首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. Stopped-flow experiments were performed in which solutions containing dithionite were mixed with air-saturated buffer. Cytochrome c oxidase present in the dithionite-containing syringe is fully oxidized within the mixing time and the oxygen-pulsed form of the oxidase is produced. 2. The reduction of this form by dithionite, by dithionite plus cytochrome c and by dithionite plus methyl viologen or benzyl viologen was followed and compared with the corresponding reduction reactions of the "resting" oxidized enzyme. Reduction by dithionite is relatively slow, but the rate of reduction is greatly increased by addition of cytochrome c or the viologens, which are even more effective than cytochrome c on a molar basis. 3. Profound differences between the transient kinetics of the reduction of the two oxidized oxidase derivatives were observed. The results are consistent with a direct reduction of cytochrome a followed by an intramolecular electron transfer to cytochrome a3 (k1obs = 7.5 s-1 for the oxygen-pulsed oxidase). 4. The spectrum of the oxygen-pulsed oxidase formed within 5 ms of the mixing closely resembles that of the "oxygenated" compound, but there were small differences between the two spectra.  相似文献   

2.
The kinetics of reduction of wild type and several site-specific mutants of yeast iso-1 cytochrome c (Arg-13----Ile, Gln-16----Ser, Gln-16----Lys, Lys-27----Gln, Lys-72----Asp), both free and in 1:1 complexes with yeast cytochrome c peroxidase, by free flavin semiquinones have been studied. Intramolecular one-electron transfer from the ferrous cytochromes c to the H2O2-oxidized peroxidase at both low (8 mM) and high (275 mM) ionic strengths was also studied. The accessibility of the cytochrome c heme within the electrostatically stabilized complex and the rate constants for intramolecular electron transfer at both low and high ionic strength are highly dependent on the specific amino acids present at the protein-protein interface. Importantly, replacement by uncharged amino acids of Arg or Lys residues thought to be important in orientation and/or stabilization of the electron-transfer complex resulted in increased rates of electron transfer. In all cases, an increase in ionic strengths from 8 to 275 mM also produced increased intramolecular electron-transfer rate constants. The results suggest that the electrostatically stabilized 1:1 complex is not optimized for electron transfer and that by neutralization of key positively charged residues, or by an increase in the ionic strength thereby masking the ionic interactions, the two proteins can orient themselves to allow the formation of a more efficient electron-transfer complex.  相似文献   

3.
The reduction of cytochrome c oxidase by dithionite was reinvestigated with a flow-flash technique and with varied enzyme preparations. Since cytochrome a3 may be defined as the heme in oxidase which can form a photolabile CO adduct in the reduced state, it is possible to follow the time course of cytochrome a3 reduction by monitoring the onset of photosensitivity. The onset of photosensitivity and the overall rate of heme reduction were compared for Yonetani and Hartzell-Beinert preparations of cytochrome c oxidase and for the enzyme isolated from blue marlin and hammerhead shark. For all of these preparations the faster phase of heme reduction, which is dithionite concentration-dependent, is almost completed when the fraction of photosensitive material is still small. We conclude that cytochrome a3 in the resting enzyme is consistently reduced by an intramolecular electron transfer mechanism. To determine if this is true also for the pulsed enzyme, we examined the time course of dithionite reduction of the peroxide complex of the pulsed enzyme. It has been previously shown that pulsed cytochrome c oxidase can interact with H2O2 and form a stable room temperature peroxide adduct (Bickar, D., Bonaventura, J., and Bonaventura, C. (1982) Biochemistry 21, 2661-2666). Rather complex kinetics of heme reduction are observed when dithionite is added to enzyme preparations that contain H2O2. The time courses observed provide unequivocal evidence that H2O2 can, under these conditions, be used by cytochrome c oxidase as an electron acceptor. Experiments carried out in the presence of CO show that a direct dithionite reduction of cytochrome a3 in the peroxide complex of the pulsed enzyme does not occur.  相似文献   

