首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Fibroblast growth factors (FGFs) regulate long bone development by affecting the proliferation and differentiation of chondrocytes. FGF treatment inhibits the proliferation of chondrocytes both in vitro and in vivo, but the signaling pathways involved have not been clearly identified. In this report we show that both the MEK-ERK1/2 and p38 MAPK pathways, but not phospholipase C gamma or phosphatidylinositol 3-kinase, play a role in FGF-mediated growth arrest of chondrocytes. Chemical inhibitors of the MEK1/2 or the p38 MAPK pathways applied to rat chondrosarcoma (RCS) chondrocytes significantly prevented FGF-induced growth arrest. The retinoblastoma family members p107 and p130 were previously shown to be essential effectors of FGF-induced growth arrest in chondrocytes. The dephosphorylation of p107, one of the earliest events in RCS growth arrest, was significantly blocked by MEK1/2 inhibitors but not by the p38 MAPK inhibitors, whereas that of p130, which occurs later, was partially prevented both by the MEK and p38 inhibitors. Furthermore, by expressing the nerve growth factor (NGF) receptor, TrkA, and the epidermal growth factor (EGF) receptor, ErbB1, in RCS cells we show that NGF treatment of the transfected cells caused growth inhibition, whereas EGF did not. FGF- and NGF-induced growth inhibition is accompanied by a strong and sustained activation of ERK1/2 and p38 MAPK and a decrease of AKT phosphorylation, whereas EGF induces a much more transient activation of p38 and ERK1/2 and increases AKT phosphorylation. These results indicate that inhibition of chondrocyte proliferation by FGF requires both ERK1/2 and p38 MAPK signaling and also suggest that sustained activation of these pathways is required to achieve growth inhibition.  相似文献   

2.
The phosphatidylinositol 3-kinase (PI3K) signaling pathway(s) is activated by a variety of agonists to regulate cell migration. Here, we show that the stimulation of mouse embryonic fibroblasts with platelet-derived growth factor (PDGF) induces migration in a PI3K-dependent manner. Cells lacking Akt1/PKBalpha exhibit impaired migration and peripheral ruffling in response to PDGF stimulation, whereas cells lacking Akt2/PKBbeta are normal. In addition, over-expression of Akt1/PKBalpha but not Akt2/PKBbeta is sufficient to restore PDGF-induced cell migration in an Akt1/PKBalpha and Akt2/PKBbeta deficient background. In response to PDGF stimulation, Akt1/PKBalpha selectively translocates to membrane ruffles, however, this localization is abrogated by substituting the linker region of Akt2/PKBbeta. Similarly, expression of an Akt2/PKBalpha chimera containing the linker region of Akt1/PKBalpha restored PDGF-induced migration in cells lacking both Akt1/PKBalpha and Akt2/PKBbeta. Finally, over-expression of constitutively active Rac rescues PDGF-induced migration defects in cells lacking Akt1/PKBalpha. Given these results, we suggest that Akt1/PKBalpha controls cell migration by selectively translocating to the leading edge and activating Rac.  相似文献   

3.
Tyrphostins, which block protein tyrosine kinase activity, were studied for their inhibitory action on platelet-derived growth factor (PDGF)-induced proliferation of human bone marrow fibroblasts. Of the seven tryphostins examined, tyrphostin AG370 was found to be the most potent blocker against PDGF-induced mitogenesis (IC50 = 20 microM). This PTK blocker also blocks mitogenesis induced by epidermal growth factor (IC50 = 50 microM) and human serum (IC50 = 50 microM), but with lower efficacy. In digitonin-permeabilized fibroblasts as well as in intact fibroblasts, tyrphostin AG370 inhibits PDGF receptor autophosphorylation and the tyrosine phosphorylation of intracellular protein substrates (pp120, pp85, and pp75) which coprecipitate with the PDGF receptor. In comparison to AG370, AG18, a potent EGF receptor blocker, was less efficient in inhibiting PDGF-induced proliferation of fibroblasts and phosphorylation of the intracellular protein substrates. Under the conditions in which AG370 inhibits PDGF-induced mitogenesis and phosphorylation, it does not affect [125I]PDGF internalization and enhance [125I]PDGF binding. These findings suggest that AG370, which is an indole tyrphostin, may serve as a model for developing analogues with a therapeutic potential for treatment of diseases which involve abnormal cellular proliferation induced by PDGF.  相似文献   

