首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the present study, the modulatory effects of noradrenaline (NA) on the GABA response were investigated in the isolated cultured spiral ganglion neurons of rat by using nystatin perforated patch recording configuration under voltage-clamp conditions. NA reversibly depressed GABA response in a concentration-dependent manner and neither changed the reversal potential of the GABA response nor affected the apparent affinity of GABA to its receptor. alpha2-adrenoceptor agonist and antagonist, clonidine and yohimbine mimicked and blocked the NA action on the GABA response, respectively. N-[2(methylamino)ethyl]-5-isoquinoline sulfonamide dihydrochloride (H-89), a protein kinase A inhibitor, mimicked the effect of NA on the GABA response. NA failed to affect the GABA response in the presence of both cAMP and protein kinase A modulator. However, NA still depressed the GABA response even in the presence of both phorbol-12-myristate-13-acetate, a protein kinase C activator and chelerythrine, a protein kinase C inhibitor. These results suggest that the NA suppression of the GABA response is mediated by alpha2-adrenoceptor which reduces intracellular cAMP formation through the inhibition of adenylyl cyclase. Therefore, NA input to the spiral ganglion neurons may modulate the auditory transmission by affecting the GABA response.  相似文献   

2.
Wang DS  Xu TL  Li JS 《生理学报》1999,51(4):361-370
采用制霉菌素穿孔膜片箍技术,研究了P物质对急性分离的大鼠骶髓后的核神经元士的宁敏感性甘氨酸反应的调控作用。在箍制电压为-40mV时,SP时1mmol/L-1μmol/L之间呈浓度依赖性地增强30μmol/L甘氨酸激活的氯电流。SP既不改变IGly的翻转电位,也不是影响Gly与其受体的亲和力。Spantide和选择性N中受体拮抗剂,L-668,169,可阻断SP的增强作用,而选择性NK2受体拮抗剂,  相似文献   

3.
Nie H  Wang H  Zhang RX  Gao WC  Qiao JT 《生理学报》2004,56(4):455-460
实验用免疫细胞化学技术观察了大鼠鞘内分别注入蛋白激酶(PKC)抑制剂Chelerythrine(Chel)、纳洛酮(Nal)、或二者同时注入后,由后脚掌注射福尔马林引起的脊髓腰膨大背角中c-fos蛋白样免疫活性(Fos-LI)神经元数目的改变。结果发现:(1)鞘内注入Chel可显著降低福尔马林注射侧脊髓背角中Fos-LI神经元的数目,同空白对照组(鞘内注入生理盐水或10%的DMSO)相比,降低60.3%(P<0.001):(2)鞘内注入Nal后,福尔马林注射侧背角中Fos-LI神经元显著增加,同对照组相比,增加46.0%(P<0.01),而以背角深层增加最为明显;(3)在鞘内同时注入Chel和Nal后,与单独注入Nal组相比,脊髓背角中Fos-LI神经元的数目显著降低(降低53.2%),此数值与上述单独注入Chel时引起Fos-LI神经元降低的百分率近似。结果提示:(1)PKC只参与脊髓背角中部分Fos-LI神经元中c-fos蛋白的表达;(2)PKC可能不参与背角中同时激活的μ-(以及部分δ-)阿片受体对脊髓伤害性感受的调制。  相似文献   

4.
刺激蓝斑及电针对大鼠脊髓背角神经元伤害性反应的影响   总被引:2,自引:0,他引:2  
以往的工作表明,蓝斑(LC)-去甲肾上腺素能神经元系统在痛觉调制和针刺镇痛中起着重要作用,本文用电生理学方法研究刺激LC和电针对大鼠脊髓背角神经元伤害性反应的影响,其主要结果如下:1、刺激LC或电针有明显抑制脊髓背角神经元伤害性反应的作用。2、损毁中缝大核和腹腔注射纳洛酮并不明显影响刺激LC的抑制效应。3、α2受体激动剂氯压啶能加强刺激LC或电针的抑制效应,而α受体阻断剂酚妥拉明在一定程度上能削弱这种抑制效应,这些实验结果提示,刺激LC和电针可激活LC神经元,通过其下行纤维,在脊髓水平释放NE,通过α2受体,阻断伤害性信息的传递。  相似文献   