4.
Complex formation between cytochrome c oxidase and cytochrome c perturbs the optical absorption spectrum of heme c and heme a in the region of the alpha-, beta, and gamma-bands. The perturbations have been used to titrate cytochrome c oxidase with cytochrome c. A stoichiometry of one molecule of cytochrome c bound per molecule of cytochrome c oxidase is obtained (1 heme c per heme aa3). In contrast, a stoichiometry of 2:1 was found earlier using a gel-filtration method (Rieder, R., and Bosshard, H.R. (1978) J. Biol. Chem. 253, 6045-6053). From the result of the spectrophotometric titration and from the wavelength position of the perturbation signals it is concluded that cytochrome c oxidase contains only a single binding site for cytochrome c which is close enough to heme a to function as an electron transfer site. The second site detected earlier by the gel-filtration method must be remote from this electron transfer site. Scatchard plots of the titration data are curvilinear, possibly indicating interactions between cytochrome c-binding sites on adjacent monomers of dimeric cytochrome c oxidase. The relationship between cytochrome c binding and the reaction of cytochrome c oxidase with ferrocytochrome c is discussed.  相似文献   

5.
Intramolecular electron transfer in partially reduced cytochrome c oxidase has been studied by the perturbed equilibrium method. We have prepared a three-electron-reduced, CO-inhibited form of the enzyme in which cytochrome a and copper A are partially reduced and in an intramolecular redox equilibrium. When these samples were irradiated with a nitrogen laser (0.6-ns, 1.0-mJ pulses) to photodissociate the bound CO, changes in absorbance at 598 and 830 nm were observed which were consistent with a fast electron transfer from cytochrome a to copper A. The absorbance changes at 598 nm gave an apparent rate of 17,000 +/- 2000 s-1 (1 sigma), at pH 7.0 and 25.5 degrees C. These changes were not observed in either the CO mixed-valence or the CO-inhibited fully reduced forms of the enzyme. The rate was fastest at about pH 8.0, falling off toward both lower and higher pHs. There was a small but clear temperature dependence. The process was also observed in the cytochrome c-cytochrome c oxidase high-affinity complex. The electron equilibration measured between cytochrome a and copper A is far faster than any rate measured or inferred previously for this process.  相似文献   

6.
The effect of ionic strength on the one-electron reduction of oxidized bovine cytochrome c oxidase by reduced bovine cytochrome c has been studied by using flavin semiquinone reductants generated in situ by laser flash photolysis. In the absence of cytochrome c, direct reduction of the heme a prosthetic group of the oxidase by the one-electron reductant 5-deazariboflavin semiquinone occurred slowly, despite a driving force of approximately +1 V. This is consistent with a sterically inaccessible heme a center. This reduction process was independent of ionic strength from 10 to 100 mM. Addition of cytochrome c resulted in a marked increase in the amount of reduced oxidase generated per laser flash. Reduction of the oxidase at the heme a site was monophasic, whereas oxidation of cytochrome c was multiphasic, the fastest phase corresponding in rate constant to the reduction of the heme a. During the fast kinetic phase, 2 equiv of cytochrome c was oxidized per heme a reduced. We presume that the second equivalent was used to reduce the Cua center, although this was not directly measured. The first-order rate-limiting process which controls electron transfer to the heme a showed a marked ionic strength effect, with a maximum rate constant occurring at mu = 110 mM (1470 s-1), whereas the rate constant obtained at mu = 10 mM was 630 s-1 and at mu = 510 mM was 45 s-1. There was no effect of "pulsing" the enzyme on this rate-limiting one-electron transfer process. These results suggest that there are structural differences in the complex(es) formed between mitochondrial cytochrome c and cytochrome c oxidase at very low and more physiologically relevant ionic strengths, which lead to differences in electron-transfer rate constants.  相似文献   

