phytopathogen Ustilago maydis is a crucial event for pathogenesis. Previously, we showed that fatty acids induce filamentation in U. maydis and that the resulting hyphal cells resemble the infectious filaments observed in planta. To explore the potential metabolic role of lipids in the morphological transition and in pathogenic development in host tissue, we deleted the mfe2 gene encoding the multifunctional enzyme that catalyzes the second and third reactions in beta-oxidation of fatty acids in peroxisomes. The growth of the strains defective in mfe2 was attenuated on long-chain fatty acids and abolished on very-long-chain fatty acids. The mfe2 gene was not generally required for the production of filaments during mating in vitro, but loss of the gene blocked extensive proliferation of fungal filaments in planta. Consistent with this observation, mfe2 mutants exhibited significantly reduced virulence in that only 27% of infected seedlings produced tumors compared to 88% tumor production upon infection by wild-type strains. Similarly, a defect in virulence was observed in developing ears upon infection of mature maize plants. Specifically, the absence of the mfe2 gene delayed the development of teliospores within mature tumor tissue. Overall, these results indicate that the ability to utilize host lipids contributes to the pathogenic development of U. maydis.  相似文献   

6.
7.
Infection of host plants by Pseudomonas solanacerum results in wilting, which is thought to be due largely to the occlusion of xylem vessels by the P. solanacearum extracellular polysaccharide (EPS) that primarily consists of N-acetylgalactosamine (GalNAc). By means of Tn3 mutagenesis, we identified a 6.5-kb gene cluster that contains five complementation units required for EPS production and virulence in this bacterium. There was positive correlation between the amount of EPS produced in culture and (i) in planta growth and (ii) virulence. Based on analysis of beta-glucuronidase-gene fusions, these genes are expressed both in broth cultures and in planta and may be constitutive. Both wild-type and mutant strains contained similar amounts of UDP-GalNAc, the predicted primary substrate for EPS synthesis. Thus, the EPS mutants we obtained should be useful in the analysis of steps in the assembly of the polysaccharide and how this process is related to virulence.  相似文献   

8.
The Galpha subunit BCG1 plays an important role during the infection of host plants by Botrytis cinerea. Delta bcg1 mutants are able to conidiate, penetrate host leaves, and produce small primary lesions. However, in contrast to the wild type, the mutants completely stop invasion of plant tissue at this stage; secondary lesions have never been observed. Suppression subtractive hybridization (SSH) was used to identify fungal genes whose expression on the host plant is specifically affected in bcg1 mutants. Among the 22 differentially expressed genes, we found those which were predicted to encode proteases, enzymes involved in secondary metabolism, and others encoding cell wall-degrading enzymes. All these genes are highly expressed during infection in the wild type but not in the mutant. However, the genes are expressed in both the wild type and the mutant under certain conditions in vitro. Most of the BCG1-controlled genes are still expressed in adenylate cyclase (bac) mutants in planta, suggesting that BCG1 is involved in at least one additional signaling cascade in addition to the cAMP-depending pathway. In a second SSH approach, 1,500 clones were screened for those that are specifically induced by the wild type during the infection of bean leaves. Of the 22 BCG1-controlled genes, 11 also were found in the in planta SSH library. Therefore, SSH technology can be successfully applied to identify target genes of signaling pathways and differentially expressed genes in planta.  相似文献   

9.
10.
Putative virulence factors of Botrytis cinerea acting as a wound pathogen   总被引:4,自引:0,他引:4  
Abstract The grey mold fungus, Botrytis cinerea , is a wound pathogen of worldwide distribution, and causes rots of almost all fruits and vegetables. The fungus can also penetrate directly from appressoria to cause severe losses to growers of flowers. B. cinerea secretes a number of inducible attack enzymes which can degrade host cell walls to widen the infection, including β-glucosidase, pectin methylesterase, the polygalacturonases, and aspartate proteinase; laccase and benzyl alcohol oxidase appear to have roles of detoxifying compounds derived from the host during pathogenesis, a function that we believe enhances the virulence of the pathogen. With additional research, several oxidases may also become a part of the virulence group. Much more work is needed, in particular the analysis of mutants, to assign formally the roles suggested here.  相似文献   