5.
Recently, the role of EphB receptor (EphBR) tyrosine kinase and their ephrinB ligands in pain-related neural plasticity at the spinal cord level have been identified. To test whether Src-family tyrosine kinase-dependent glutamatergic N-methyl-d-aspartate receptor NR2B subunit phosphorylation underlies lumbosacral spinal EphBR activation to mediate pelvic-urethra reflex potentiation, we recorded external urethra sphincter electromyogram reflex activity and analyzed protein expression in the lumbosacral (L(6)-S(2)) dorsal horn in response to intrathecal ephrinB2 injections. When compared with vehicle solution, exogenous ephrinB2 (5 μg/rat it)-induced reflex potentiation, in associated with phosphorylation of EphB1/2, Src-family kinase, NR2B Y1336 and Y1472 tyrosine residues. Both intrathecal EphB1 and EphB2 immunoglobulin fusion protein (both 10 μg/rat it) prevented ephrinB2-dependent reflex potentiation, as well as protein phosphorylation. Pretreatment with PP2 (50 μM, 10 μl it), an Src-family kinase antagonist, reversed the reflex potentiation, as well as Src kinase and NR2B phosphorylation. Together, these results suggest the ephrinB2-dependent EphBR activation, which subsequently provokes Src kinase-mediated N-methyl-d-aspartate receptor NR2B phosphorylation in the lumbosacral dorsal horn, is crucial for the induction of spinal reflex potentiation contributing to the development of visceral pain and/or hyperalgesia in the pelvic area.  相似文献   

6.
Xin WJ  Li MT  Yang HW  Zhang HM  Hu NW  Hu XD  Zhang T  Liu XG 《生理学报》2004,56(1):83-88
实验旨在探讨钙/钙调蛋白依赖性蛋白激酶II(calcium/calmodulin-dependent protein kinase Ⅱ,CaMKⅡ)在脊髓背角C-纤维诱发电位长时程增强(long—term potentiation,LTP)的诱导和维持中的作用。用Western blot技术分别检测LTP形成30min和3h脊髓背角(L4-L6)CaMKⅡ的含量及其磷酸化水平。同时观察脊髓局部给予CAMKⅡ选择性抑制剂KN-93后对脊髓背角LTP和CaMKII磷酸化的影响。观察结果如下:(1)诱导LTP后30min,CaMK Ⅱ的磷酸化水平明显高于对照组,而CaMKⅡ的总量无变化;诱导LTP后3h CaMKⅡ的磷酸化水平进一步升高。而且CaMKⅡ的总量也明显增加(n=4);(2)强直刺激前30min于脊髓局部给予CaMKⅡ的特异性抑制剂KN-93(100μmol/L),可阻断LTP的诱导,同时明显抑制CaMKⅡ的磷酸化水平;(3)诱导LTP后30min给予KN-93,可显著抑制LTP的维持,同时CaMKⅡ的磷酸化水平与未用药组相比也明显降低(n=3);(4)LTP3h后给予KN-93,LTP的幅值不受影响,磷酸化的CaMKⅡ的含量与用药前相比也无差别(n=3)。根据上述实验结果可以认为,CaMKⅡ的激活参与脊髓背角C-纤维诱发电位LTP的诱导和早期维持过程。  相似文献   

7.
Parvalbumin (PV) is a calcium-binding protein that is expressed by numerous neuronal subpopulations in the central nervous system. Staining for PV was often used in neuroanatomical studies in the past. Recently, several studies have suggested that PV acts in neurons as a mobile endogenous calcium buffer that affects temporo-spatial characteristics of calcium transients and is involved in modulation of synaptic transmission. In our experiments, expression of PV in the lumbar dorsal horn spinal cord was evaluated using densitometric analysis of immunohistological sections and Western-blot techniques in control and arthritic rats. There was a significant reduction of PV immunoreactivity in the superficial dorsal horn region ipsilateral to the arthritis after induction of the peripheral inflammation. The ipsilateral area and intensity of PV staining in this area were reduced to 38 % and 37 %, respectively, out of the total PV staining on both sides. It is suggested that this reduction may reflect decreased expression of PV in GABAergic inhibitory neurons. Reduction of PV concentration in the presynaptic GABAergic terminals could lead to potentiation of inhibitory transmission in the spinal cord. Our results suggest that changes in expression of calcium-binding proteins in spinal cord dorsal horn neurons may modulate nociceptive transmission.  相似文献   