4.
The retinoid-inducible gene 1 (RIG1) protein is a retinoid-inducible growth regulator. Previous studies have shown that the RIG1 protein inhibits the signaling pathways of Ras/mitogen-activated protein kinases. However, neither the mode of action nor the site of inhibition of RIG1 is known. This study investigated the effects of RIG1, and the mechanisms responsible for these effects, on the activation of Ras proteins in HtTA cervical cancer cells. RIG1 reduced the levels of activated Ras (Ras-GTP) and total Ras protein in cells transfected with mutated H-, N-, or K-Ras(G12V), or in cells transfected with the wild type H- or N-Ras followed by stimulation with epidermal growth factor. The half-life of Ras protein decreased from more than 36 h in control cells to 18 h in RIG1-transfected cells. RIG1 immunoprecipitated with the Ras protein in co-transfected cellular lysates. In contrast to the predominant plasma membrane localization in control cells, the H-Ras fusion protein EGFP-H-Ras was localized within a discrete cytoplasmic compartment where it co-localized with RIG1. RIG1 inhibited more than 93% of the Elk- and CHOP-mediated transactivation induced by H- or K-Ras(G12V). However, RIG1 did not inhibit the transactivation induced by MEK1 or MEK3, and failed to suppress the phosphorylation of extracellular signal-regulated kinases 1 and 2 induced by the constitutively activated B-Raf(V599E). The RIG1 with carboxyl terminal truncation (RIG1DeltaC) did not immunoprecipitate with Ras and had no effect on Ras activation or transactivation of the downstream signal pathways. These data indicate that RIG1 exerts its inhibitory effect at the level of Ras activation, which is independent of Ras subtype but dependent on the membrane localization of the RIG1 protein. This inhibition of Ras activation may be mediated through downregulation of Ras levels and alteration of Ras subcellular distribution.  相似文献   

5.
6.
7.
8.
9.
p21(Waf1/Cip1) (hereafter referred to as p21) is up-regulated in differentiating and DNA-damaged cells, but it is also up-regulated by serum and growth factors. We show here that fibroblast growth factor-2 (FGF-2), platelet-derived growth factor (PDGF), and transforming growth factor-beta1 (TGF-beta1) all induce p21 expression in mouse fibroblasts, but with markedly different kinetics. We link their effect on p21 to Ras and mitogen-activated protein kinase kinase-1(/2) [MEK1(/2)]-regulated pathways using either a specific MEK1(/2) inhibitor (PD 098059) or cells expressing conditionally activated Ras or dominant negative Ras. We demonstrate that p21 induction by PDGF and TGF-beta1 requires MEK1(/2) and, additionally, that the TGF-beta1 effect on p21 depends on Ras, whereas the PDGF effect does not. In contrast, FGF-2 regulation of p21 is largely independent of MEK and Ras. However, PD 098059 efficiently inhibited S-phase entry of quiescent cells induced by either FGF-2 or PDGF, suggesting separate signaling pathways for FGF-2 in induction of p21 and in S-phase entry. The results suggest different but partly overlapping signaling pathways in growth factor regulation of p21.  相似文献   

