首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of L-DOPA on milk removal and on prolactin release during suckling or milking was studied in lactating ewes. Various doses of L-DOPA (25, 50, 100 and 200 mg per animal) were injected iv 30 min before the suckling or milking period. Control ewes were injected with 0.9% NaCl solution only. Milking induced a significant long-lasting release of prolactin. An inhibition of milk removal was obtained with the dose of 200 mg of L-DOPA. An inhibition of prolactin secretion was observed related to the dose of drug administered. The inhibitory effect of 200 mg of L-DOPA on the secretion of prolactin after milking lasted for about 120 min, and thereafter a significant increase in serum prolactin level occurred. This increase in serum prolactin was not due to a "rebound" effect of L-DOPA, since the milking stimulus had to be present to induce the delayed increase in prolactin. Doses of 25 or 50 mg of L-DOPA prevented the surge of prolactin observed immediately after milking, but a long-lasting release of prolactin was obtained thereafter. The inhibitory effect of L-DOPA on prolactin release could be overridden by the suckling or milking stimuli according to the dose administered. The suckling stimulus was more effective than milking in overriding the inhibitory effect of the low dose of L-DOPA. The results indicate that milk removal and prolactin release induced by milking or suckling in lactating ewes is inhibited by an increase in monoamines at the hypothalamic-hypophyseal level.  相似文献   

2.
The plasma LH concentration in ovariectomized lactating rats is low for 14 days postpartum, while the prolactin concentration is high during this period. We examined the effect of the inhibition of increased prolactin secretion with bromocriptine (CB-154) on the LH secretion in lactating rats ovariectomized on day 2 (day 0 = day of parturition). Blood samples were collected through an indwelling atrial cannula every day. LH levels were kept low until day 9 in lactating rats injected daily with CB-154 (0.6 mg/day, s.c.). The duration of the period during which LH secretion was suppressed was shorter in lactating rats treated with CB-154 than in saline-injected controls. The replacement with ovine prolactin by means of a mini-osmotic pump (0.3 mg/day, s.c.) in CB-154-treated lactating rats restored the duration of LH suppression. In rats deprived of their pups on day 2, the LH concentration rose immediately after removal of the pups and the LH level was not significantly different between rats treated with CB-154, ovine prolactin and saline, indicating that neither the CB-154 treatment nor the high level of prolactin alone has any effect on LH secretion in rats deprived of their pups. The present results clearly demonstrate that prolactin does not mediate the suppressing effect of the suckling stimulus on LH secretion in early lactation and support our theory that the suckling stimulus controls the LH and prolactin secretion independently at the hypothalamic level.  相似文献   

3.
Suckling, starting at 19:00 h on Day 18 of pregnancy, induced a significant increase in serum prolactin concentration at 20:00 h on Day 19 of pregnancy, but no increase in mammary gland casein or lactose content. Mifepristone (2 mg/kg) injection at 08:00 h on Day 19 of pregnancy induced significant increases in casein, but not in lactose, 24 h after administration. Mifepristone alone did not induce prolactin secretion, indicating that lactogenesis was induced by placental lactogen in the absence of progesterone action. When mifepristone was injected into suckling rats, serum prolactin concentrations were higher than in the untreated suckling rats. Casein in these rats increased significantly 12 h after mifepristone administration and lactose at 24 h after. If the suckling mifepristone-treated rats were given two injections of bromocriptine (1.5 mg/kg) at 12:00 h on Days 18 and 19 of pregnancy, serum prolactin concentrations were not increased by suckling, but casein and lactose concentrations in the mammary gland showed values similar to those obtained in the mifepristone-treated non-suckling rats. Mifepristone can therefore potentiate suckling-induced prolactin release in pregnant rats, demonstrating a direct central inhibitory action of progesterone on prolactin secretion. This suckling-induced prolactin secretion, unable to induce casein or lactose synthesis in the presence of progesterone, enhanced significantly synthesis of these milk components in the absence of progesterone action (rats treated with mifepristone). Fatty acid synthase, which is stimulated by the suckling stimulus in lactating rats, was not modified by mifepristone or suckling in pregnant rats.  相似文献   