8.
L Chen  L Y Huang 《Neuron》1991,7(2):319-326
mu opioids, such as morphine and certain enkephalin analogs, are known to modulate glutamate-evoked activity in dorsal horn neurons in the spinal cord and caudal brain stem. Yet the molecular mechanism by which this modulation occurs is not understood. We examined the interactions between glutamate and a selective mu opioid receptor agonist, D-Ala2-MePhe4-Gly-ol5-enkephalin (DAGO), in spinal trigeminal neurons in thin medullary slices of rats. DAGO caused a sustained increase in glutamate-activated currents that are mediated by N-methyl-D-aspartate receptors. Intracellularly applied protein kinase C (PKC) mimics the effect of DAGO, and a specific PKC inhibitor interrupts the sustained potentiation produced by DAGO. Thus, PKC plays a key role in mediating the action of mu opioid peptides.  相似文献   

9.
In addition to the classic genomic effects, increasing evidence suggests that GC can generate multiple rapid effects on many tissues and cells through nongenomic pathway. In the present study, the effects of corticosterone (CORT) on the intracellular calcium concentration ([Ca2+]i) in cultured dorsal spinal cord astrocytes were detected with confocal laser scanning microscopy using fluo-4/AM as a calcium fluorescent indicator that could monitor real-time alterations of [Ca2+]i. CORT (0.01–10 μM) caused a rapid increase in [Ca2+]i with a dose-dependent manner in cultured dorsal spinal cord astrocytes. The action of CORT on astrocytic [Ca2+]i was blocked by pertussis toxin (a blocker of G protein activation, 100 ng/ml), but was unaffected by RU38486 (glucocorticoid receptor antagonist, 10 μM). In addition, cycloheximide (protein-synthesis inhibitor, 10 μg/ml) pretreatment could not impair the CORT-evoked [Ca2+]i elevation. Furthermore, Ca2+ mobilization induced by CORT was abolished by chelerythrine chloride (protein kinase C inhibitor, 10 μM), but was not impaired by H89 (protein kinase A inhibitor, 10 μM). These observations suggest that a nongenomic pathways might be involved in the effect of CORT on [Ca2+]i in cultured dorsal spinal cord astrocytes. In addition, our results also raise a possibility that a putative pertussis toxin-sensitive mGCR (G-protein-coupled membrane-bound glucocorticoid receptor) and the downstream activation of protein kinase C may be responsible for CORT-induced Ca2+ mobilization in cultured dorsal spinal cord astrocytes.  相似文献   

10.
The median preoptic nucleus (MnPO) in the lamina terminalis receives a prominent catecholaminergic innervation from the dorsomedial and ventrolateral medulla. The present investigation used whole cell patch-clamp recordings in rat brain slice preparations to evaluate the hypothesis that presynaptic adrenoceptors could modulate GABAergic inputs to MnPO neurons. Bath applications of norepinephrine (NE; 20-50 microM) induced a prolonged and reversible suppression of inhibitory postsynaptic currents (IPSCs) and reduced paired-pulse depression evoked by stimulation in the subfornical organ and organum vasculosum lamina terminalis. These events were not correlated with any observed changes in membrane conductance arising from NE activity at postsynaptic alpha(1)- or alpha(2)-adrenoceptors. Consistent with a role for presynaptic alpha(2)-adrenoceptors, responses were selectively mimicked by an alpha(2)-adrenoceptor agonist (UK-14304) and blockable with an alpha(2)-adrenoceptor antagonist (idazoxan). Although the alpha(1)-adrenoceptor agonist cirazoline and the alpha(1)-adrenoceptor antagonist prazosin were without effect on these evoked IPSCs, NE was noted to increase (via alpha(1)-adrenoceptors) or decrease (via alpha(2)-adrenoceptors) the frequency of spontaneous and tetrodotoxin-resistant miniature IPSCs. Collectively, these observations imply that both presynaptic and postsynaptic alpha(1)- and alpha(2)-adrenoceptors in MnPO are capable of selective modulation of rapid GABA(A) receptor-mediated inhibitory synaptic transmission along the lamina terminalis and therefore likely to exert a prominent influence in regulating cell excitability within the MnPO.  相似文献   

