首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Functional noncoding RNAs have distinct roles in epigenetic gene regulation. Large RNAs have been shown to control gene expression from a single locus (Tsix RNA), from chromosomal regions (Air RNA), and from entire chromosomes (roX and Xist RNAs). These RNAs regulate genes in cis; although the Drosophila roX RNAs can also function in trans. The chromatin modifications mediated by these RNAs can increase or decrease gene expression. These results suggest that the primary role of RNA molecules in epigenetic gene regulation is to restrict chromatin modifications to particular regions of the genome. However, given that RNA has been shown to be at the catalytic core of other ribonucleoprotein complexes, it is also possible that RNA also plays a role in modulating changes in chromatin structure.  相似文献   

2.
Noncoding RNAs and gene silencing   总被引:26,自引:0,他引:26  
Zaratiegui M  Irvine DV  Martienssen RA 《Cell》2007,128(4):763-776
  相似文献   

3.
Turnip crinkle virus encodes two proteins, p8 and p9, that are both required for cell-to-cell movement. The p8 movement protein has been demonstrated to bind RNA in a cooperative manner, although, similar to many other plant virus movement proteins, it contains no canonical RNA binding domain(s). However, three positively charged regions of p8 may potentially form ionic interactions with the RNA backbone. To identify functional regions of p8, a series of alanine and deletion scanning mutations were produced. The effects of these mutations were analysed using both in vitro RNA binding assays and in vivo infections of susceptible (Di-3) and resistant (Di-17) Arabidopsis thaliana plants. Several mutants that have reduced RNA binding ability were also demonstrated to be movement deficient and replication competent. Based on these results, there appear to be two regions, located between amino acids 18 and 31, and 50 and 72, that are required for RNA binding. Furthermore, additional regions (amino acids 12–15, and 34–37) appear to play a role in vivo unrelated to in vitro RNA binding activity.  相似文献   

4.
This review is focused on the structural aspects of interaction between ribosomal proteins and ribosomal RNA in bacterial ribosomes and complexes of ribosomal proteins with specific fragments of ribosomal RNA. Special attention is given to the recognition of specific spatial architecture of the double-stranded ribosomal RNA by ribosomal proteins and to the role of unstructured protein regions in stabilization of distant ribosomal RNA segments.  相似文献   

5.
Although RNA-binding proteins (RBPs) are known to be enriched in intrinsic disorder, no previous analysis focused on RBPs interacting with specific RNA types. We fill this gap with a comprehensive analysis of the putative disorder in RBPs binding to six common RNA types: messenger RNA (mRNA), transfer RNA (tRNA), small nuclear RNA (snRNA), non-coding RNA (ncRNA), ribosomal RNA (rRNA), and internal ribosome RNA (irRNA). We also analyze the amount of putative intrinsic disorder in the RNA-binding domains (RBDs) and non-RNA-binding-domain regions (non-RBD regions). Consistent with previous studies, we show that in comparison with human proteome, RBPs are significantly enriched in disorder. However, closer examination finds significant enrichment in predicted disorder for the mRNA-, rRNA- and snRNA-binding proteins, while the proteins that interact with ncRNA and irRNA are not enriched in disorder, and the tRNA-binding proteins are significantly depleted in disorder. We show a consistent pattern of significant disorder enrichment in the non-RBD regions coupled with low levels of disorder in RBDs, which suggests that disorder is relatively rarely utilized in the RNA-binding regions. Our analysis of the non-RBD regions suggests that disorder harbors posttranslational modification sites and is involved in the putative interactions with DNA. Importantly, we utilize experimental data from DisProt and independent data from Pfam to validate the above observations that rely on the disorder predictions. This study provides new insights into the distribution of disorder across proteins that bind different RNA types and the functional role of disorder in the regions where it is enriched.  相似文献   

6.
The structure of single-stranded RNA from the bacteriophage MS2 has been examined by electron microscopy in the presence of the polyamine spermidine. The molecules are found in two alternate conformations. The first of these can be characterized as a cruciform structure composed of three large loops approximately 500 to 700 nucleotides in size. The interior of the molecule has extensive base-paired regions which connect distant regions of the molecule; the farthest being 2500 nucleotides apart. In the second conformation, the molecules appear rod-like. Two of the large loops disappear, and these regions form, instead, extensive long-range helices. Computer modeling has been employed to explore the base-pairing potential of the sequence of bacteriophage MS2 RNA. Double-stranded regions identified by electron microscopy are shown to occur in local G + C-rich stretches of the RNA. Detailed models have been calculated for two regions of long-range contact. One of these includes the ribosome-binding site for the viral coat protein gene. The results are discussed in the context of the known role of RNA structure in the regulation of viral gene expression.  相似文献   