10.
Vascular endothelial growth factor (VEGF) signaling is critical to the processes of angiogenesis and tumor growth. Here, evidence is presented for VEGF stimulation of sphingosine kinase (SPK) that affects not only endothelial cell signaling but also tumor cells expressing VEGF receptors. VEGF or phorbol 12-myristate 13-acetate treatment of the T24 bladder tumor cell line resulted in a time- and dose-dependent stimulation of SPK activity. In T24 cells, VEGF treatment reduced cellular sphingosine levels while raising that of sphingosine-1-phosphate. VEGF stimulation of T24 cells caused a slow and sustained accumulation of Ras-GTP and phosphorylated extracellular signal-regulated kinase (phospho-ERK) compared with that after EGF treatment. Small interfering RNA (siRNA) that targets SPK1, but not SPK2, blocks VEGF-induced accumulation of Ras-GTP and phospho-ERK in T24 cells. In contrast to EGF stimulation, VEGF stimulation of ERK1/2 phosphorylation was unaffected by dominant-negative Ras-N17. Raf kinase inhibition blocked both VEGF- and EGF-stimulated accumulation of phospho-ERK1/2. Inhibition of SPK by pharmacological inhibitors, a dominant-negative SPK mutant, or siRNA that targets SPK blocked VEGF, but not EGF, induction of phospho-ERK1/2. We conclude that VEGF induces DNA synthesis in a pathway which sequentially involves protein kinase C (PKC), SPK, Ras, Raf, and ERK1/2. These data highlight a novel mechanism by which SPK mediates signaling from PKC to Ras in a manner independent of Ras-guanine nucleotide exchange factor.  相似文献   

11.
12.
The mechanism by which the ubiquitously expressed Src family kinases regulate mitogenesis is not well understood. Here we report that cytoplasmic tyrosine kinase c-Abl is an important effector of c-Src for PDGF- and serum-induced DNA synthesis. Inactivation of cytoplasmic c-Abl by the kinase-inactive Abl-PP-K(-) (AblP242E/P249E/K290M) or by microinjection of Abl neutralizing antibodies inhibited mitogenesis. The kinase-inactive SrcK295M induced a G(1) block that was overcome by the constitutively active Abl-PP (AblP242E/P249E). Conversely, the inhibitory effect of Abl-PP-K(-) was not compensated by Src. c-Src-induced c-Abl activation involves phosphorylation of Y245 and Y412, two residues required for c-Abl mitogenic function. Finally, we found that p53 inactivation and c-myc expression, two cell cycle events regulated by Src during mitogenesis, also implied c-Abl: c-Abl function was dispensable in cells deficient in active p53 and inhibition of c-Abl reduced mitogen-induced c-myc expression. These data identify a novel function of cytoplasmic c-Abl in the signalling pathways regulating growth factor-induced c-myc expression and we propose the existence of a tyrosine kinase signalling cascade (PDGFR/c-Src/c-Abl) important for mitogenesis.  相似文献   

13.
Copper (Cu) is essential for development and proliferation, yet the cellular requirements for Cu in these processes are not well defined. We report that Cu plays an unanticipated role in the mitogen-activated protein (MAP) kinase pathway. Ablation of the Ctr1 high-affinity Cu transporter in flies and mouse cells, mutation of Ctr1, and Cu chelators all reduce the ability of the MAP kinase kinase Mek1 to phosphorylate the MAP kinase Erk. Moreover, mice bearing a cardiac-tissue-specific knockout of Ctr1 are deficient in Erk phosphorylation in cardiac tissue. in vitro investigations reveal that recombinant Mek1 binds two Cu atoms with high affinity and that Cu enhances Mek1 phosphorylation of Erk in a dose-dependent fashion. Coimmunoprecipitation experiments suggest that Cu is important for promoting the Mek1-Erk physical interaction that precedes the phosphorylation of Erk by Mek1. These results demonstrate a role for Ctr1 and Cu in activating a pathway well known to play a key role in normal physiology and in cancer.  相似文献   