4.
A study was performed to examine the release patterns of prolactin and LH of young beef cows with one (single calf) or two calves (double calf) throughout the postpartum interval. The effect on prolactin release of intramuscular and intra-carotid administration of lergotrile and intra-carotid administration of L-dopa was also examined. In approximately 50% and 65% of the cases, no prolactin release could be detected after the beginning of or during the suckling stimulus in cows with one or two calves respectively. LH plasma concentrations remained constant throughout the experiment in all animals. The chosen intramuscular lergotrile treatment lowered plasma prolactin concentrations to baseline levels but had no effect on the length of the postpartum interval. No effect on prolactin release was observed by the given intra-carotid treatments of both lergotrile and L-dopa. First postpartum estrus was observed on days 67 and 88 in the single and double calf cows respectively. The number of suckling periods did not change during the postpartum period but their duration decreased during the same period. These results demonstrate that in at least half of the cases the suckling stimulus does not cause a release of prolactin from the pituitary in the young beef cow. Also, the inhibitory effect of suckling on the resumption of ovarian cyclic function postpartum appears to be of a quantitative nature and mediated by a factor other than prolactin.  相似文献   

5.
Substance P, an undecapeptide isolated from gut and brain tissues, was reported to stimulate prolactin release. It was suggested that substance P may play a role in the control of prolactin secretion. In this investigation we studied the effects of the blockade of endogenous substance P by the administration of a specific anti-substance P serum on serum prolactin levels in rats in the evening of proestrus, in lactating rats after suckling, and in male rats with hyperprolactinemia induced by grafting 2 anterior pituitary glands under the kidney capsule. The injection of the anti-substance P serum was followed by a significant decrease of the prolactin surge induced by 30 min suckling in lactating rats, when the antiserum was administered 24 hr but not 5.30 hr earlier. Anti-substance P serum also induced a significant decrease in serum prolactin levels in pituitary grafted rats, but induced no change in the proestrous surge of prolactin and LH. These results show that substance P may be involved in the release of prolactin induced by suckling and that this peptide may have an intrapituitary role in the process of prolactin release. On the other hand, substance P does not seem to play a significant role in the proestrous peak of prolactin and LH.  相似文献   

6.
W J Millard  T M Romano 《Life sciences》1991,49(22):1635-1642
We have examined the effects of cysteamine on its ability to deplete prolactin in various states of hyperprolactinemia. Administration of subtoxic doses of cysteamine (75 and 150 mg/kg,sc) dramatically reduces serum prolactin levels as well as pituitary prolactin content in a dose-dependent manner in estrogen-primed brown Irish ACI female rats. A similar dose-dependent decrease in anterior pituitary prolactin levels was observed in two ectopic prolactin secreting pituitary tumor models (MtTW15 and 7315a). However, a significant reduction in serum prolactin levels was seen in these same tumor bearing animals at only the 150 mg/kg dose of cysteamine. Interestingly, the prolactin content of each of the prolactin secreting tumors, although reduced by cysteamine administration, the effect was neither dose-dependent nor as dramatic as that observed in the anterior pituitary gland proper. These data demonstrate that cysteamine can significantly lower prolactin concentrations in hyperprolactinemia. Further, ectopic prolactin secreting pituitary tissue appears less sensitive to the prolactin-depleting effects of cysteamine. This latter finding may explain, in part, why serum prolactin levels were not as severely reduced in the ectopic tumor bearing female rats as in estrogen-induced hyperprolactinemic animals.  相似文献   

7.
We have studied the effects by cysteamine in vitro and in vivo on hormone production and islet cell metabolism in isolated pancreatic islets and perfused pancreas of the rat. In isolated islets, cysteamine dose-dependently depleted somatostatin immunoreactivity by 50% after 60 min exposure to 1 mmol/l of the compound. This effect appeared to be independent of interaction of the drug with secretion of somatostatin from the pancreatic D-cells. Cysteamine, however, interacted acutely not only with the D-cells, but also markedly suppressed glucose-induced insulin release. Moreover, cysteamine inhibited islet glucose oxidation, an effect which reflects interference with the metabolism mainly of the B-cells. The effect of cysteamine on glucose-induced insulin release was prolonged, since it was still observed in the isolated rat pancreas perfused 24 h after in vivo treatment with cysteamine. In contrast to the effects on glucose-induced insulin release, the response to glibenclamide remained unaffected by a previous exposure to cysteamine in vivo. However, both glucose- and glibenclamide-induced somatostatin secretion was reduced by 50%, whereas basal glucagon secretion was significantly enhanced in pancreata from cysteamine-treated rats vs. control rats. We conclude that (1) cysteamine does not specifically affect the D-cells of the islets, and (2) the multiple effects by cysteamine on islet cell function, particularly on B-cell metabolism and secretion, renders the compound unsuitable for the study of paracrine interactions in the islets.  相似文献   