7.
Intramolecular electron transfer in the electrostatic cytochrome c oxidase/cytochrome c complex was investigated using a novel photoactivatable dye. Laser photolysis of thiouredopyrenetrisulfonate (TUPS), covalently linked to cysteine 102 on yeast iso-1-cytochrome c, generates a triplet state of the dye, which donates an electron to cytochrome c, followed by electron transfer to cytochrome c oxidase. Time-resolved optical absorption difference spectra were collected at delay times from 100 ns to 200 ms between 325 and 650 nm. On the basis of singular value decomposition (SVD) and multiexponential fitting, three apparent lifetimes were resolved. A sequential kinetic mechanism is proposed from which the microscopic rate constants and spectra of the intermediates were determined. The triplet state of TUPS donates an electron to cytochrome c with a forward rate constant of approximately 2.0 x 10(4) s(-1). A significant fraction of the triplet returns back to the ground state on a similar time scale. The reduction of cytochrome c is followed by faster electron transfer from cytochrome c to Cu(A), with the equilibrium favoring the reduced cytochrome c. Subsequently, Cu(A) equilibrates with heme a with an apparent rate constant of approximately 1 x 10(4) s(-1). On a millisecond time scale, the oxidized TUPS returns to the ground state and heme a becomes reoxidized. The extracted intermediate spectra are in excellent agreement with model spectra of the postulated intermediates, supporting the proposed mechanism.  相似文献   

8.
1. By the application of the principle of the sequential fragmentation of the respiratory chain, a simple-method has been developed for the isolation of phospholipid-depleted and phospholipid-rich cytochrome oxidase preparations. 2. The phospholip-rich oxidase contains about 20% lipid, including mainly phosphatidylethanolamine, phosphatidylcholine, and cardiolipin. Its enzymic activity is not stimulated by an external lipid such as asolectin. 3. The phospholipid-depleted oxidase contains less than 0.1% lipid. It is enzymically inactive in catalyzing the oxidation of reduced cytochrome c by molecular oxygen. This activity can be fully restored by asolectin; and partially restored (approximately 75%) by purified phospholipids individually or in combination. The activity can be partially restored also by phospholipid mixtures isolated from mitochondria, from the oxidase itself, and from related preparations. Among the detergents tested only Emasol-1130 and Tween 80 show some stimulatory activity. 4. The phospholipid-depleted oxidase binds with cytochrome c evidently by "protein-protein" interactions as does the phospholipid-rich or the phospholipid-replenished oxidase to form a complex with the ratio of cytochrome c to heme a of unity. The complex prepared from phospholipid-depleted cytochrome oxidase exhibits a characteristic Soret absorption maximum at 415 nm in the difference spectrum of the carbon monoxide-reacted reduced form minus the reduced form. This 415-nm maximum is abolished by the replenishment of the complex with a phospholipid or by the dissociation of the complex in cholate or in a medium of high ionic strength. When ascorbate is used as an electron donor, the complex prepared from phospholipid-depleted cytochrome oxidase does not cause the reduction of cytochrome a3 which is in dramatic contrast to the complex from the phospholipid-rich or the phospholipid-replenished oxidase. However, dithionite reduces cytochrome a3 in all of the preparations of the cytochrome c-cytochrome oxidase complex. These facts suggest that the action of phospholipid on the electron transfer in cytochrome oxidase may be at the step between cytochromes a and a3. This conclusion is substantiated by preliminary kinetic results that the electron transfer from cytochrome a to a3 is much slower in the phospholipid-depleted than in phospholipid-rich or phospholipid-replenished oxidase. On the basis of the cytochrome c content, the enzymic activity has been found to be about 10 times higher in the system with the complex (in the presence of the replenishedhe external medium unless energy is provided, and that  相似文献   

