首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Elaboration of the Drosophila body plan depends on a series of cell-identity decisions and morphogenetic movements regulated by intercellular signals. For example, Jun N-terminal kinase signaling regulates cell fate decisions and morphogenesis during dorsal closure, while Wingless signaling regulates segmental patterning of the larval cuticle via Armadillo. wingless or armadillo mutant embryos secrete a lawn of ventral denticles; armadillo mutants also exhibit dorsal closure defects. We found that mutations in puckered, a phosphatase that antagonizes Jun N-terminal kinase, suppress in a dose-sensitive manner both the dorsal and ventral armadillo cuticle defects. Furthermore, we found that activation of the Jun N-terminal kinase signaling pathway suppresses armadillo-associated defects. Jun N-terminal kinase signaling promotes dorsal closure, in part, by regulating decapentaplegic expression in the dorsal epidermis. We demonstrate that Wingless signaling is also required to activate decapentaplegic expression and to coordinate cell shape changes during dorsal closure. Together, these results demonstrate that MAP-Kinase and Wingless signaling cooperate in both the dorsal and ventral epidermis, and suggest that Wingless may activate both the Wingless and the Jun N-terminal kinase signaling cascades.  相似文献   

2.
3.
During dorsal closure in Drosophila melanogaster, cells of the lateral epidermis migrate over the amnioserosa to encase the embryo. At least three classes of dorsal-open group gene products are necessary for this morphogenetic movement. Class I genes code for structural proteins that effect changes in epidermal cell shape and motility. Class II and III genes code for regulatory components of closure: Class II genes encode Drosophila Jun amino (N)-terminal kinase (DJNK) signaling molecules and Class III genes encode Decapentaplegic-mediated signaling molecules. All characterized dorsal-open group gene products function in the epidermis. Here we report a molecular and genetic characterization of raw, a newly defined member of the Class II dorsal-open group genes. We show that the novel protein encoded by raw is required for restriction of DJNK signaling to leading edge epidermal cells as well as for proper development of the amnioserosa. Taken together, our results demonstrate a role for Raw in restriction of epidermal signaling during closure and suggest that this effect may be mediated via the amnioserosa.  相似文献   

4.
The molecular and cellular bases of cell shape change and movement during morphogenesis and wound healing are of intense interest and are only beginning to be understood. Here, we investigate the forces responsible for morphogenesis during dorsal closure with three approaches. First, we use real-time and time-lapsed laser confocal microscopy to follow actin dynamics and document cell shape changes and tissue movements in living, unperturbed embryos. We label cells with a ubiquitously expressed transgene that encodes GFP fused to an autonomously folding actin binding fragment from fly moesin. Second, we use a biomechanical approach to examine the distribution of stiffness/tension during dorsal closure by following the response of the various tissues to cutting by an ultraviolet laser. We tested our previous model (Young, P.E., A.M. Richman, A.S. Ketchum, and D.P. Kiehart. 1993. Genes Dev. 7:29-41) that the leading edge of the lateral epidermis is a contractile purse-string that provides force for dorsal closure. We show that this structure is under tension and behaves as a supracellular purse-string, however, we provide evidence that it alone cannot account for the forces responsible for dorsal closure. In addition, we show that there is isotropic stiffness/tension in the amnioserosa and anisotropic stiffness/tension in the lateral epidermis. Tension in the amnioserosa may contribute force for dorsal closure, but tension in the lateral epidermis opposes it. Third, we examine the role of various tissues in dorsal closure by repeated ablation of cells in the amnioserosa and the leading edge of the lateral epidermis. Our data provide strong evidence that both tissues appear to contribute to normal dorsal closure in living embryos, but surprisingly, neither is absolutely required for dorsal closure. Finally, we establish that the Drosophila epidermis rapidly and reproducibly heals from both mechanical and ultraviolet laser wounds, even those delivered repeatedly. During healing, actin is rapidly recruited to the margins of the wound and a newly formed, supracellular purse-string contracts during wound healing. This result establishes the Drosophila embryo as an excellent system for the investigation of wound healing. Moreover, our observations demonstrate that wound healing in this insect epidermal system parallel wound healing in vertebrate tissues in situ and vertebrate cells in culture (for review see Kiehart, D.P. 1999. Curr. Biol. 9:R602-R605).  相似文献   