8.
In dams which had been kept isolated from pups for 8-10 h, the magnitude of the suckling-induced prolactin rise in the plasma was studied in relation to intensity of suckling stimulus and lactational age of the mother. At midlactation the response of prolactin evoked by suckling was enhanced as litter size increased. Suckling of 2 pups induced a greater prolactin rise in dams adjusted to 2 pups than in dams adjusted to 8 pups. Suckling of 8 pups caused a greater prolactin rise in dams which had been adjusted to an 8-pup litter, than in rats with a 2-pup litter. At late and prolonged lactation the rise of prolactin in the plasma induced by the suckling stimulus of 8 pups was significantly lower than at midlactation. Injection of perphenazine after a period of suckling induced a moderate increase of plasma prolactin in dams at midlactation, and a similar increase in dams at late lactation and at day 42 of lactation. It is concluded that in the first half of lactation the number of pups, i.e. the intensity of the suckling stimulus, is an important factor in determining the magnitude of the prolactin response to suckling. The lower response of plasma prolactin to suckling in late lactation is neither caused by a decrease in suckling stimulus from the pups nor by an increase in prolactin clearance; it is probably due to a gradual reduction in prolactin synthesizing and releasing capacity of the pituitary, brought on by a desensitization of the neural or neuroendocrine system to suckling stimuli as lactation proceeds.  相似文献   

9.
Serum concentrations of prolactin were unaffected by either suckling or milking on Day 2 or 3 postpartum in cows housed with their calves following parturition. In contrast, among cows housed without their calves milking elicited a four- to sixfold increase in serum prolactin concentrations. Serum oxytocin levels increased in response to both suckling and milking among cows housed with their calves with suckling being a more potent stimulus (257 ± 32 vs 189 ± 23 pg/ml at peak). However, the greatest increase in oxytocin levels accompanied milking in cows housed without their calves (375 ± 36 pg/ml at peak). These results suggest that stimuli associated with the presence or the absence of the calf can alter maternal secretion of oxytocin and prolactin. Greater understanding of factors which regulate secretion of these hormones may result in techniques to modify milk synthesis and milk ejection in dairy cows.  相似文献   

10.
Baclofen, a GABA B agonist, inhibits prolactin release due to different kinds of stress. In the present study its effect was evaluated in several endocrine experimental situations to explore the specificity of this effect, as well as the site of action of the drug. Baclofen significantly inhibited prolactin and thyrotropin outputs induced by 25 min of suckling, without altering milk ejection or LH secretion. The effect was also tested in median eminence-lesioned rats and in in vitro incubations. Baclofen did not modify prolactin levels in rats in which brain control of the pituitary secretion was eliminated by destruction of the median eminence, and it did not inhibit prolactin or thyrotropin secretion from incubated hemipituitaries. It is postulated that baclofen inhibits prolactin and thyrotropin secretion by acting on GABA B receptors related to the brain control of pituitary secretion.  相似文献   

11.
Ergocryptine (2 mg/kg) caused short- and long-term reduction of prolactin secretion in rats experiencing concurrent lactation and pregnancy. The long-term effects of the drug lasted at least 60 days and resulted in reduced milk secretion and termination of pregnancy. Prolactin replacement therapy at a low dose (5 i.u./day) was unsuccessful in overcoming these effects but a higher dose (up to 60 i.u./day) increased milk production and maintained pregnancy. One possible explanation of these results is that prolactin, rather than the suckling stimulus, was responsible for the suppression of oestrous cycles, because ergocryptine brought about a resumption of oestrous vaginal smears in all treated rats in spite of continued suckling.  相似文献   

12.
Suckling may prolong the anovulatory period postpartum by 1) a neural-mediated inhibition of luteinizing hormone-releasing hormone (LHRH)-induced gonadotropin secretion, or 2) an inhibitory effect of hormones released by suckling on gonadotropin secretion and/or action at the ovary. In the present investigation we considered whether a suckling event caused 1) acute inhibition of luteinizing hormone (LH) and follicle-stimulating hormone (FSH) secretion, and 2) release of glucocorticoids and/or prolactin (PRL). Six Hereford cows remained intact and six were ovariectomized (ovx) on day 7 postpartum. Calves remained with their dams continuously. Cows were bled at 10-min intervals during 6 consecutive hr on days 14, 28 and 42 postpartum. Both LH and FSH were released episodically by day 14 in intact and ovx cows, but suckling did not acutely affect LH and FSH secretion. A PRL release accompanied suckling 67, 96 and 95% of the time. However, among all instances where PRL was released on days 14, 28 and 42 postpartum, 67, 29 and 37% occurred independent of a suckling event. Glucocorticoids were not released by suckling in intact cows but were released in ovx cows. We conclude that suckling does not acutely affect LH or FSH concentrations in serum of cows postpartum, that PRL concentrations usually increase in serum coincident with suckling but can be released at other times, and suckling-induced glucocorticoid release depends upon the presence of the ovary.  相似文献   