9.
Time-resolved spectroscopic studies in our laboratory of bovine heart cytochrome c oxidase dynamics are summarized. Intramolecular electron transfer was investigated upon photolysis of CO from the mixed-valence enzyme, by pulse radiolysis, and upon light-induced electron injection into the cytochrome c/cytochrome oxidase complex from a novel photoactivatable dye. The reduction of dioxygen to water was monitored by a gated multichannel analyzer using the CO flow-flash method or a synthetic caged dioxygen carrier. The pH dependence of the intermediate spectra suggests a mechanism of dioxygen reduction more complex than the conventional unidirectional sequential scheme. A branched model is proposed, in which one branch produces the P form and the other branch the F form. The rate of exchange between the two branches is pH-dependent. A cross-linked histidine-phenol was synthesized and characterized to explore the role of the cross-linked His-Tyr cofactor in the function of the enzyme. Time-resolved optical absorption spectra, EPR and FTIR spectra of the compound generated after UV photolysis indicated the presence of a radical residing primarily on the phenoxyl ring. The relevance of these results to cytochrome oxidase function is discussed.  相似文献   

10.
A hypothetical three-dimensional model of the cytochrome c peroxidase . tuna cytochrome c complex is presented. The model is based on known x-ray structures and supported by chemical modification and kinetic data. Cytochrome c peroxidase contains a ring of aspartate residues with a spatial distribution on the molecular surface that is complementary to the distribution of highly conserved lysines surrounding the exposed edge of the cytochrome c heme crevice, namely lysines 13, 27, 72, 86, and 87. These lysines are known to play a functional role in the reaction with cytochrome c peroxidase, cytochrome oxidase, cytochrome c1, and cytochrome b5. A hypothetical model of the complex was constructed with the aid of a computer-graphics display system by visually optimizing hydrogen bonding interactions between complementary charged groups. The two hemes in the resulting model are parallel with an edge separation of 16.5 A. In addition, a system of inter- and intramolecular pi-pi and hydrogen bonding interactions forms a bridge between the hemes and suggests a mechanism of electron transfer.  相似文献   

11.
I Ahmad  M A Cusanovich  G Tollin 《Biochemistry》1982,21(13):3122-3128
Laser flash photolysis has been used to determine the rate constants for the reduction of bovine cytochrome oxidase and the cytochrome c-cytochrome oxidase complex by the semiquinone and fully reduced forms of various flavin analogues (FH. and FH-, respectively). Under the condition used, the reaction of FH. with free cytochrome oxidase is too slow to compete with FH. disproportionation whereas FH- reacts measurably. Both FH. and FH- are effective in reducing the complex. The reduction of heme a in the complex is shown to proceed via cytochrome c, and a limiting first-order rate is observed in the case of FH- at high complex concentrations. The data indicate that the interaction site for electron transfer to cytochrome c is the same in the complex as with the free protein, and although a tight complex exists, at least small reactants like the flavins are not sterically hindered in their access to the bound cytochrome c. Moreover, the results also establish that intramolecular electron transfer between cytochrome c and cytochrome oxidase within the complex occurs with a first-order rate constant of greater than 700 s-1. Thus, the presence of cytochrome c greatly enhances electron transfer from reduced flavins to cytochrome oxidase.  相似文献   

12.
Cytochrome c oxidase forms tight binding complexes with the cytochrome c analog, porphyrin cytochrome c. The behaviour of the reduced and pulsed forms of the oxidase with porphyrin cytochrome c have been followed as functions of ionic strength; this behaviour has been compared with that of the resting oxidase [Kornblatt, Hui Bon Hoa and English (1984) Biochemistry 23, 5906-5911]. All forms of the cytochrome oxidase studied bind one porphyrin cytochrome c per 'functional' cytochrome oxidase (two heme a); it appears as though porphyrin cytochrome c and cytochrome c compete for the same site on the oxidase. The resting enzyme binds cytochrome c 8 times more strongly than porphyrin cytochrome c; the reduced enzyme, in contrast, binds the two with almost equal affinity. In all three cases, resting, pulsed and reduced, the heme-to-porphyrin distance is estimated to be about 3 nm. The tight-binding complexes formed between cytochrome oxidase and porphyrin cytochrome c can be dissociated by salt. Debye-Hückel analysis of salt titrations indicate that the resting enzyme and the reduced enzyme are similar in that the product of the interaction charges on the two proteins is about -14. The product of the charges for the pulsed enzyme is -25, indicating that on average another positive and negative charge take part in the interaction of the two proteins. While there is one tight binding site for cytochrome c per two heme a, cytochrome c is able to 'communicate' with four heme a. In the absence of cytochrome c, electron transfer from tetramethylphenylenediamine to the oxidase to oxygen results in the conversion of the resting form to the 'oxygenated'; in the presence of cytochrome c, the same electron transfer results in the appearance of the 'pulsed' form. Cytochrome c titrations of the enzyme show that a ratio of only one cytochrome c to four heme a is sufficient to convert all the oxidase to the 'pulsed' form. Porphyrin cytochrome c, like cytochrome c, catalyzes the same conversion with the same stoichiometry. The binding data and salt effects indicate that major structural alterations occur in the oxidase as it is converted from the resting to the partially reduced and subsequently to the pulsed form.  相似文献   

