首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using site directed mutagenesis combined with chemical modification, we have developed a general and versatile method for the glycosylation of proteins which is virtually unlimited in the scope of proteins and glycans that may be conjugated and in which the site of glycosylation and the nature of the introduced glycan can be carefully controlled. We have demonstrated the applicability of this method through the synthesis of a library of 48 glycosylated forms of the serine protease subtilisin Bacillus lentus (SBL) as single, pure species. As part of our ongoing program to tailor the activity of SBL for use in peptide synthesis, we have screened these enzymes for activity against the esterase substrate succinyl-Ala-Ala-Pro-Phe-S-benzyl. Gratifyingly, 22 enzymes displayed greater than wild type (WT) activity. Glycosylation at positions 62, in the S2 pocket, resulted in five glycosylated forms of SBL that were 1.3- to 1.9-fold more active than WT. At position 217, in the S1' pocket, all glycosylations increased kcat/KM up to a remarkable 8.4-fold greater than WT for the glucosylated enzyme L217C-S-beta-Glc(Ac)3. Furthermore, the ratio of amidase to esterase activity, (kcat/KM)esterase/(kcat/KM)amidase (E/A), is increased relative to wild type for all 48 glycosylated forms of SBL. Again, the most dramatic changes are observed at positions 62 and 217 and L217C-S-beta-Glc(Ac)3 has an E/A that is 17.2-fold greater than WT. The tailored specificity and high activity of this glycoform can be rationalized by molecular modeling analysis, which suggests that the carbohydrate moiety occupies the S1' leaving group pocket and enhances the rate of deacylation of the acyl-enzyme intermediate. These glycosylated enzymes are ideal candidates for use as catalysts in peptide synthesis as they have greatly increased (kcat,KM)esterase and severely reduced (kcat/KM)amidase and will favor the formation of the amide bond over hydrolysis.  相似文献   

2.
A series of chemically modified mutants (CMMs) of subtilisin B. lentus (SBL) were generated employing the combination of site-directed mutagenesis and chemical modification. This strategy entails the mutation of a selected active site residue to cysteine and its subsequent modification with a methanethiosulfonate reagent CH3SO2S-R, where R may be infinitely variable. The present study was undertaken to evaluate the changes in specificity and pH-activity profiles that could be induced by modification of S156C and S166C in the S1 pocket of SBL with a representative range of side chain modifications, namely R=-CH3, -CH2C6H5, -CH2CH2NH3+ and CH2CH2SO3 . The side chain of S156C is surface exposed and well solvated while that of S166C points into the pocket. Kinetic evaluation of the CMMs with suc-AAPF-pNA as substrate showed that the kcat/K(M)s changed very little for the S156C CMMs, but varied by up to 11-fold for the S166C CMMs. pH-Activity profiles were also determined, and showed that a negatively or positively charged side chain modification increased or decreased respectively, the pKa of the catalytic triad histidine for both modification sites but with more dramatic changes for the interior pointing S166C than for the solvent exposed S156C site. As an additional probe of altered specificity, inhibition of the CMMs by a representative series of 5 boronic acid transition state analogue inhibitors was determined. The K(I)s observed ranged from a 3.5-fold improvement over the WT value, to a 12-fold decrease in binding. Overall, greater variability in all the parameters measured, activity, pKa, and boronic acid binding resulted from modification at the inward pointing 166 site than at the solvent-exposed 156 site.  相似文献   

3.
The use of methanethiosulfonates as thiol-specific modifying reagents in the strategy of combined site-directed mutagenesis and chemical modification allows virtually unlimited opportunities for creating new protein surface environments. As a consequence of our interest in electrostatic manipulation as a means of tailoring enzyme activity and specificity, we have adopted this approach for the controlled incorporation of multiple negative charges at single sites in the representative serine protease, subtilisin Bacillus lentus (SBL). A series of mono-, di- and triacidic acid methanethiosulfonates were synthesized and used to modify cysteine mutants of SBL at positions 62 in the S2 site, 156 and 166 in the S1 site and 217 in the S1' site. Kinetic parameters for these chemically modified mutant (CMM) enzymes were determined at pH 8.6 under conditions which ensured complete ionization of the unnatural amino acid side-chains introduced. The presence of up to three negative charges in the S1, S1' and S2 subsites of SBL resulted in up to 11-fold lowered activity, possibly due to interference with oxyanion stabilization of the transition state of the hydrolytic reactions catalyzed. Each unit increase in negative charge resulted in a raising of K(M) and a reduction of k(cat). However, no upper limit was observed for increases in K(M), whereas decreases in k(cat) reached a limiting value. Comparison with sterically similar but uncharged CMMs revealed that electrostatic effects of negative charges at positions 62, 156 and 217 are detrimental, but are beneficial at position 166. These results indicate that the ground-state binding of SBL to the standard substrate, Suc-AAPF-pNA, to SBL is reduced, but without drastic attenuation of catalytic efficiency, and show that SBL tolerates high levels of charge at single sites.  相似文献   