13.
Smith BB  Wagner WC 《Theriogenology》1985,23(2):283-296
The effect of dopamine agonists (ergocryptine), antagonists (chlorpromazine, haloperidol, reserpine, pimozide), thyrotropin releasing hormone or stress (restraint, piglet removal) on prolactin release was studied in primiparous lactating gilts. All animals were fitted with surgically implanted jugular catheters before farrowing. The only drug treatments which resulted in a significant change in PRL concentrations in blood were thyrotropin releasing hormone (increase) and ergocryptine (decrease). The results suggest that dopamine may not be the only regulator of prolactin in lactating pigs. Further studies are needed to identify drugs which would be useful in clinical situations for treatment of lactation failure due to low prolactin secretion. In the two stress-exposed groups, there was a gradual, steady decline in the plasma concentration of prolactin which resulted from loss of suckling contact with the piglets. Thus, snare restraint does not increase prolactin secretion in lactating sows confirming the results of other studies on pigs in different physiologic states.  相似文献   

14.
The changes in anterior pituitary (AP) of pregnant and lactating dogs as compared with pituitary of animals in metestrus-anestrus phase are described with special reference to the relative proportion, topography and morphology of prolactin cells, somatotrophs, corticotrophs, thyrotrophs and gonadotrophs. For demonstration of these cells, suitable histological, histochemical and immunoenzyme cytochemical methods are used. The prolactin cells show progressive hyperplasia during pregnancy, so that at the end of this phase and during lactation, they comprise the most predominant glandular cells in AP. At the same time, they reveal massive hypertrophy with marked morphological features of high secretory activity, After transient or continous interruption of the suckling stimulus they show signs of functional inhibition on involution. The corticotrophs appear at 20. and 30. days of pregnancy to be relatively increased in number. While in the last third of pregnancy and during lactation, they only seem to be more active than those in pituitary of metestrus-anestrus dogs. The somatotrophs appear to be progressively reduced in relative number during pregnancy and lactation. However, they show some morphological signs of active secretion. The thyrotrophs did not show any morphological alterations during the different reproductive phases. The gonadotrophs reveal during pregnancy, especially at 30. day morphological signs of stimulation. On the contrary they appear atrophied during lactation. This may be a result of suckling stimulus and morphological expression of the inverse relationship in the secretion pattern of gonadotrophins and prolactin in dogs during suckling. The estrogen and progesterone levels in plasma as well as the changes in their relative concentrations may largely account for the structural changes on AP of pregnant dogs. However, neuroendocrine reflexes (e.g. suckling stimulus) seem to be of a great importance for the maintainance of stimulation of prolactin cells during lactation.  相似文献   

15.
The oxytocin and prolactin responses to suckling were measured in 10 women in early (n = 5) and established lactation (n = 5). Oxytocin was released in a pulsatile manner during suckling in all women, but the response was not related to milk volume, prolactin response, or parity of the mother. In all 10 women plasma oxytocin concentrations increased three to 10 minutes before suckling began. In five women this occurred in response to the baby crying, in three it coincided with the baby becoming restless in expectation of the feed, while in two it corresponded with the mother preparing for the feed. There was no prolactin response to stimuli other than stimulation of the nipple associated with suckling. These results clearly indicate that the milk ejection reflex, with release of oxytocin, occurs in most women before the tactile stimulus of suckling. A second release of oxytocin follows in response to the suckling stimulus itself. Thus it is important that care is taken to protect breast feeding mothers from stress not only during suckling but also immediately before nursing, when conditioned releases of oxytocin will occur.  相似文献   

16.
All 4 mammary glands of the tammar wallaby showed a steady increase in weight and prolactin receptor concentration during the luteal phase of the oestrous cycle to reach a peak at oestrus. Removal of the corpus luteum abolished this mammogenesis , while pregnancy, which in this species is a day or so shorter than the oestrous cycle, had no effect. This provides an explanation for the previous finding that pregnancy is not a necessary pre-requisite for lactation in marsupials and that nonpregnant animals will lactate very successfully, provided the suckling stimulus is applied at the correct stage of the oestrous cycle. During lactation, only the gland supplying the teat to which the pouch young was attached developed and showed any further increase in prolactin receptors; the other 3 glands remained small and inactive. These results indicate the importance of the suckling stimulus and milk withdrawal on the initiation and maintenance of lactation.  相似文献   