13.
Human cytochrome c oxidase was purified in a fully active form from heart and skeletal muscle. The enzyme was selectively solubilised with octylglucoside and KCl from submitochondrial particles followed by ammonium sulphate fractionation. The presteady-state and steady-state kinetic properties of the human cytochrome c oxidase preparations with either human cytochrome c or horse cytochrome c were studied spectrophotometrically and compared with those of bovine heart cytochrome c oxidase. The interaction between human cytochrome c and human cytochrome c oxidase proved to be highly specific. It is proposed that for efficient electron transfer to occur, a conformational change in the complex is required, thereby shifting the initially unfavourable redox equilibrium. The very slow presteady-state reaction between human cytochrome c oxidase and horse cytochrome c suggests that, in this case, the conformational change does not occur. The proposed model was also used to explain the steady-state kinetic parameters under various conditions. At high ionic strength (I = 200 mM, pH 7.4), the kcat was highly dependent on the type of oxidase and it is proposed that the internal electron transfer is the rate-limiting step. The kcat value of the 'high-affinity' phase, observed at low ionic strength (I = 18 mM, pH 7.4), was determined by the cytochrome c/cytochrome c oxidase combination applied, whereas the Km was highly dependent only on the type of cytochrome c used. Our results suggest that, depending on the cytochrome c/cytochrome c oxidase combination, either the dissociation of ferricytochrome c or the internal electron transfer is the rate-limiting step in the 'high-affinity' phase at low ionic strength. The 'low-affinity' kcat value was not only determined by the type of oxidase used, but also by the type of cytochrome c. It is proposed that the internal electron-transfer rate of the 'low-affinity' reaction is enhanced by the binding of a second molecule of cytochrome c.  相似文献   

14.
B C Hill  C Greenwood 《FEBS letters》1984,166(2):362-366
The reaction with O2 of equimolar mixtures of cytochrome c and cytochrome c oxidase in high and low ionic strength buffers has been examined by flow-flash spectrophotometry at room temperature. In low ionic strength media where cytochrome c and the oxidase are bound in an electrostatic, 1:1 complex some of the cytochrome c is oxidised at a faster rate than a metal centre of the oxidase. In contrast, when cytochrome c and cytochrome c oxidase are predominantly dissociated at high ionic strength cytochrome c oxidation occurs only slowly (t1/2 = 5 s) following the complete oxidation of the oxidase. These results demonstrate that maximal rates of electron transfer from cytochrome c to O2 occur when both substrates are present on the enzyme. The heterogeneous oxidation of cytochrome c observed in the complex implies more than one route for electron transfer within the enzyme. Possibilities for new electron transfer pathways from cytochrome c to O2 are proposed.  相似文献   