11.
Activation of muscarinic acetylcholine receptors (mAChRs) in the spinal cord inhibits pain transmission. At least three mAChR subtypes (M(2), M(3), and M(4)) are present in the spinal dorsal horn. However, it is not clear how each mAChR subtype contributes to the regulation of glutamatergic input to dorsal horn neurons. We recorded spontaneous excitatory postsynaptic currents (sEPSCs) from lamina II neurons in spinal cord slices from wild-type (WT) and mAChR subtype knock-out (KO) mice. The mAChR agonist oxotremorine-M increased the frequency of glutamatergic sEPSCs in 68.2% neurons from WT mice and decreased the sEPSC frequency in 21.2% neurons. Oxotremorine-M also increased the sEPSC frequency in ~50% neurons from M(3)-single KO and M(1)/M(3) double-KO mice. In addition, the M(3) antagonist J104129 did not block the stimulatory effect of oxotremorine-M in the majority of neurons from WT mice. Strikingly, in M(5)-single KO mice, oxotremorine-M increased sEPSCs in only 26.3% neurons, and J104129 abolished this effect. In M(2)/M(4) double-KO mice, but not M(2)- or M(4)-single KO mice, oxotremorine-M inhibited sEPSCs in significantly fewer neurons compared with WT mice, and blocking group II/III metabotropic glutamate receptors abolished this effect. The M(2)/M(4) antagonist himbacine either attenuated the inhibitory effect of oxotremorine-M or potentiated the stimulatory effect of oxotremorine-M in WT mice. Our study demonstrates that activation of the M(2) and M(4) receptor subtypes inhibits synaptic glutamate release to dorsal horn neurons. M(5) is the predominant receptor subtype that potentiates glutamatergic synaptic transmission in the spinal cord.  相似文献   

12.
Although many general anesthetics have been found to produce anesthetic and analgesic effects by augmenting GABA(A) receptor (GABA(A)R) function, the role of the glycine receptor (GlyR) in this process is not fully understood at the neuronal level in the spinal cord. We investigated the effects of a barbiturate general anesthetic, pentobarbital (PB), on the glycinergic miniature inhibitory postsynaptic currents (mIPSCs) and the responses to exogenously applied glycine, or taurine, a low affinity GlyR agonist, by using the whole-cell patch-clamp technique in the rat spinal dorsal horn neurons isolated using a novel mechanical method. Bath application of 30 microm PB significantly prolonged the decay time constant of the spontaneous glycinergic mIPSC without changing its amplitude and frequency. Co-application of 0.3 mm PB reduced the peak amplitude, affected the macroscopic desensitization and deactivation of the response to externally applied Gly in a concentration-dependent manner. In addition, the recovery of Gly response from desensitization was also prolonged by PB. However, PB did not change the desensitization and deactivation kinetics of the taurine-induced response. The GABA(A)R antagonist bicuculline (10 microm) did not affect the effect of PB on the Gly response. Thus, PB prolonged the spinal glycinergic mIPSCs by slowing desensitization and deactivation of GlyR. Two other structurally different intravenous anesthetics, i.e. propofol (10 microm) and etomidate (3 microm), prolonged the duration of the glycinergic mIPSC in the rat spinal dorsal horn neurons. In conclusion, on GlyR-Cl(-) channel complexes there may exist action site(s) of intravenous general anesthetics. GlyR and glycinergic neurotransmission may play an important role in the modulation of general anesthesia in the mammalian spinal cord.  相似文献   

13.
Integrin proteins are critical for stabilization of hippocampal long-term potentiation but the mechanisms by which integrin activities are involved in synaptic transmission are not known. The present study tested whether activation of alpha-amino-3-hydroxy-5-methylisoxazole-4-proprionate (AMPA) class glutamate receptors increases surface expression of alpha5beta1 integrin implicated in synaptic potentiation. Surface protein biotinylation assays demonstrated that AMPA treatment of COS7 cells expressing GluR1 homomeric AMPA receptors increased membrane insertion and steady-state surface levels of alpha5 and beta1 subunits. Treated cells exhibited increased adhesion to fibronectin- and anti-alpha5-coated substrates and tyrosine kinase signaling elicited by fibronectin-substrate adhesion, as expected if new surface receptors are functional. Increased surface expression did not occur in calcium-free medium and was blocked by the protein kinase C inhibitor chelerythrine chloride and the exocytosis inhibitor brefeldin A. AMPA treatment similarly increased alpha5 and beta1 surface expression in dissociated neurons and cultured hippocampal slices. In both neuronal preparations AMPA-induced integrin trafficking was blocked by combined antagonism of NMDA receptor and L-type voltage-sensitive calcium channel activities but was not induced by NMDA treatment alone. These results provide the first evidence that glutamate receptor activation increases integrin surface expression and function, and suggest a novel mechanism by which synaptic activity can engage a volley of new integrin signaling in coordination with, and probably involved in, stabilization of synaptic potentiation.  相似文献   