11.
Milling A  Babujee L  Allen C 《PloS one》2011,6(1):e15853
Ralstonia solanacearum, which causes bacterial wilt of diverse plants, produces copious extracellular polysaccharide (EPS), a major virulence factor. The function of EPS in wilt disease is uncertain. Leading hypotheses are that EPS physically obstructs plant water transport, or that EPS cloaks the bacterium from host plant recognition and subsequent defense. Tomato plants infected with R. solanacearum race 3 biovar 2 strain UW551 and tropical strain GMI1000 upregulated genes in both the ethylene (ET) and salicylic acid (SA) defense signal transduction pathways. The horizontally wilt-resistant tomato line Hawaii7996 activated expression of these defense genes faster and to a greater degree in response to R. solanacearum infection than did susceptible cultivar Bonny Best. However, EPS played different roles in resistant and susceptible host responses to R. solanacearum. In susceptible plants the wild-type and eps(-) mutant strains induced generally similar defense responses. But in resistant Hawaii7996 tomato plants, the wild-type pathogens induced significantly greater defense responses than the eps(-) mutants, suggesting that the resistant host recognizes R. solanacearum EPS. Consistent with this idea, purified EPS triggered significant SA pathway defense gene expression in resistant, but not in susceptible, tomato plants. In addition, the eps(-) mutant triggered noticeably less production of defense-associated reactive oxygen species in resistant tomato stems and leaves, despite attaining similar cell densities in planta. Collectively, these data suggest that bacterial wilt-resistant plants can specifically recognize EPS from R. solanacearum.  相似文献   

12.
Botrydial and dihidrobotrydial are two characteristic metabolites of the phytopathogenic fungus Botrytis cinerea , which are involved in the development of necrotic lesions on grapevine and tobacco. Patchoulol and globulol, two natural products which are analogues to precursors of botrydial and dihidrobotrydial, were tested on 10 B. cinerea strains which were isolated from different hosts and varied in aggressiveness on grapevine leaves. Mycelial growth of all strains was prevented when they were grown on either patchoulol- or globulol-amended malt agar media (200  μ g/ μ l). Each strain displayed a specific response pattern to those products, according to the high variability previously described for this species. Furthermore, strains were different from one another with regard to their level of aggressiveness against leaves detached from sherry grapevine vineyards.  相似文献   

13.
Licensed to kill: the lifestyle of a necrotrophic plant pathogen   总被引:5,自引:0,他引:5  
Necrotrophic plant pathogens have received an increasing amount of attention over the past decade. Initially considered to invade their hosts in a rather unsophisticated manner, necrotrophs are now known to use subtle mechanisms to subdue host plants. The gray mould pathogen Botrytis cinerea is one of the most comprehensively studied necrotrophic fungal plant pathogens. The genome sequences of two strains have been determined. Targeted mutagenesis studies are unraveling the roles played in the infection process by a variety of B. cinerea genes that are required for penetration, host cell killing, plant tissue decomposition or signaling. Our increasing understanding of the tools used by a necrotrophic fungal pathogen to invade plants will be instrumental to designing rational strategies for disease control.  相似文献   