15.
The influence of the detergent environment upon individual electron-transfer rates of cytochrome c oxidase was investigated by stopped-flow spectrophotometry. The effects of three detergents were studied: lauryl maltoside, which supports a high turnover number (TN = 350 s-1), n-dodecyl octaethylene glycol monoether (C12E8), which supports an intermediate TN (150 s-1), and Triton X-100 in which oxidase is nearly inactive (TN = 2-3 s-1). Under limited turnover conditions (cytochrome c:cytochrome c oxidase ratio = 1:1 to 8:1), the rate of oxidation of cytochrome c was measured and compared with the fast reduction of cytochrome a and its relatively slow reoxidation. Two reducing equivalents of cytochrome c were rapidly oxidized in a burst phase; the remaining two to six equivalents were oxidized more slowly, concurrent with the reoxidation of cytochrome a; i.e., the percent reduced cytochrome a reflects the percent reduced cytochrome c. With the resting enzyme, the bimolecular reaction between reduced cytochrome c and cytochrome a was rapid, was insensitive to the detergent environment, and was not the rate-limiting step in the presence of any detergent. The rate of internal electron transfer from cytochrome a to cytochrome a3 in the resting enzyme was slow and only slightly affected by the detergent environment: 1.0-1.1 s-1 in Triton X-100, 5-7 s-1 in C12E8, and 5-12 s-1 in lauryl maltoside. With the pulsed enzyme, the intramolecular electron transfer between cytochrome a and cytochrome a3 increased 4-5-fold in the lauryl maltoside enzyme but did not increase in the Triton X-100 enzyme (intermediate values were obtained with the C12E8 enzyme). We conclude that cytochrome c oxidase acquires the pulsed conformation only in those detergents that support high TN's, e.g., lauryl maltoside and C12E8, but it is locked in the resting conformation in those detergents which result in low TN's, e.g., Triton X-100.  相似文献   

16.
Reactions of mercaptans with cytochrome c oxidase and cytochrome c   总被引:2,自引:0,他引:2  
1. The steady-state oxidation of ferrocytochrome c by dioxygen catalyzed by cytochrome c oxidase, is inhibited non-competitively towards cytochrome c by methanethiol, ethanethiol, 1-propanethiol and 1-butanethiol with Ki values of 4.5, 91, 200 and 330 microM, respectively. 2. The inhibition constant Ki of ethanethiol is found to be constant between pH 5 and 8, which suggests that only the neutral form of the thiol inhibits the enzyme. 3. The absorption spectrum of oxidized cytochrome c oxidase in the Soret region shows rapid absorbance changes upon addition of ethanethiol to the enzyme. This process is followed by a very slow reduction of the enzyme. The fast reaction, which represents a binding reaction of ethanethiol to cytochrome c oxidase, has a k1 of 33 M-1 . s-1 and a dissociation constant Kd of 3.9 mM. 4. Ethanethiol induces fast spectral changes in the absorption spectrum of cytochrome c, which are followed by a very slow reduction of the heme. The rate constant for the fast ethanethiol reaction representing a bimolecular binding step is 50 M-1 . s-1 and the dissociation constant is about 2 mM. Addition of up to 25 mM ethanethiol to ferrocytochrome c does not cause spectral changes. 5. EPR (electron paramagnetic resonance) spectra of cytochrome c oxidase, incubated with methanethiol or ethanethiol in the presence of cytochrome c and ascorbate, show the formation of low-spin cytochrome alpha 3-mercaptide compounds with g values of 2.39, 2.23, 1.93 and of 2.43, 2.24, 1.91, respectively.  相似文献   

17.
The level of reduction of cytochrome a and CuA during the oxidation of ferrocytochrome c has been determined in stopped-flow experiments. Both components are partially reduced but become progressively more oxidized as the reaction proceeds. When all cytochrome c has been oxidized, CuA is also completely oxidized, whereas cytochrome a is still partially reduced. These results can be simulated on the basis of a model which requires that the intramolecular electron transfer from cytochrome a and CuA to cytochrome a3-CuB is a two-electron process and, in addition, that the binding of oxidized cytochrome c to the electron- transfer site decreases the rate constants for intramolecular electron transfer from cytochrome a. The first requirement is related to the function of the oxidase as a proton pump. Product dissociation is not by itself rate-limiting, making it less likely that the source of the nonhyperbolic substrate kinetics is an effect on this step from electrostatic interaction with ferricytochrome c bound to a second site. It is pointed out that nonhyperbolic kinetics is, in fact, an intrinsic property of ion pumps.  相似文献   