17.
Prolactin and arachidonic acid increase milk casein secretion in mammary gland slices. These effects do not necessitate Ca2+ in the incubation medium. Prolactin does not modify the influx or the efflux of 45Ca2+. The Ca2+ channel blocking agent D600 (6 micrograms/ml) decreases the stimulatory effect of prolactin on casein secretion, but does not interfere in the stimulatory effect of arachidonic acid. The calmodulin inhibitor trifluoperazine (100 microM) inhibits stimulation of casein secretion by both prolactin and arachidonic acid. From these data, it is concluded that a flow of Ca2+ from the outside into the cell is not a requisite for the stimulation of casein secretion. However, stimulation by prolactin, but not stimulation by arachidonic acid, requires Ca2+ movement through calcium pathways. Intracellular transport of Ca2+ seems necessary for the stimulation of secretion.  相似文献   

18.
Saline, naloxone, domperidone or metaclopramide was injected into lactating rabbits immediately before suckling. Blood samples were taken prior to injection (0 minutes) and then at 15, 30, 45 and 60 minutes after the start of suckling, after which the samples were assayed for plasma prolactin and LH concentrations. In all the does there was a significant increase in prolactin concentration, which was highest 15 minutes after the start of suckling, and which declined exponentially thereafter to levels significantly higher than before suckling. The increase in prolactin concentration was similar in does given saline and naloxone, but it was significantly enhanced in does given metaclopramide; with domperidone the increase was intermediate and not significantly different from that following treatment with saline. In does given saline, domperidone, and metaclopramide plasma LH concentrations declined slowly during the hour after suckling but the concentration was increased significantly in does given naloxone. The inverse correlations between prolactin and LH were low weak and were not significant.  相似文献   

19.
We investigated the plasma concentration of ghrelin peptide during pregnancy and lactation in rats. Plasma ghrelin levels on days 10 and 15 of pregnancy were significantly lower than those of the non-pregnant rats. Thereafter, the plasma ghrelin levels on day 20 of pregnancy sharply increased to levels comparable with those in non-pregnant rats. Ghrelin peptide concentrations in the stomach did not change significantly during pregnancy. In the hypothalamus, ghrelin mRNA levels were significantly lower on day 15 of pregnancy than in the non-pregnant rats. Also, plasma ghrelin levels were significantly lower in lactating dams than non-lactating controls on days 3 and 8 of lactation. We examined the possible involvement of prolactin and oxytocin in the regulation of plasma ghrelin concentrations during lactation. Although plasma prolactin levels were decreased by the administration of bromocriptine, plasma ghrelin levels did not differ significantly between vehicle- and drug-treated lactating rats. Administration of haloperidol produced a marked increase in plasma prolactin levels as compared with the non-lactating controls. However, plasma ghrelin levels were not significantly different between vehicle- and drug-treated rats. Administration of an oxytocin antagonist into the lateral ventricle significantly inhibited the increase in the plasma oxytocin level induced by acute suckling. However, plasma ghrelin levels did not significantly between the groups. These observations indicated that the decrease in serum ghrelin is caused by a loss of the contribution of hypothalamic ghrelin. Furthermore, the present results suggested that the suckling stimulus itself, but the release of prolactin or oxytocin, is the factor most likely to be responsible for the suppression of ghrelin secretion during lactation.  相似文献   

20.
To study the effects of the overlapping of seasonal and lactation anestrus and the influence of the suckling mode on the resumption of reproductive activity in Texel ewes, two experiments were carried out after the July and November lambings. The frequency and the duration of suckling decreased with the age of the lambs, and the suckling intensity in the lambs that were allowed to suck unrestrictedly was three times higher than in lambs restricted to sucking three times a day. The overlapping of seasonal anestrus and lactation delayed the resumption of ovarian and estrus activity, but no difference was observed between dams suckling single lambs and twins. The resumption of ovarian and estrus activity was much earlier after the November lambing than after the July lambing. Weaning after the November lambing shortened the interval between parturition to first estrus but not to the first luteal function. The reduction of suckling intensity by suckling management had no effect on the resumption of ovarian and estrus activity. In early postpartum, suckling inhibited the luteinizing hormone (LH) pulsatile secretion and consequently the first LH discharge. However, the earlier restoration of gonadotropin stimulation in dry ewes was not immediately followed by ovarian activity. The suckling inhibition may be due to a temporary disturbance in hormonal balance, the rise in prolactin (PRL) and cortisol secretions. Plasma estradiol 17beta (E2) concentrations were higher in dry than in suckling ewes in early postpartum. Follicle stimulating hormone (FSH) secretion was not involved in the process of delaying the resumption of reproductive activity after lambing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号