14.
Single unit extracellular recordings from dorsal horn neurons were performed with glass micropipettes in pentobarbital-anesthetized rats. A total of 60 wide dynamic range (WDR) neurons were obtained from 34 rats. In normal rats (20/34), spinally administered D-serine (10 nmol), a putative endogenous agonist of glycine site of NMDA receptors, significantly enhanced the C- but not Abeta-, and Adelta-fiber responses of WDR neurons in the spinal dorsal horn. When 1 nmol of the glycine site antagonist 7-chlorokynurenic acid (7-CK) was co-administered with 10 nmol D-serine, the facilitation of D-serine on C-fiber response was completely blocked. 7-CK (1 nmol) alone failed to influence Abeta-, Adelta-, and C-fiber responses of WDR neurons. In contrast, in carrageenan-injected rats (14/34), 10 nmol D-serine had no effect on C-fiber response, while 1 nmol 7-CK per se markedly depressed C-fiber response of WDR neurons. These findings suggest that under physiological conditions, glycine sites in the spinal cord were available but became saturated following peripheral inflammation. Thus, increased endogenous d-serine or glycine may be involved in nociceptive transmission by modulating NMDA receptor activities. The glycine site of NMDA receptors may become a target for the prevention of inflammatory pain.  相似文献   

15.
Hypoxia and ischemia occur in the spinal cord when blood vessels of the spinal cord are compressed under pathological conditions such as spinal stenosis, tumors, and traumatic spinal injury. Here by using spinal cord slice preparations and patch-clamp recordings we investigated the influence of an ischemia-simulating medium on dorsal horn neurons in deep lamina, a region that plays a significant role in sensory hypersensitivity and pathological pain. We found that the ischemia-simulating medium induced large inward currents in dorsal horn neurons recorded. The onset of the ischemia-induced inward currents was age-dependent, being onset earlier in older animals. Increases of sensory input by the stimulation of afferent fibers with electrical impulses or by capsaicin significantly speeded up the onset of the ischemia-induced inward currents. The ischemia-induced inward currents were abolished by the glutamate receptor antagonists CNQX (20 μM) and APV (50 μM). The ischemia-induced inward currents were also substantially inhibited by the glutamate transporter inhibitor TBOA (100 μM). Our results suggest that ischemia caused reversal operation of glutamate transporters, leading to the release of glutamate via glutamate transporters and the subsequent activation of glutamate receptors in the spinal dorsal horn neurons.  相似文献   

16.
Nitric oxide (NO) is involved in many physiological functions, but its role in pain signaling remains uncertain. Surprisingly, little is known about how endogenous NO affects excitatory and inhibitory synaptic transmission at the spinal level. Here we determined how NO affects excitatory and inhibitory synaptic inputs to dorsal horn neurons using whole-cell recordings in rat spinal cord slices. The NO precursor L-arginine or the NO donor SNAP significantly increased the frequency of glycinergic spontaneous and miniature inhibitory postsynaptic currents (IPSCs) of lamina II neurons. However, neither L-arginine nor SNAP had any effect on GABAergic IPSCs. L-arginine and SNAP significantly reduced the amplitude of monosynaptic excitatory postsynaptic currents (EPSCs) evoked from the dorsal root with an increase in paired-pulse ratio. Inhibition of the soluble guanylyl cyclase abolished the effect of L-arginine on glycinergic IPSCs but not on evoked monosynaptic EPSCs. Also, inhibition of protein kinase G blocked the increase in glycinergic sIPSCs by the cGMP analog 8-bromo-cGMP. The inhibitory effects of L-arginine on evoked EPSCs and high voltage-activated Ca(2+) channels expressed in HEK293 cells and dorsal root ganglion neurons were abolished by blocking the S-nitrosylation reaction with N-ethylmaleimide. Intrathecal injection of L-arginine and SNAP significantly increased mechanical nociceptive thresholds. Our findings suggest that spinal endogenous NO enhances inhibitory glycinergic input to dorsal horn neurons through sGC-cGMP-protein kinase G. Furthermore, NO reduces glutamate release from primary afferent terminals through S-nitrosylation of voltage-activated Ca(2+) channels. Both of these actions probably contribute to inhibition of nociceptive transmission by NO at the spinal level.  相似文献   