7.
8.
A Role for the Sendai Virus P Protein Trimer in RNA Synthesis   总被引:3,自引:2,他引:1       下载免费PDF全文
The SeV P protein is found as a homotrimer (P3) when it is expressed in mammalian cells, and trimerization is mediated by a predicted coiled-coil motif which maps within amino acids (aa) 344 to 411 (the BoxA region). The bacterially expressed protein also appears to be trimeric, apparently precluding a role for phosphorylation in the association of the P monomers. I have examined the role of P trimerization both in the protein’s interaction with the nucleocapsid (N:RNA) template and in the protein’s function on the template during RNA synthesis. As with the results of earlier experiments (32), I found that both the BoxA and BoxC (aa 479 to 568) regions were required for stable binding of P to the N:RNA. Binding was also observed with P proteins containing less than three BoxC regions, suggesting that trimerization may be required to permit contacts between multiple BoxC regions and the N:RNA. However, these heterologous trimers failed to function in viral RNA synthesis, indicating that the third C-terminal leg of the trimer plays an essential role in P function on the template. We speculate that this function may involve the movement of P (and possibly the polymerase complex) on the template and the maintenance of processivity.  相似文献   

9.
Beasley BE  Hu WS 《Journal of virology》2002,76(10):4950-4960
Spleen necrosis virus (SNV) proteins can package RNA from distantly related murine leukemia virus (MLV), whereas MLV proteins cannot package SNV RNA efficiently. We used this nonreciprocal recognition to investigate regions of packaging signals that influence viral RNA encapsidation specificity. Although the MLV and SNV packaging signals (Psi and E, respectively) do not contain significant sequence homology, they both contain a pair of hairpins. This hairpin pair was previously proposed to be the core element in MLV Psi. In the present study, MLV-based vectors were generated to contain chimeric SNV/MLV packaging signals in which the hairpins were replaced with the heterologous counterpart. The interactions between these chimeras and MLV or SNV proteins were examined by virus replication and RNA analyses. SNV proteins recognized all of the chimeras, indicating that these chimeras were functional. We found that replacing the hairpin pair did not drastically alter the ability of MLV proteins to package these chimeras. These results indicate that, despite the important role of the hairpin pair in RNA packaging, it is not the major motif responsible for the ability of MLV proteins to discriminate between the MLV and SNV packaging signals. To determine the role of sequences flanking the hairpins in RNA packaging specificity, vectors with swapped flanking regions were generated and evaluated. SNV proteins packaged all of these chimeras efficiently. In contrast, MLV proteins strongly favored chimeras with the MLV 5'-flanking regions. These data indicated that MLV Gag recognizes multiple elements in the viral packaging signal, including the hairpin structure and flanking regions.  相似文献   

10.
Telomere-specific repeat sequences are essential for chromosome end stability. Telomerase maintains telomere length by adding sequences de novo onto chromosome ends. The template domain of the telomerase RNA component dictates synthesis of species-specific telomeric repeats and other regions of the RNA have been suggested to be important for enzyme structure and/or catalysis. Using enzyme reconstituted in vitro with RNAs containing deletions or substitutions we identified nucleotides in the RNA component that are important for telomerase activity. Although many changes to conserved features in the RNA secondary structure did not abolish enzyme activity, levels of activity were often greatly reduced, suggesting that regions other than the template play a role in telomerase function. The template boundary was only altered by changes in stem II that affected the conserved region upstream of the template, not by changes in other regions, such as stems I, III and IV, consistent with a role of the conserved region in defining the 5' boundary of the template. Surprisingly, telomerase RNAs with substitutions or deletion of residues potentially abolishing the conserved pseudoknot structure had wild-type levels of telomerase activity. This suggests that this base pairing interaction may not be required for telomerase activity per se but may be conserved as a regulatory site for the enzyme in vivo.  相似文献   

