共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
1. Depending on the metabolic state, the addition of iron(III)-sucrose induces an inhibition or a stimulation of the respiration rate when added to isolated rat liver mitochondria.2. Under conditions identical to those used in the accumulation studies (Romslo, I. and Flatmark, T. (1973) Biochim. Biophys. Acta 305, 29?40), the ferric complex induces a decrease in the oxygen uptake concomitant to an oxidation of cytochromes c (+c1) and a (+a3). These results suggest that ferric iron is reduced to ferrous iron by the respiratory chain prior to or simultaneously with its energy-dependent accumulation.3. On the other hand, the addition of iron(III)-sucrose induces a stimulation of respiration in State 4 and State 3 provided Mg2+ is present in the suspending medium. In contrast to Ca2+, iron stimulates State 4 respiration in a cyclic process only within narrow concentration limits; at concentrations of iron above 100 μM the respiration remains in the activated state until anaerobiosis. The stimulation of State 4 respiration is more pronounced with succinate than with NAD-linked substrates, a difference which partly may be attributed to a stimulation of the succinate dehydrogenase complex.4. The stimulation of respiration by iron is approx. 3 times higher in State 3 than in State 4 and this difference can be attributed to a stimulation of the adenine nucleotide exchange reaction in State 3 with a concomitant increase in the rate of oxidative phosphorylation, although the ratio is slightly diminished. 相似文献
3.
The process of ATP or GTP synthesis by bovine heart submitochondrial particles involves the binding of ADP or GDP to 3 exchangeable sites I, II, and III, and only upon substrate occupation of site III does rapid ATP or GTP synthesis take place. The dissociation constants determined for ADP were KADPI less than or equal to 10(-8) M, KADPII approximately 10(-7) M, and KADPIII (equivalent to apparent KADPm), approximately 3 x 10(-6) M in the low Km mode and KADPIII approximately 150 x 10(-6) M in the high Km mode. For GDP, these constants were KGDPI approximately 10(-6)-10(-5) M, KGDPII approximately 10(-4) M, and KGDPIII approximately 10(-3) M when NADH was the respiratory substrate (Matsuno-Yagi, A., and Hatefi, Y. (1990) J. Biol. Chem. 265, 82-88). Because of its low affinity for the above binding sites, GDP at micromolar concentrations does not lead to GTP synthesis. However, as shown in this paper, micromolar [GDP] undergoes phosphorylation in the presence of micromolar concentrations of ADP. Under these conditions, both ATP and GTP are synthesized. GDP inhibits ATP synthesis with KGDPi congruent to 7 microM, while ADP promotes GTP synthesis in a reaction that requires inorganic phosphate (apparent KPim = 2-3 mM) and is inhibited by uncouplers and inhibitors of the ATP synthase complex. The ADP-promoted GTP synthesis exhibited an "apparent" KGDPm = 4 microM and an "apparent" Vmax = 11 nmol of GTP (min.mg of protein)-1. These results were interpreted to mean that (a) micromolar [ADP] occupies sites I and II, allowing site III to bind and phosphorylate GDP, and (b) the KGDPm and Vmax calculated under these conditions represent values for the low Km-low Vmax mode of GTP synthesis, which in the absence of ADP is not detectable because of the positive cooperativity phase of GTP synthesis with the high KGDPII approximately 10(-4) M. 相似文献
4.
5.
6.
7.
8.
9.
10.
11.
Studies on the mechanism of oxidative phosphorylation. Positive cooperativity in ATP synthesis 总被引:1,自引:0,他引:1
Kinetic and nucleotide binding studies have shown that submitochondrial particles from bovine heart possess three exchangeable binding sites for ADP or GDP. In order of decreasing affinity at neutral pH, these sites will be referred to as sites I, II, and III, and their respective dissociation constants as KI, KII, and KIII. In oxidative phosphorylation experiments in the presence of saturating amounts of inorganic phosphate, rapid ATP (or GTP) synthesis occurred only upon ADP (or GDP) binding to site III. The Eadie-Hofstee plots (v/[S] on the ordinate versus v on the abscissa) of the kinetics of ATP (or GTP) synthesis at variable ADP (or GDP) were, therefore, composed of an initial upward phase, indicating positive cooperativity with respect to substrate concentration, followed by a downward phase where rapid product formation took place. These data allowed calculation of KII from the upward phase and KIII (equivalent to apparent Km) from the downward phase. KI was estimated from Scatchard plots of binding data with radiolabeled ADP or GDP. Thus, together with our previous results, these findings have allowed characterization of the process of ATP or GTP synthesis by bovine-heart submitochondrial particles in terms of KI, KII, KIII, and kcat. 相似文献
12.
