首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1,5-Anhydro-d-fructose (1,5AnFru) is a monoketosaccharide that can be prepared enzymatically from starch by α-1,4-glucan lyase or chemically from d-glucose or d-fructose in a few steps with high yields. The formed 1,5AnFru can be derivatized both enzymatically and chemically to interesting new carbohydrate derivatives, some with biological activities. For example dehydratases, isomerases and reductases can convert 1,5AnFru to enolones (as Ascopyrone P) and sugar alcohols with antimicrobial and antioxidant properties, while chemical modifications can give similar compounds as well as natural products like 1-deoxymannonojirimycin and Clavulazine. 1,5AnFru disaccharides (glycosyl 1→4 1,5AnFru) have been prepared as well as glycosyl 1→4 1,5-anhydro-d-tagatose.  相似文献   

2.
The naturally occurring antioxidant Ascopyrone P (1,5-anhydro-4-deoxy-D-glycero-hex-1-en-3-ulose, 1) was prepared from the rare sugar 1,5-anhydro-D-fructose (AF, 3) in three steps in an overall yield of 36%. Thus, acetylation of 3 afforded the enolone 3,6-di-O-acetyl-1,5-anhydro-4-deoxy-D-glycero-hex-3-en-2-ulopyranose (4), which could be isomerised to 2,6-di-O-acetyl-1,5-anhydro-4-deoxy-D-glycero-hex-1-ene-3-ulose (6). Deacetylation of 6 under mild conditions gave crystalline Ascopyrone P (1).  相似文献   

3.
Four novel disaccharides of glycosylated 1,5-anhydro-d-ketoses have been prepared: 1,5-anhydro-4-O-β-d-glucopyranosyl-d-fructose, 1,5-anhydro-4-O-β-d-galactopyranosyl-d-fructose, 1,5-anhydro-4-O-β-d-glucopyranosyl-d-tagatose, and 1,5-anhydro-4-O-β-d-galactopyranosyl-d-tagatose. The common intermediate, 1,5-anhydro-2,3-O-isopropylidene-β-d-fructopyranose, was prepared from d-fructose and was converted into the d-tagatose derivative by oxidation followed by stereoselective reduction to the 4-epimer. The anhydroketoses thus prepared were glycosylated and deprotected to give the disaccharides.  相似文献   

4.
1,5-Anhydro-d-fructose was efficiently prepared from d-fructose via regiospecific 1,5-anhydro ring formation of 2,3-O-isopropylidene-1-O-methyl(tolyl)sulfonyl-d-fructopyranose and subsequent deprotection.  相似文献   

5.
A novel disaccharide, glucosyl 1,5-anhydro-D-fructose (1,5-anhydro-3-O-alpha-glucopyranosyl-D-fructose, GAF) was enzymatically prepared from 1,5-anhydro-D-fructose (1,5-AF) and cyclomaltoheptaose (beta-cyclodextrin). Cyclodextrin glucanotransferase transferred various sizes of maltooligosaccharide to 1,5-AF. Glucoamylase digested the maltooligosyl chain of the products to a glucosyl residue giving a final product, GAF. An NMR analysis of GAF elucidated that the glucose residue was linked to C-3 of the 1,5-AF residue with an ether linkage. Reactivity on the aminocarbonyl reaction of GAF with bovine serum albumin was lower than that of 1,5-AF, but was higher than that of glucose.  相似文献   