5.
6.
When the dorsal and ventral epidermal layers join by first intention during the closure of the wound, the cells of their borders (M-cells) do not meet in the same manner in all sections. In anterior sections the dorsal M-cells attach themselves to the ventral basement membrane, so that only the dorsal epidermis is stretched. In posterior sections the dorsal and the ventral M-cells join by their apical edges without being closely apposed to the wound surface. Only the ventral cells are stretched because of their specific motility. In longitudinal sections the dorsal and the ventral M-cells also join by their apical edges, but since they are closely apposed to the wound surface both epidermal layers are stretched. The stretching is a process equivalent to distalization. The junction between the dorsal and the ventral epidermis is shifted ventrally in the anterior wounds (as in the intact heads) and dorsally in the posterior wounds (as in the intact tails). Some abnormalities of wound closure have been observed at levels where heteromorphic regeneration frequently occurs. These findings are consistent with the hypothesis previously advanced (3) that the modalities of wound closure establish the programme for regeneration.  相似文献   

7.
Dorsal closure during Drosophila embryogenesis provides a valuable model for epithelial morphogenesis and wound healing. Previous studies have focused on two cell populations, the dorsal epidermis and the extraembryonic amnioserosa. Here, we demonstrate that there is an additional player, the large yolk cell. We find that integrins are expressed in the amnioserosa and yolk cell membrane and that they are required for three processes: (1) assembly of an intervening extracellular matrix, (2) attachment between these two cell layers, and (3) contraction of the amnioserosa cells. We also provide evidence for integrin-extracellular matrix interactions occurring between the lateral surfaces of the amnioserosa cell and the leading edge epidermis that effectively mediate cell-cell adhesion. Thus, dorsal closure shares mechanistic similarities with vertebrate epithelial morphogenetic events, including epiboly, that also employ an underlying substrate.  相似文献   

8.
Changes in cell morphology are essential in the development of a multicellular organism. The regulation of the cytoskeleton by the Rho subfamily of small GTP-binding proteins is an important determinant of cell shape. The Rho subfamily has been shown to participate in a variety of morphogenetic processes during Drosophila melanogaster development. We describe here a Drosophila homolog, DPAK, of the serine/threonine kinase PAK, a protein which is a target of the Rho subfamily proteins Rac and Cdc42. Rac, Cdc42, and PAK have previously been implicated in signaling by c-Jun amino-terminal kinases. DPAK bound to activated (GTP-bound) Drosophila Rac (DRacA) and Drosophila Cdc42. Similarities in the distributions of DPAK, integrin, and phosphotyrosine suggested an association of DPAK with focal adhesions and Cdc42- and Rac-induced focal adhesion-like focal complexes. DPAK was elevated in the leading edge of epidermal cells, whose morphological changes drive dorsal closure of the embryo. We have previously shown that the accumulation of cytoskeletal elements initiating cell shape changes in these cells could be inhibited by expression of a dominant-negative DRacA transgene. We show that leading-edge epidermal cells flanking segment borders, which express particularly large amounts of DPAK, undergo transient losses of cytoskeletal structures during dorsal closure. We propose that DPAK may be regulating the cytoskeleton through its association with focal adhesions and focal complexes and may be participating with DRacA in a c-Jun amino-terminal kinase signaling pathway recently demonstrated to be required for dorsal closure.  相似文献   

9.
During development tissue deformations are essential for the generation of organs and to provide the final form of an organism. These deformations rely on the coordination of individual cell behaviours which have their origin in the modulation of subcellular activities. Here we explore the role endocytosis and recycling on tissue deformations that occur during dorsal closure of the Drosophila embryo. During this process the AS contracts and the epidermis elongates in a coordinated fashion, leading to the closure of a discontinuity in the dorsal epidermis of the Drosophila embryo. We used dominant negative forms of Rab5 and Rab11 to monitor the impact on tissue morphogenesis of altering endocytosis and recycling at the level of single cells. We found different requirements for endocytosis (Rab5) and recycling (Rab11) in dorsal closure, furthermore we found that the two processes are differentially used in the two tissues. Endocytosis is required in the AS to remove membrane during apical constriction, but is not essential in the epidermis. Recycling is required in the AS at early stages and in the epidermis for cell elongation, suggesting a role in membrane addition during these processes. We propose that the modulation of the balance between endocytosis and recycling can regulate cellular morphology and tissue deformations during morphogenesis.  相似文献   