Dependence of mitochondrial oxidative phosphorylation on activity of the adenine nucleotide translocase 总被引:1,自引:0,他引:1
The coupled reactions of electron transport and ATP synthesis for the first two sites of mitochondrial oxidative phosphorylation have been previously reported to be near equilibrium in isolated respiring pigeon heart (Erecińska, M., Veech, R. L., and Wilson, D. F. (1974) Arch. Biochem. Biophys. 160, 412-421) and rat liver mitochondria (Forman, N. G., and Wilson, D. F. (1982) J. Biol. Chem. 257, 12908-12915). Measurements are presented in this paper which demonstrate that the same relationship exists for both forward and reverse electron transport in rat heart mitochondria. This conclusion implies that adenine nucleotide translocation, a partial reaction of the system, is also near equilibrium, contrasting with proposals that the translocase is rate-limiting for oxidative phosphorylation. To resolve this controversy, the respiratory rates of suspensions of isolated rat liver and rat heart mitochondria were controlled by varying either the added [ATP]/[ADP][Pi] ratios ratios or [ADP] (by varying hexokinase in a regenerating system). Titrations with carboxyatractyloside, a high affinity inhibitor of the translocase which is noncompetitive with ADP, were carried out to assess the dependence of the respiratory rate on translocase activity. Plots of respiratory rate versus [carboxyatractyloside] were all strongly sigmoidal. In liver mitochondria, 40%-70% and in heart mitochondria 66% of the sites could be blocked with carboxyatractyloside before a 10% decrease in the respiratory rate was observed. Further analysis showed that liver and heart mitochondria have translocase/cytochrome a ratios of 1.52 and 3.20, respectively, and that at 23 degrees C the maximal turnover numbers for the translocases were 65 s-1 and 23 s-1. In all states of controlled respiration (no added inhibitor), a substantial excess of translocase activity was present, suggesting that the translocase was not normally rate-limiting in oxidative phosphorylation. 相似文献
13.
14.
15.
16.
Studies of energy-linked reactions. Inhibition of oxidative phosphorylation by DL-8-methyldihydrolipoate. 下载免费PDF全文
1. DL-8-Methyldihydrolipoate was shown to be a potent inhibitor of mitochondrial oxidative phosphorylation and ATP-driven energy-linked reactions. 2. ADP-stimulated respiration utilizing pyruvate + malate and succinate in both ox heart and rat liver mitochondria is inhibited; oxidative phosphorylation using pyruvate + malate, succinate and ascorbate + NNN'N'-tetramethyl-p-phenylenediamine as substrates is also inhibited; uncoupler-stimulated respiration is unaffected regardless of the substrate used. 3. Mitochondrial oligomycin-sensitive adenosine triphosphatase is inhibited in both the membrane-bound form and the purified detergent-dispersed preparation. 4. ATP-driven transhydrogenase and the ATP-driven energy-linked reduction of NAD+ by succinate in ox heart submitochondrial particles are inhibited, whereas the respiratory-chain-driven transhydrogenase is unaffected. 5. DL-8-Methyl-lipoate has no immediate effect on the above reactions, demonstrating the requirement for the reduced form for inhibition. 6. The inhibitory properties of DL-8-methyldihydrolipoate are analogous to those of oligomycin and provide further evidence of a role for lipoic acid in oxidative phosphorylation. 相似文献
17.
Studies on the mechanism of oxidative phosphorylation. Catalytic site cooperativity in ATP synthesis
Oxidative phosphorylation catalyzed by bovine heart submitochondrial particles appears to exhibit negative cooperativity with respect to [ADP] and positive cooperativity in catalysis. Eadie-Hofstee plots (v/[S]versus v) of the kinetics of oxidative phosphorylation at the variable ADP concentration range of 1-1200 microM were curvilinear and could be analyzed for two apparent KmADP values differing by one order of magnitude, and two apparent Vmax values. The KmADP values with either NADH or succinate as the respiratory substrate were in the ranges of 10 and 100 microM, and the Vmax values in nmol of ATP formed X min-1 (mg of protein)-1 were, respectively, 500 and 1840 when NADH was the oxidizable substrate, and 550 and 100 when succinate was the energy source. Site-site cooperativity of the ATP synthase, which is a central feature of current theories for the mechanism of oxidative phosphorylation, has been well-documented for ATP hydrolysis by isolated F1-ATPase, but never before demonstrated for mitochondrial ATP synthesis. 相似文献
18.
19.
The relationship between the steady-state level of membrane potential (delta psi) and the rates of energy production and consumption has been studied in mitochondria and submitochondrial particles. The energy-linked reactions investigated were oxidative phosphorylation (with NADH, succinate, and beta-hydroxybutyrate as respiratory substrates) and nucleoside triphosphate-driven transhydrogenation from NADH to NADP and uphill electron transfer from succinate to NAD. Results have shown the following. 1) Attenuation of the rates of the energy-producing reactions results in a parallel change in the rates of the energy-consuming reactions with little or no change in the magnitude of steady-state delta psi. 2) At low rates of energy production and consumption, steady-state delta psi decreases. However, this is due largely to the energy leak of the system which lowers static-head delta psi when the rate of energy production is slow. 3) When the rate of energy production and static-head delta psi are held constant, and the rate of energy consumption is diminished by partial inhibition or the use of suboptimal conditions (e.g. subsaturating substrate concentrations), then even a small decrease in the rate of energy consumption results in an upward adjustment of the level of steady-state delta psi. The lower the rate of energy input, the greater the upward adjustment of steady-state delta psi upon suppression of the rate of energy consumption. 4) The above results have been discussed with regard to the role of bulk-phase delta mu H+ or delta psi in the mitochondrial energy transfer reactions. 相似文献