11.
The dimerization initiation site (DIS) and the dimer linkage sequences (DLS) of human immunodeficiency virus type 1 have been shown to mediate in vitro dimerization of genomic RNA. However, the precise role of the DIS-DLS region in virion assembly and RNA dimerization in virus particles has not been fully elucidated, since deletion or mutation of the DIS-DLS region also abolishes the packaging ability of genomic RNA. To characterize the DIS-DLS region without altering packaging ability, we generated mutant constructs carrying a duplication of approximately 1,000 bases including the encapsidation signal and DIS-DLS (E/DLS) region. We found that duplication of the E/DLS region resulted in the appearance of monomeric RNA in virus particles. No monomers were observed in virions of mutants carrying the E/DLS region only at ectopic positions. Monomers were not observed when pol or env regions were duplicated, indicating an absolute need for two intact E/DLS regions on the same RNA for generating particles with monomeric RNA. These monomeric RNAs were most likely generated by intramolecular interaction between two E/DLS regions on one genome. Moreover, incomplete genome dimerization did not affect RNA packaging and virion formation. Examination of intramolecular interaction between E/DLS regions could be a convenient tool for characterizing the E/DLS region in virion assembly and RNA dimerization within virus particles.  相似文献   

12.
By molecular hybridization experiments the homologies between ribosomal RNAs from a unicellular organism (Gyrodinium cohnii), three invertebrates (Drosophila hydei, Chironomus thummi, Sciara coprophila), an amphibian (Xenopus laevis), and a mammal (mouse) were determined. Competition hybridization experiments demonstrated that portions of these homologous regions are the same in all the ribosomal RNAs tested, regardless of animal species. This conclusion based on hybridization data was confirmed by comparative fingerprint analysis. The ribosomal RNA sequences involved in heterologous hybridization have a higher A + T composition than the bulk ribosomal RNA. It appears from competition experiments of a heterologous hybridization that two thirds of the conserved similar regions are present in 18 S ribosomal RNA, and the remaining one third in 28 S ribosomal RNA. It is argued that these similar regions have been conserved during evolution due to their structural and/or functional role in ribosomal RNA.  相似文献   

13.
14.
15.
16.
A series of unusual folding regions (UFR) immediately 3' to the cleavage site of the outer membrane protein (OMP) and transmembrane protein (TMP) were detected in the envelope gene RNA of the human immunodeficiency virus (HIV-1, HIV-2) and simian immunodeficiency virus (SIV) by an extensive Monte Carlo simulation. These RNA secondary structures were predicted to be both highly stable and statistically significant. In the calculation, twenty-five different sequence isolates of HIV-1, three isolates of HIV-2 and eight sequences of SIV were included. Although significant sequence divergence occurs in the env coding regions of these viruses, a distinct UFR of 234-nt is consistently located ten nucleotides 3' to the cleavage site of the OMP/TMP in HIV-1, and a 216-nt UFR occurs forty-six and forty-nine nucleotides downstream from the OMP/TMP cleavage site of HIV-2 and SIV, respectively. Compensatory base changes in the helical stem regions of these conserved RNA secondary structures are identified. These results support the hypothesis that these special RNA folding regions are functionally important and suggest that the role of this sequence as the Rev response element (RRE) is mediated by secondary structure as well as primary RNA sequence.  相似文献   

17.
18.
The genome of brome mosaic virus (BMV) is divided among messenger polarity RNA1, RNA2, and RNA3 (3.2, 2.9, and 2.1 kilobases, respectively). cis-Acting sequences required for BMV RNA amplification were investigated with RNA3. By using expressible cDNA clones, deletions were constructed throughout RNA3 and tested in barley protoplasts coinoculated with RNA1 and RNA2. In contrast to requirements for 5'- and 3'-terminal noncoding sequences, either of the two RNA3 coding regions can be deleted individually and both can be simultaneously inactivated by N-terminal frameshift mutations without significantly interfering with amplification of RNA3 or production of its subgenomic mRNA. However, simultaneous major deletions in both coding regions greatly attenuate RNA3 accumulation. RNA3 levels can be largely restored by insertion of a heterologous, nonviral sequence in such mutants, suggesting that RNA3 requires physical separation of its terminal domains or a minimum overall size for normal replication or stability. Unexpectedly, deletions in a 150-base segment of the intercistronic noncoding region drastically reduce RNA3 accumulation. This segment contains a sequence element homologous to sequences found near the 5' ends of BMV RNA1 and RNA2 and in analogous positions in the three genomic RNAs of the related cucumber mosaic virus, suggesting a possible role in plus-strand synthesis.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号