10.
Dorsal closure in Drosophila embryogenesis involves expansion of the dorsal epidermis, followed by closure of the opposite epidermal edges. This process is driven by contractile force generated by an extraembryonic epithelium covering the yolk syncytium known as the amnioserosa. The secreted signaling molecule Dpp is expressed in the leading edge of the dorsal epidermis and is essential for dorsal closure. We found that the outermost row of amnioserosa cells (termed pAS) maintains a tight basolateral cell-cell adhesion interface with the leading edge of dorsal epidermis throughout the dorsal closure process. pAS was subject to altered cell motility in response to Dpp emanating from the dorsal epidermis, and this response was essential for dorsal closure. alphaPS3 and betaPS integrin subunits accumulated in the interface between pAS and dorsal epidermis, and were both required for dorsal closure. Looking at alphaPS3, type I Dpp receptor, and JNK mutants, we found that pAS cell motility was altered and pAS and dorsal epidermis adhesion failed under the mechanical stress of dorsal closure, suggesting that a Dpp-mediated mechanism connects the squamous pAS to the columnar dorsal epidermis to form a single coherent epithelial layer.  相似文献   

11.
12.
A wound induces cell polarization, in which myosin II is localized at the rear end of individual cells in a migrating epithelial sheet of the Drosophila larval epidermis. Here, we use myosin localization to demonstrate that Rac1, Cdc42, and Rho1 are each required for cell polarization and directional sensing of the wound. The three GTPases are also required for actin cable formation at the wound leading edge. Rac1, Cdc42, and Rho1 act upstream of c-Jun N-terminal kinase (JNK) to organize actin assembly. These results highlight the similarities between the molecular mechanism of Drosophila wound healing and those of Drosophila embryonic dorsal closure and the chemotactic response of Dictyostelium and leukocytes.  相似文献   

13.
At the end of germband retraction, the dorsal epidermis of the Drosophila embryo exhibits a discontinuity that is covered by the amnioserosa. The process of dorsal closure (DC) involves a coordinated set of cell-shape changes within the epidermis and the amnioserosa that result in epidermal continuity. Polarisation of the dorsal-most epidermal (DME) cells in the plane of the epithelium is an important aspect of DC. The DME cells of embryos mutant for wingless or dishevelled exhibit polarisation defects and fail to close properly. We have investigated the role of the Wingless signalling pathway in the polarisation of the DME cells and DC. We find that the beta-catenin-dependent Wingless signalling pathway is required for polarisation of the DME cells. We further show that although the DME cells are polarised in the plane of the epithelium and present polarised localisation of proteins associated with the process of planar cell polarity (PCP) in the wing, e.g. Flamingo, PCP Wingless signalling is not involved in DC.  相似文献   

14.
Roles of wingless in patterning the larval epidermis of Drosophila.   总被引:12,自引:0,他引:12  
The larval epidermis of Drosophila shows a stereotyped segmentally repeating pattern of cuticular structures. Mutants deficient for the wingless gene product show highly disrupted patterning of the larval cuticle. We have manipulated expression of the wg gene product to assess its role in this patterning process. We present evidence for four distinct phases of wg function in epidermal cells: (1) an early requirement in engrailed-expressing cells to establish and maintain stable expression of en, (2) a discrete period when wg and en gene products act in concert to generate positional values in the anterior portion of the ventral segment and all values of the dorsal and lateral epidermis, (3) a progressive function (dependent on prior interaction with the en-expressing cells) in conferring positional values to cells within the posterior portion of the segment, and (4) a late continuous requirement for maintaining some ventral positional values.  相似文献   

15.
The dorsal and ventral skin in amphibians plays an important role in osmoregulation. Prolactin hormone is involved in regulation of amphibian skin functions, such as water and electrolyte balance. Therefore, amphibians may be useful as a model for determining the sites of the prolactin receptor. In this study, prolactin receptor was detected in frog dorsal and ventral skin using immunohistochemical staining method. Prolactin receptor immunoreactivity was localized in all epidermal layers except stratum corneum of dorsal skin epidermis, stratum germinativum layer of ventral skin epidermis, myoepithelial cells, secretory epithelium and secretory channel cells of granular glands in both skin regions. The mucous glands and secretory granules of granular glands did not show immunoreactivity for the prolactin receptor. According to our immunohistochemical results, the more widespread detection of prolactin receptor in dorsal skin epidermis indicates that prolactin is more effective in dorsal skin. Presence of prolactin receptors in epidermis points out its possible osmoregulatory effect. Moreover, detection of receptor immunoreactivity in various elements of poison glands in the dermis of both dorsal and ventral skin regions suggests that prolactin has a regulatory effect in gland functions.  相似文献   