17.
MAPK activation in nociceptive neurons and pain hypersensitivity   总被引:22,自引:0,他引:22  
Obata K  Noguchi K 《Life sciences》2004,74(21):2643-2653
  相似文献   

18.
It is well known that remifentanil, a widely used intravenous anesthesia drug, can paradoxically induce hyperalgesia. The underlying mechanisms are still not clear despite the wide investigations. The present study demonstrated that withdrawal from spinal application of remifentanil could dose-dependently induce long term potentiation (LTP) of C-fiber evoked field potentials. Remifentanil withdrawal could activate Src family kinases (SFKs) in microglia, and upregulate the expression of tumor necrosis factor alpha (TNFα) in spinal dorsal horn. Furthermore, pretreatment with either microglia inhibitor Minocycline, SFKs inhibitor PP2 or TNF αneutralization antibody could block remifentanil withdrawal induced spinal LTP, whereas supplement of recombinant rat TNFα to the spinal cord could reverse the inhibitory effect of Minocycline or PP2 on remifentanil withdrawal induced LTP. Our results suggested that TNFαrelease following SFKs activation in microglia is involved in the induction of LTP induced by remifentanil withdrawal.  相似文献   

19.
Brain-derived neurotrophic factor (BDNF) is a neuromodulator of nociceptive responses in the dorsal root ganglia (DRG) and spinal cord. BDNF synthesis increases in response to nerve growth factor (NGF) in trkA-expressing small and medium-sized DRG neurons after inflammation. Previously we demonstrated differential activation of multiple BDNF promoters in the DRG following peripheral nerve injury and inflammation. Using reporter constructs containing individual promoter regions, we investigated the effect of NGF on the multiple BDNF promoters, and the signaling pathway by which NGF activates these promoters in PC12 cells. Although all the promoters were activated 2.4-7.1-fold by NGF treatment, promoter IV gave the greatest induction. The p38 mitogen-activated protein kinase (MAPK) inhibitor, SB203580, phosphatidylinositol 3-kinase (PI-3K) inhibitor, LY294003, protein kinase A (PKA) inhibitor, H89, and protein kinase C (PKC) inhibitor, chelerythrine, had no effect on activation of promoter IV by NGF. However, activation was completely abolished by the MAPK kinase (MEK) inhibitors, U0126 and PD98059. In addition, these inhibitors blocked NGF-induced phosphorylation of extracellular signal-regulated protein kinase (ERK) 1/2. Taken together, these results suggest that the ERK1/2 pathway activates BDNF promoter IV in response to NGF independently of NGF-activated signaling pathways involving PKA and PKC.  相似文献   

20.
The dorsal motor nucleus of the vagus (DMV) receives more noradrenergic terminals than any other medullary nucleus; few studies, however, have examined the effects of norepinephrine (NE) on DMV neurons. Using whole cell recordings in thin slices, we determined the effects of NE on identified gastric-projecting DMV neurons. Twenty-five percent of DMV neurons were unresponsive to NE, whereas the remaining 75% responded to NE with either an excitation (49%), an inhibition (26%), or an inhibition followed by an excitation (4%). Antrum/pylorus- and corpus-projecting neurons responded to NE with a similar percentage of excitatory (49 and 59%, respectively) and inhibitory (20% for both groups) responses. A lower percentage of excitatory (37%) and a higher percentage of inhibitory (36%) responses were, however, observed in fundus-projecting neurons. In all groups, pretreatment with prazosin or phenylephrine antagonized or mimicked the NE-induced excitation, respectively. Pretreatment with yohimbine or UK-14304 antagonized or mimicked the NE-induced inhibition, respectively. These data suggest that NE depolarization is mediated by alpha(1)-adrenoceptors, whereas NE hyperpolarization is mediated by alpha(2)-adrenoceptors. In 16 neurons depolarized by NE, amplitude of the action potential afterhyperpolarization (AHP) and its kinetics of decay (tau) were significantly reduced vs. control. No differences were found on the amplitude and tau of AHP in neurons hyperpolarized by NE. Using immunohistochemical techniques, we found that the distribution of tyrosine hydroxylase fibers within the DMV was significantly different within the mediolateral extent of DMV; however, distribution of cells responding to NE did not show a specific pattern of localization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号