14.
《Fungal biology》2020,124(1):54-64
The role of the sesquiterpene botrydial in the interaction of the phytopathogenic fungus Botrytis cinerea and plant-associated bacteria was analyzed. From a collection of soil and phyllospheric bacteria, nine strains sensitive to growth-inhibition by B. cinerea were identified. B. cinerea mutants unable to produce botrydial caused no bacterial inhibition, thus demonstrating the inhibitory role of botrydial. A taxonomic analysis showed that these bacteria corresponded to different Bacillus species (six strains), Pseudomonas yamanorum (two strains) and Erwinia aphidicola (one strain). Inoculation of WT and botrydial non-producing mutants of B. cinerea along with Bacillus amyloliquefaciens strain MEP218 in soil demonstrated that both microorganisms exert reciprocal inhibitory effects; the inhibition caused by B. cinerea being dependent on botrydial production. Moreover, botrydial production was modulated by the presence of B. amyloliquefaciens MEP218 in confrontation assays in vitro. Purified botrydial in turn, inhibited growth of Bacillus strains in vitro and cyclic lipopeptide (surfactin) production by B. amyloliquefaciens MEP218. As a whole, results demonstrate that botrydial confers B. cinerea the ability to inhibit potential biocontrol bacteria of the genus Bacillus. We propose that resistance to botrydial could be used as an additional criterion for the selection of biocontrol agents of plant diseases caused by B. cinerea.  相似文献   

15.
Nitric oxide (NO) production by Botrytis cinerea and the effect of externally supplied NO were studied during saprophytic growth and plant infection. Fluorescence analysis with 4,5-diaminofluorescein diacetate and electrochemical studies were conducted in vitro between 4 and 20 h of incubation and in planta between 15 and 75 h post-inoculation. The production of NO by B. cinerea in vitro was detected inside the germinating spores and mycelium and in the surrounding medium. In planta production of NO showed a large variation that was dependent on the host plant and developmental stage of the infection. The induced production of NO was detected from 16 h of in vitro incubation in response to externally added NO. The production of NO by B. cinerea is probably modulated to promote fungal colonization of the plant tissue. The production of NO which diffuses outside the fungal cells and the induction of NO production by exogenous NO open up the possibility of NO cross-talk between the fungus and the plant. Finally, the existence of an NO concentration threshold is proposed, which may increase or reduce the plant defence against necrotrophic fungal pathogens.  相似文献   

16.
Although Pseudomonas aeruginosa is an opportunistic pathogen that does not often naturally infect alternate hosts, such as plants, the plant-P. aeruginosa model has become a widely recognized system for identifying new virulence determinants and studying the pathogenesis of the organism. Here, we examine how both host factors and P. aeruginosa PAO1 gene expression are affected in planta after infiltration into incompatible and compatible cultivars of tobacco (Nicotiana tabacum L.). N. tabacum has a resistance gene (N) against tobacco mosaic virus, and although resistance to PAO1 infection is correlated with the presence of a dominant N gene, our data suggest that it is not a factor in resistance against PAO1. We did observe that the resistant tobacco cultivar had higher basal levels of salicylic acid and a stronger salicylic acid response upon infiltration of PAO1. Salicylic acid acts as a signal to activate defense responses in plants, limiting the spread of the pathogen and preventing access to nutrients. It has also been shown to have direct virulence-modulating effects on P. aeruginosa. We also examined host effects on the pathogen by analyzing global gene expression profiles of bacteria removed from the intracellular fluid of the two plant hosts. We discovered that the availability of micronutrients, particularly sulfate and phosphates, is important for in planta pathogenesis and that the amounts of these nutrients made available to the bacteria may in turn have an effect on virulence gene expression. Indeed, there are several reports suggesting that P. aeruginosa virulence is influenced in mammalian hosts by the availability of micronutrients, such as iron and nitrogen, and by levels of O2.  相似文献   

17.
18.
Until now, no data are available on the outer membrane (OM) proteome of Erwinia amylovora, a Gram‐negative plant pathogen, causing fire blight in most of the members of the Rosaceae family. Since the OM forms the interface between the bacterial cell and its environment it is in direct contact with the host. Additionally, the type III secretion system, embedded in the OM, is a pathogenicity factor of E. amylovora. To assess the influence of the OM composition and the secretion behavior on virulence, a 2D‐DIGE analysis and gene expression profiling were performed on a high and lower virulent strain, both in vitro and in planta. Proteome data showed an increase in flagellin for the lower virulent strain in vitro, whereas, in planta several interesting proteins were identified as being differently expressed between both the strains. Further, gene expression of nearly all type III secreted effectors was elevated for the higher virulent strain, both in vitro and in planta. As a first, we report that several characteristics of virulence can be assigned to the OM proteome. Moreover, we demonstrate that secreted proteins prove to be the important factors determining differences in virulence between the strains, otherwise regarded as homogeneous on a genome level.  相似文献   