6.
Lipopolysaccharide (LPS) stimulates macrophages by activating NF-κB, which contributes to the release of tumor necrosis factor (TNF)-α and interleukin (IL)-6. 1,5-anhydro-d-fructose (1,5-AF), a monosaccharide formed from starch and glycogen, exhibits anti-oxidant activity and enhances insulin secretion. This study examined the effects of 1,5-AF on LPS-induced inflammatory reactions and elucidated its molecular mechanisms. Before LPS challenge, mice were pretreated with 1,5-AF (38.5 mg/kg). We found that 1,5-AF pretreatment attenuated cytokine release into the serum, including TNF-α, IL-6 and macrophage chemoattractant protein (MCP)-1. Furthermore, pretreatment with 1,5-AF (500 μg/ml) attenuated cytokine release, and 1,5-AF directly inhibited the nuclear translocalization of the NF-κB p65 subunit in LPS-stimulated murine macrophage-like RAW264.7 cells. This inhibition was responsible for decreased LPS-induced phosphorylation on Ser536 of the NF-κB p65 subunit, which is a posttranslational modification involved in the non-canonical pathway. Collectively, these findings indicate that the anti-inflammatory activity of 1,5-AF occurs via inactivation of NF-κB.  相似文献   

7.
In many organisms, glycogen gives rise to 1,5-anhydro-D-fructose (AF), which is reduced to 1,5-anhydro-D-glucitol (AG). AF reductase, which catalyzes the latter reaction, was purified from pig liver, but mouse ortholog has not yet been reported. In the database, aldo-keto reductase family 1, member E1 (AKR1E1) showed highest homology to pig enzyme. We confirmed that cloned AKR1E1 is mouse ortholog based on enzymatic properties of purified recombinant protein.  相似文献   

8.
Abreu P  Relva A 《Carbohydrate research》2002,337(18):1663-1666
The bark extract of the medicinal plant Detarium microcarpum was analysed for its carbohydrate content by GLC-CIMS. Preparative HPLC of the benzoylated carbohydrate fraction led to the isolation of L-quino-1,5-lactone, D-(-)-bornesitol, D-pinitol, myo-inositol, sucrose, D-glucose, and D-fructose benzoates, which were characterised by NMR spectroscopy experiments.  相似文献   

9.
There is a steadily increasing need to expand sustainable resources, and carbohydrates are anticipated to play an important role in this respect, both for bulk and fine chemical preparation. The enzyme alpha-(1-->4)-glucan lyase degrades starch to 1,5-anhydro-D-fructose. This compound, which has three different functional properties, a prochiral center together with a permanent pyran ring, renders it a potential chiral building block for the synthesis of valuable and potentially biologically active compounds. 1,5-Anhydro-D-fructose is found in natural materials as a degradation product of alpha-(1-->4)-glucans. The occurrence of lyases and the metabolism of 1,5-anhydro-D-fructose are reviewed in the biological part of this article. In the chemical part, the elucidated structure of 1,5-anhydro-D-fructose will be presented together with simple stereoselective conversions into hydroxy/amino 1,5-anhydro hexitols and a nojirimycin analogue. Synthesis of 6-O-acylated derivatives of 1,5-anhydro-D-fructose substituted with long fatty acid residues is carried out using commercially available enzymes. Those reactions lead to compounds with potential emulsifying properties. The use of protected derivatives of 1,5-anhydro-D-fructose for the synthesis of natural products is likewise reviewed. The potential utilization of this chemical building block is far from being exhausted. Since 1,5-anhydro-D-fructose now is accessible in larger amounts through a simple-enzyme catalyzed degradation of starch by alpha-(1-->4)-glucan lyase, the application of 1,5-anhydro-D-fructose may be considered a valuable contribution to the utilization of carbohydrates as the most abundant resource of sustainable raw materials.  相似文献   

10.
11.
α-1,4-Glucan lyases [glycoside hydrolase family (GH) 31] catalyze an elimination reaction to form 1,5-anhydro-d-fructose (AF), while GH31 α-glucosidases normally catalyze a hydrolytic reaction. We determined that a small amount of AF was produced by GH31 Aspergillus niger α-glucosidase from maltooligosaccharides by elimination reaction, likely via an oxocarbenium ion intermediate.  相似文献   