16.
Skeletal condensation occurs when specified mesenchyme cells self-organize over several days to form a distinctive cartilage template. Here, we determine how and when specified mesenchyme cells integrate mechanical and molecular information from their environment, forming cartilage condensations in the pharyngeal arches of chick embryos. By disrupting cytoskeletal reorganization, we demonstrate that dynamic cell shape changes drive condensation and modulate the response of the condensing cells to Fibroblast Growth Factor (FGF), Bone Morphogenetic Protein (BMP) and Transforming Growth Factor beta (TGF-β) signaling pathways. Rho Kinase (ROCK)-driven actomyosin contractions and Myosin II-generated differential cell cortex tension regulate these cell shape changes. Disruption of the condensation process inhibits the differentiation of the mesenchyme cells into chondrocytes, demonstrating that condensation regulates the fate of the mesenchyme cells. We also find that dorsal and ventral condensations undergo distinct cell shape changes. BMP signaling is instructive for dorsal condensation-specific cell shape changes. Moreover, condensations exhibit ventral characteristics in the absence of BMP signaling, suggesting that in the pharyngeal arches ventral morphology is the ground pattern. Overall, this study characterizes the interplay between cytoskeletal dynamics and molecular signaling in a self-organizing system during tissue morphogenesis.  相似文献   

17.
Coordinated cell movements shape simple epithelia into functional tissues and organs during embryogenesis. Regulators and effectors of the small GTPase Rho have been shown to be essential for epithelial morphogenesis in cell culture; however, the mechanism by which Rho GTPase and its downstream effectors control coordinated movement of epithelia in a developing tissue or organ is largely unknown. Here, we show that Rho1 GTPase activity is required for the invagination of Drosophila embryonic salivary gland epithelia and for directed migration of the internalized gland. We demonstrate that the absence of zygotic function of Rho1 results in the selective loss of the apical proteins, Crumbs (Crb), Drosophila atypical PKC and Stardust during gland invagination and that this is partially due to reduced crb RNA levels and apical localization. In parallel to regulation of crb RNA and protein, Rho1 activity also signals through Rho-kinase (Rok) to induce apical constriction and cell shape change during invagination. After invagination, Rho-Rok signaling is required again for the coordinated contraction and dorsal migration of the proximal half of the gland. We also show that Rho1 activity is required for proper development of the circular visceral mesoderm upon which the gland migrates. Our genetic and live-imaging analyses provide novel evidence that the proximal gland cells play an essential and active role in salivary gland migration that propels the entire gland to turn and migrate posteriorly.  相似文献   

18.
During Drosophila melanogaster dorsal closure, lateral sheets of embryonic epidermis assemble an actomyosin cable at their leading edge and migrate dorsally over the amnioserosa, converging at the dorsal midline. We show that disappearance of the homophilic cell adhesion molecule Echinoid (Ed) from the amnioserosa just before dorsal closure eliminates homophilic interactions with the adjacent dorsal-most epidermal (DME) cells, which comprise the leading edge. The resulting planar polarized distribution of Ed in the DME cells is essential for the localized accumulation of actin regulators and for actomyosin cable formation at the leading edge and for the polarized localization of the scaffolding protein Bazooka/PAR-3. DME cells with uniform Ed fail to assemble a cable and protrude dorsally, suggesting that the cable restricts dorsal migration. The planar polarized distribution of Ed in the DME cells thus provides a spatial cue that polarizes the DME cell actin cytoskeleton, defining the epidermal leading edge and establishing its contractile properties.  相似文献   

19.
Fes/Fer non-receptor tyrosine kinases regulate cell adhesion and cytoskeletal reorganisation through the modification of adherens junctions. Unregulated Fes/Fer kinase activity has been shown to lead to tumours in vivo. Here, we show that Drosophila Fer localises to adherens junctions in the dorsal epidermis and regulates a major morphological event, dorsal closure. Mutations in Src42A cause defects in dorsal closure similar to those seen in dfer mutant embryos. Furthermore, Src42A mutations enhance the dfer mutant phenotype, suggesting that Src42A and DFer act in the same cellular process. We show that DFer is required for the formation of the actin cable in leading edge cells and for normal rates of dorsal closure. We have isolated a gain-of-function mutation in dfer (dfergof) that expresses an N-terminally fused form of the protein, similar to oncogenic forms of vertebrate Fer. dfergof blocks dorsal closure and causes axon misrouting. We find that in dfer loss-of-function mutants beta-catenin is hypophosphorylated, whereas in dfergof beta-catenin is hyperphosphorylated. Phosphorylated beta-catenin is removed from adherens junctions and degraded, thus implicating DFer in the regulation of adherens junctions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号