19.
The phytopathogen Ralstonia solanacearum has over 5000 genes, many of which probably facilitate bacterial wilt disease development. Using in vivo expression technology (IVET), we screened a library of 133 200 R. solanacearum strain K60 promoter fusions and isolated approximately 900 fusions expressed during bacterial growth in tomato plants. Sequence analysis of 307 fusions revealed 153 unique in planta-expressed (ipx) genes. These genes included seven previously identified virulence genes (pehR, vsrB, vsrD, rpoS, hrcC, pme and gspK) as well as seven additional putative virulence factors. A significant number of ipx genes may reflect adaptation to the host xylem environment; 19.6%ipx genes are predicted to encode proteins with metabolic and/or transport functions, and 9.8%ipx genes encode proteins possibly involved in stress responses. Many ipx genes (18%) encode putative transmembrane proteins. A majority of ipx genes isolated encode proteins of unknown function, and 13% were unique to R. solanacearum. The ipx genes were variably induced in planta; beta-glucuronidase reporter gene expression analysis of a subset of 44 ipx fusions revealed that in planta expression levels were between two- and 37-fold higher than in culture. The expression of many ipx genes was subject to known R. solanacearum virulence regulators. Of 32 fusions tested, 28 were affected by at least one virulence regulator; several fusions were controlled by multiple regulators. Two ipx fusion strains isolated in this screen were reduced in virulence on tomato, indicating that gene(s) important for bacterial wilt pathogenesis were interrupted by the IVET insertion; mutations in other ipx genes are necessary to determine their roles in virulence and in planta growth. Collectively, this profile of ipx genes suggests that in its host, R. solanacearum confronts and overcomes a stressful and nutrient-poor environment.  相似文献   

20.
Fournier E  Giraud T  Albertini C  Brygoo Y 《Mycologia》2005,97(6):1251-1267
In micro-organisms biodiversity is often underestimated because relevant criteria for recognition of distinct evolutionary units are lacking. Phylogenetic approaches have been proved the most useful in fungi to address this issue. Botrytis cinerea, a generalist fungus causing gray mold, illustrates this problem. It long has been thought to be a single variable species. Recent population genetics studies have shown that B. cinerea is a species complex. However conflicting partitions were proposed. To identify the most relevant partitions within the B. cinerea complex we used a multiple-gene genealogies approach. We sequenced portions of four nuclear genes, of which genealogies congruently clustered into two well supported groups corresponding to Groups I and II previously described, indicating that they represent phylogenetic species. Estimates of migration rates and genetic differentiation showed that these groups had been isolated for a long time, without detectable gene flow. This was confirmed by the high number of polymorphic sites fixed within each group. The genetic diversity was lower within Group I, as revealed by DNA polymorphism and vegetative incompatibility tests. Groups I and II exhibited phenotypic differences in their phenology, host range, size of asexual spores and vegetative compatibility. All these morphological and molecular aspects suggest that B. cinerea Groups I and II may be different cryptic species, isolated for a long time. Phylogenies and molecular analyzes of variance revealed no genetic structure according to the other suggested partitions for the B. cinerea complex (i.e., among host plants, between strains with and without transposable elements, nor between strains responsible for noble rot and gray mold. This suggests that recombination regularly occurs, or occurred until recently, within B. cinerea Group II. This also was supported by recombination rates at each locus. Multiple-gene genealogies showed their utility by providing a relevant partition criterion for the B. cinerea complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号