12.
The reaction conditions of galactose oxidase-catalyzed, targeted C-6 oxidation of galactose derivatives were optimized for aldehyde production and to minimize the formation of secondary products. Galactose oxidase, produced in transgenic Pichia pastoris carrying the galactose oxidase gene from Fusarium spp., was used as catalyst, methyl α-d-galactopyranoside as substrate, and reaction medium, temperature, concentration, and combinations of galactose oxidase, catalase, and horseradish peroxidase were used as variables. The reactions were followed by 1H NMR spectroscopy and the main products isolated, characterized, and identified. An optimal combination of all the three enzymes gave aldehyde (methyl α-d-galacto-hexodialdo-1,5-pyranoside) in approximately 90% yield with a substrate concentration of 70 mM in water at 4 °C using air as oxygen source. Oxygen flushing of the reaction mixture was not necessary. The aldehyde existed as a hydrate in water. The main secondary products, a uronic acid (methyl α-d-galactopyranosiduronic acid) and an α,β-unsaturated aldehyde (methyl 4-deoxy-α-d-threo-hex-4-enodialdo-1,5-pyranoside), were observed for the first time to form in parallel. Formation of uronic acid seemed to be the result of impurities in the galactose oxidase preparation. 1H and 13C NMR data of the products are reported for the α,β-unsaturated aldehyde for the first time, and chemical shifts in DMSO-d6 for all the products for the first time. Oxidation of d-raffinose (α-d-galactopyranosyl-(1-6)-α-d-glucopyranosyl-(1-2)-β-d-fructofuranoside) in the same optimum conditions also proceeded well, resulting in approximately 90% yield of the corresponding aldehyde.  相似文献   

13.
The structure of tetra-O-(tert-butyldimethylsilyl)-D-glucono-1,4-lactone made by the silylation of D-glucono-1,5-lactone has been confirmed by single-crystal X-ray analysis.  相似文献   

14.
A multi-gram epoxidation of 3,4,6-tri-O-benzyl-D-glucal and D-galactal with dimethyldioxirane (DMDO) generated in situ from Oxone/acetone in a biphasic system (CH(2)Cl(2)-aqueous NaHCO(3)) resulted in the formation of the corresponding 1,2-anhydrosugars in a 99% yield and 100% selectivity. In a similar way, 3,4,6-tri-O-acetyl-D-glucal afforded a 7:1 mixture of the corresponding gluco and manno derivatives in an 87% overall yield.  相似文献   

15.
An unsaturated derivative, 3,6-di-O-acetyl-1,5-anhydro-4-deoxy-D-glycero-hex-3-enopyranos-2-ulose (3), was obtained via regioselective elimination and acetylation of monohydrated 1,5-anhydro-D-fructose (1) in a single step reaction. High yield (80%) was achieved without any dimeric by-products. Its co-polymerization to saccharide polymers was investigated with different commercial vinyl co-monomers. Co-polymers were obtained and characterized.  相似文献   

16.
3-Acetamido-5-amino-3,5,6-trideoxy-d-glucono-1,5-lactam and 3-acetamido-5-amino-3,5-dideoxy-d-glucono-1,5-lactam were synthesized from corresponding 3-acetamido-3-deoxy-β-d-glucopyranosides in 63% and 35% overall yield, respectively. Acetylation followed by reduction led to the title 3-acetamido-3-deoxy derivatives of both deoxynojirimycin and 1,6-dideoxynojirimycin. The procedure developed is useful for a multi-gram scale.  相似文献   