14.
The gap junction protein, Cx43, plays a pivotal role in coupling cells electrically and metabolically, and the putative phosphorylation sites that modulate its function are reflected as changes in gap junction communication. Growth factor stimulation has been correlated with a decrease in gap junction communication and a parallel activation of ERK1/2; the inhibition of epidermal growth factor (EGF)-induced Cx43 gap junction uncoupling was observed by using the MEK1/2 inhibitor, PD98059. Because 1) BMK1/ERK5, another MAPK family member also activated by growth factors, possesses a phosphorylation motif similar to ERK1/2, and 2) it has been reported that PD98059 can inhibit not only MEK1/2-ERK1/2 but also MEK5-BMK1 activation, we investigated whether BMK1 can regulate EGF-induced Cx43 gap junction uncoupling and phosphorylation, comparing this to the role of ERK1/2 on Cx43 function and phosphorylation induced by EGF. Selective activation or inactivation of ERK1/2 by using a constitutively active form or a dominant negative form of MEK1 did not regulate Cx43 gap junction coupling. In contrast, we found that BMK1, selectively activated by constitutively active MEK5alpha, induced gap junction uncoupling, and the inhibition of BMK1 activation by transfection of dominant negative BMK1 prevented EGF-induced gap junction uncoupling. Activated BMK1 selectively phosphorylates Cx43 on Ser-255 in vitro and in vivo, but not on S279/S282, which are reported as the consensus phosphorylation sites for MAPK. Furthermore, by co-immunoprecipitation, we found that BMK1 directly associates with Cx43 in vivo. These data indicate that BMK1 is more important than ERK1/2 in EGF-mediated Cx43 gap junction uncoupling by association and Cx43 Ser- 255 phosphorylation.  相似文献   

15.
16.
Terai K  Matsuda M 《EMBO reports》2005,6(3):251-255
A key signalling molecule, c-Raf, is situated downstream from Ras and upstream from the mitogen-activated protein kinase kinase (MEK). We studied the mechanism underlying the signal transduction from Ras to MEK by using probes based on the principle of fluorescence resonance energy transfer. In agreement with previous models, it was found that c-Raf adopted two conformations: open active and closed inactive. Ras binding induced the c-Raf transition from closed to open conformation, which enabled c-Raf to bind to MEK. In the presence of a cytosolic Ras mutant, c-Raf bound to, but failed to phosphorylate, MEK in the cytoplasm. In contrast, the cytosolic Ras mutant significantly enhanced MEK phosphorylation by a membrane-targeted c-Raf. These results demonstrated the essential role of Ras-induced conformational change in MEK activation by c-Raf.  相似文献   

17.
Previously we showed a rapid and transient inhibition of gap junctional communication (GJC) by platelet-derived growth factor (PDGF) in T51B rat liver epithelial cells expressing wild-type platelet-derived growth factor β receptors (PDGFrβ). This action of PDGF correlated with the hyperphosphorylation of the gap junction protein connexin43 (Cx43) and required PDGFrβ tyrosine kinase activity, suggesting the participation of protein kinases and phosphatases many of which are activated by PDGF treatment. In the present study, two such kinases, namely protein kinase C (PKC) and mitogen-activated protein kinase (MAPK), are investigated for their possible involvement in PDGF-induced closure of junctional channels and Cx43-phosphorylation. Down-regulation of PKC-isoforms by 12-O-tetradecanoylphorbol-13-acetate or pretreatment with the PKC inhibitor calphostin C, completely blocked PDGF action on GJC and Cx43. Activation of MAPK correlated with PDGF-induced Cx43 phosphorylation, and prevention of MAPK activation by PD98059 eliminated the PDGF effects. Interestingly, elimination of GJC recovery by cycloheximide was associated with a sustained activated-MAPK level. Based on these results we postulate that the activation of PKC and MAPK are required in PDGF-mediated Cx43 phosphorylation and junctional closure. J. Cell. Physiol. 176:332–341, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