18.
Flöck D  Helms V 《Proteins》2002,47(1):75-85
Electron transferring protein complexes form only transiently and the crystal structures of electron transfer protein--protein complexes involving cytochrome c could so far be determined only for the pairs of yeast cytochrome c peroxidase (CcP) with iso-1-cytochrome c (iso-1-cyt c) and with horse heart cytochrome c (cyt c). This article presents models from computational docking for complexes of cytochrome c oxidase (COX) from Paracoccus denitrificans with horse heart cytochrome c, and with its physiological counterpart cytochrome c552 (c552). Initial docking is performed with the FTDOCK program, which permits an exhaustive search of translational and rotational space. A filtering procedure is then applied to reduce the number of complexes to a manageable number. In a final step of structural and energetic refinement, the complexes are optimized by rigid-body energy minimization with the molecular mechanics package CHARMM. This methodology was first tested on the CcP:iso-1-cyt c complex, in which the complex with the lowest CHARMM energy has an RMSD from the crystal structure of only 1.8 A (C(alpha) carbon atoms). Notably, the crystal conformation has an even lower energy. The same procedure was then applied to COX:cyt c and COX:c552. The lowest-energy COX:cyt c complex is very similar to a docking model previously described for the complex of bovine cytochrome c oxidase with horse heart cytochrome c. For the COX:c552 complex, cytochrome c552 is found in two different orientations, depending on whether it is docked against COX from a two-subunit or from a four-subunit crystal structure, respectively. Both conformations are discussed critically in the light of the available experimental data.  相似文献   

19.
Antimycin, a specific and highly potent inhibitor of electron transfer in the cytochrome b-c1 segment of the mitochondrial respiratory chain, does not inhibit reduction of cytochrome c1 by succinate in isolated succinate-cytochrome c reductase complex under conditions where the respiratory chain complex undergoes one oxidation-reduction turnover. If a slight molar excess of cytochrome c is added to the isolated reductase complex in the presence of antimycin, there is rapid reduction of one equivalent of c type cytochrome by succinate, after which reduction of the remaining c type cytochrome is inhibited. Antimycin fully inhibits succinate-cytochrome c reductase activity of isolated succinate-cytochrome c reductase complex in which the b-c1 complex undergoes multiple turnovers in a catalytic fashion. In addition, when antimycin is added to isolated reductase complex in the presence of cytochrome c plus cytochrome c oxidase, the inhibitor causes a "crossover" in the steady state level of reduction of the cytochromes b and c1 comparable to this classical effect in mitochondria. On the basis of these results, it is suggested that linear schemes of electron transfer are not adequate to account for the site of antimycin inhibition and the mechanism of electron transfer in the cytochrome b-c1 segment of the respiratory chain. The effects of antimycin are consistent with cyclic electron transfer mechanisms such as the protonmotive Q cycle.  相似文献   

20.
When cytochrome c oxidase is isolated from mitochondria, the purified enzyme requires both cytochrome c and O2 to achieve its maximum rate of internal electron transfer from cytochrome a to cytochrome a3. When reductants other than cytochrome c are used, the rate of internal electron transfer is very slow. In this paper we offer an explanation for the slow reduction of cytochrome a3 when reductants other than cytochrome c are used and for the apparent allosteric effects of cytochrome c and O2. Our model is based on the conventional understanding of cytochrome oxidase mechanism (i.e. electron transfer from cytochrome a/CuA to cytochrome a3/CuB), but assumes a relatively rapid two-electron transfer between cytochrome a/CuA and cytochrome a3/CuB and a thermodynamic equilibrium in the "resting" enzyme (the enzyme as isolated) which favors reduced cytochrome a and oxidized cytochrome a3. Using the kinetic constants that are known for this reaction, we find that the activating effects of O2 and cytochrome c on the rate of electron transfer from cytochrome a to cytochrome a3 conform to the predictions of the model and so provide no evidence of any allosteric effects or control of cytochrome c oxidase by O2 or cytochrome c.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号