17.
d-Ribono-1,4-lactone was treated with ethylamine in DMF to afford N-ethyl-d-ribonamide 8a in quantitative yield. Using this reaction procedure, N-butyl, N-hexyl, N-dodecyl, N-benzyl, N-(3-methyl-pyridinyl)-, N-(2-hydroxy-ethyl)-, and N-(2-cyano-ethyl)-d-ribonamides 8b-h were obtained in quantitative yield. Bromination of the amides 8a-e with acetyl bromide in dioxane followed by acetylation gave 2,3,4-tri-O-acetyl-5-bromo-5-deoxy-N-ethyl, N-butyl, N-hexyl, N-dodecyl, and N-benzyl-d-ribonamides 9a-e in 40-54% yields. To obtain 2,3,4-tri-O-acetyl-5-bromo-5-deoxy-N-(3-methyl-pyridinyl)-, N-(2-hydroxy-ethyl)-, and N-(2-cyano-ethyl)-9f-h, the bromination is necessary before the amidation reaction. Treatment of the bromoamides 9a-h with NaH in DMF followed by methanolysis affords N-alkyl-d-ribono-1,5-lactams 12a-h in quantitative yield.  相似文献   

18.
Purified recombinant sorbose dehydrogenase from Sinorhizobium sp. 97507 exhibited high reactivity for 1,5-anhydro-d-glucitol (1,5-AG) and l-sorbose, but little activity for the other sugars or sugar alcohols tested. Kinetic analysis revealed that its catalytic efficiency (kcat/Km) for l-sorbose and 1,5-AG is 1.8 × 102 and 1.5 × 102 s?1·M?1, respectively.  相似文献   

19.
Synthesis of 7-O-galloyl-D-sedoheptulose   总被引:1,自引:0,他引:1  
Xie Y  Zhao Y 《Carbohydrate research》2007,342(11):1510-1513
A facile synthetic approach to 7-O-galloyl-D-sedoheptulose (1), a natural product with notable immunosuppressant activity, was developed. The starting material, 2,7-anhydro-d-sedoheptulose (2), was converted in three steps into 1,3,4,5-tetra-O-benzyl-d-sedoheptulose (5), a key intermediate that allows specific functionalization at C-7 of the sedoheptulpyranose. After regioselective esterification of 5 with 3,4,5-tri-O-benzyl galloyl acid, followed by catalytic debenzylation (Pd-C), 1 was obtained in an overall yield of 60%. The spectroscopic data and TLC behavior of 1 were found to be identical to that of the natural product.  相似文献   

20.
Pseudomonas cichoriiid-tagatose 3-epimerase (P. cichoriid-TE) can efficiently catalyze the epimerization of not only d-tagatose to d-sorbose, but also d-fructose to d-psicose, and is used for the production of d-psicose from d-fructose. The crystal structures of P. cichoriid-TE alone and in complexes with d-tagatose and d-fructose were determined at resolutions of 1.79, 2.28, and 2.06 Å, respectively. A subunit of P. cichoriid-TE adopts a (β/α)8 barrel structure, and a metal ion (Mn2+) found in the active site is coordinated by Glu152, Asp185, His211, and Glu246 at the end of the β-barrel. P. cichoriid-TE forms a stable dimer to give a favorable accessible surface for substrate binding on the front side of the dimer. The simulated omit map indicates that O2 and O3 of d-tagatose and/or d-fructose coordinate Mn2+, and that C3-O3 is located between carboxyl groups of Glu152 and Glu246, supporting the previously proposed mechanism of deprotonation/protonation at C3 by two Glu residues. Although the electron density is poor at the 4-, 5-, and 6-positions of the substrates, substrate-enzyme interactions can be deduced from the significant electron density at O6. The O6 possibly interacts with Cys66 via hydrogen bonding, whereas O4 and O5 in d-tagatose and O4 in d-fructose do not undergo hydrogen bonding to the enzyme and are in a hydrophobic environment created by Phe7, Trp15, Trp113, and Phe248. Due to the lack of specific interactions between the enzyme and its substrates at the 4- and 5-positions, P. cichoriid-TE loosely recognizes substrates in this region, allowing it to efficiently catalyze the epimerization of d-tagatose and d-fructose (C4 epimer of d-tagatose) as well. Furthermore, a C3-O3 proton-exchange mechanism for P. cichoriid-TE is suggested by X-ray structural analysis, providing a clear explanation for the regulation of the ionization state of Glu152 and Glu246.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号