18.
Rit is one of the original members of a novel Ras GTPase subfamily that uses distinct effector pathways to transform NIH 3T3 cells and induce pheochromocytoma cell (PC6) differentiation. In this study, we find that stimulation of PC6 cells by growth factors, including nerve growth factor (NGF), results in rapid and prolonged Rit activation. Ectopic expression of active Rit promotes PC6 neurite outgrowth that is morphologically distinct from that promoted by oncogenic Ras (evidenced by increased neurite branching) and stimulates activation of both the extracellular signal-regulated kinase (ERK) and p38 mitogen-activated protein (MAP) kinase signaling pathways. Furthermore, Rit-induced differentiation is dependent upon both MAP kinase cascades, since MEK inhibition blocked Rit-induced neurite outgrowth, while p38 blockade inhibited neurite elongation and branching but not neurite initiation. Surprisingly, while Rit was unable to stimulate ERK activity in NIH 3T3 cells, it potently activated ERK in PC6 cells. This cell type specificity is explained by the finding that Rit was unable to activate C-Raf, while it bound and stimulated the neuronal Raf isoform, B-Raf. Importantly, selective down-regulation of Rit gene expression in PC6 cells significantly altered NGF-dependent MAP kinase cascade responses, inhibiting both p38 and ERK kinase activation. Moreover, the ability of NGF to promote neuronal differentiation was attenuated by Rit knockdown. Thus, Rit is implicated in a novel pathway of neuronal development and regeneration by coupling specific trophic factor signals to sustained activation of the B-Raf/ERK and p38 MAP kinase cascades.  相似文献   

19.
The Syk tyrosine kinase is a key molecule in the development of the B cell lineage and the activation of B lymphocytes after Ag recognition by the B cell Ag receptor (BCR). Several genetic studies with chicken B cells have reported that the recruitment of Syk by BCR is essential for activation of a cascade of signaling molecules including phosphatidylinositol 3-kinase, mitogen-activated protein kinases, Ras signaling pathways, phospholipase C-gamma2 activation, and calcium mobilization. The identification of a Syk-deficient mouse IIA1.6/A20 B cell line provided us the opportunity to investigate Syk-mediated signaling in mouse. Surprisingly, phosphatidylinositol 3-kinase, Ras, and mitogen-activated protein kinases were activated upon BCR cross-linking in these Syk-deficient mouse B cells, whereas, as expected from results obtained in chicken B cells, phospholipase C-gamma2 activation and calcium mobilization were impaired as well as the NF-kappaB pathway. These results indicate that BCR signaling is not strictly dependent on Syk expression in mouse IIA1.6/A20 B cells. Thus, B lymphocyte activation may be initiated by Syk-dependent and Syk-independent signaling cascades.  相似文献   

20.
A sequence of intermittent interruptions of oxygen supply (i.e., postconditioning, Postcon) at reoxygenation reduces oxidant-induced cardiomyocyte loss. This study tested the hypothesis that prevention of cardiomyocyte apoptosis by Postcon is mediated by mitogen-activated protein kinases pathways. Primary cultured neonatal rat cardiomyocytes were exposed to 3 h hypoxia followed by 6 h of reoxygenation. Cardiomyocytes were postconditioned by three cycles each of 5 min reoxygenation and 5 min hypoxia after prolonged hypoxia. Relative to hypoxia alone, reoxygenation stimulated expression of JNKs and p38 kinases, corresponding to increased activity of JNKs (phospho-c-Jun) and p38 (phospho-ATF2). The level of TNFα in cell lysates, activity of cytosolic caspases-8, -3, expression of Bax and the number of apoptotic cardiomyocytes were increased while expression of Bcl-2 was decreased with reoxygenation. Consistent with an attenuation in generation of superoxide anions detected by lucigenin-enhanced chemiluminescence at early period of reoxygenation, treatment of cardiomyocytes with Postcon further reduced expression and activity of JNKs and p38 kinases, level of TNFα, the frequency of apoptotic cells and expression of Bax. However, the inhibitory effects of Postcon on these changes were lost when its application was delayed by 5 min after the start of reoxygenation. Addition of a JNK/p38 stimulator, anisomycin into cardiomyocytes at the beginning of reoxygenation eliminated protection by Postcon. These data suggest that 1) hypoxia/reoxygenation elicits cardiomyocyte apoptosis in conjunction with expression and activation of JNK and p38 kinases, release of TNFα, activation of caspases, and an increase in imbalance of pro-/anti-apoptotic proteins; 2) Postcon attenuates cardiomyocyte apoptosis, potentially mediated by inhibiting JNKs/p-38 signaling pathways and reducing TNFα release and caspase expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号