4.
Methanethiosulfonate reagents may be used to introduce virtually unlimited structural modifications in enzymes via reaction with the thiol group of cysteine. The covalent coupling of enantiomerically pure (R) and (S) chiral auxiliary methanethiosulfonate ligands to cysteine mutants of subtilisin Bacillus lentus induces spectacular changes in catalytic activity between diastereomeric enzymes. Amidase and esterase kinetic assays using a low substrate approximation were used to establish kcat/KM values for the chemically modified mutants, and up to 3-fold differences in activity were found between diastereomeric enzymes. Changing the length of the carbon chain linking the phenyl or benzyl oxazolidinone ligand to the mutant N62C by a methylene unit reverses which diastereomeric enzyme is more active. Similarly, changing from a phenyl to benzyl oxazolidinone ligand at S166C reverses which diastereomeric enzyme is more active. Chiral modifications at S166C and L217C give CMMs having both high esterase kcat/KM's and high esterase to amidase ratios with large differences between diastereomeric enzymes.  相似文献   

5.
A transition state analogue inhibitor, boronic acid benzophenone (BBP) photoprobe, was used to study the differences in the topology of the S1 pocket of chemically modified mutant enzymes (CMMs). The BBP proved to be an effective competitive inhibitor and a revealing active site directed photoprobe of the CMMs of the serine protease subtilisin Bacillus lentus (SBL) which were chemically modified with the hydrophobic, negatively charged and positively charged moieties at the S1 pocket S166C residue. As expected, in all cases BBP bound best to WT-SBL. BBP binding to S166C-SCH2C6H5 and S166C-CH2-c-C6H11, with their large hydrophobic side chains, was reduced by 86-fold and 9-fold, respectively, compared to WT. Relative to WT, BBP binding to the charged CMMs, S166C-S-CH2CH2SO3- or S166C-S-CH2CH2NH3+, was reduced 170-fold and 4-fold respectively. Photolysis of the WT-SBL-BBP enzyme inhibitor (EI) complex, inactivated the enzyme and effected the formation of a covalent crosslink between WT and BBP. The crosslink was identified at Gly127 by peptide mapping analysis and Edman sequencing. Gly127 is located in the S1 hydrophobic pocket of SBL and its modification thus established binding of the benzophenone moiety in S1. Photolysis of the EI complex of S166C-SCH2C6H5, S166C-S-CH2CH2SO3-, or S166C-S-CH2CH2NH3+ and BBP under the same conditions did not inactivate these enzymes, nor effect the formation of a crosslink. These results corroborated the kinetic evidence that the active site topology of these CMMs is dramatically altered from that of WT. In contrast, while photolysis of the S166C-CH2-c-C6H11-BBP EI complex only inactivated 50% of the enzyme after 12 h, it still effected the formation of a covalent crosslink between the CMM and BBP, again at Gly127. However, this photolytic reaction was less efficient than with WT, demonstrating that the S1 pocket of S166C-CH2-c-C6H11 is significantly restricted compared to WT, but not as completely as for the other CMMs.  相似文献   

6.
The use of methanethiosulfonates as thiol-specific modifying reagents in the strategy of combined site-directed mutagenesis and chemical modification allows virtually unlimited opportunities for creating new protein surface environments. As a consequence of our interest in electrostatic manipulation as a means of tailoring enzyme activity and specificity, we have recently adopted this approach for the controlled incorporation of multiple negative charges at single sites in the representative serine protease, subtilisin Bacillus lentus (SBL). We now describe the use of this strategy to introduce multiple positive charges. A series of mono-, di- and triammonium methanethiosulfonates were synthesized and used to modify cysteine mutants of SBL at positions 62 in the S2 site, 156 and 166 in the S1 site and 217 in the S1' site. Kinetic parameters for these chemically modified mutants (CMM) enzymes were determined at pH 8.6. The presence of up to three positive charges in the S1, S1' and S2 subsites of SBL resulted in up to 77-fold lowered activity, possibly due to interference with the histidinium ion formed in the transition state of the hydrolytic reactions catalyzed.  相似文献   

7.
The human insulin receptor (IR) homodimer is heavily glycosylated and contains a total of 19 predicted N-linked glycosylation sites in each monomer. The recent crystal structure of the IR ectodomain shows electron density consistent with N-linked glycosylation at the majority of sites present in the construct. Here, we describe a refined structure of the IR ectodomain that incorporates all of the N-linked glycans and reveals the extent to which the attached glycans mask the surface of the IR dimer from interaction with antibodies or other potential therapeutic binding proteins. The usefulness of Fab complexation in the crystallization of heavily glycosylated proteins is also discussed. The compositions of the glycans on IR expressed in CHO-K1 cells and the glycosylation deficient Lec8 cell line were determined by protease digestion, glycopeptide purification, amino acid sequence analysis, and mass spectrometry. Collectively the data reveal: multiple species of complex glycan at residues 25, 255, 295, 418, 606, 624, 742, 755, and 893 (IR-B numbering); multiple species of high-mannose glycan at residues 111 and 514; a single species of complex glycan at residue 671; and a single species of high-mannose glycan at residue 215. Residue 16 exhibited a mixture of complex, hybrid, and high-mannose glycan species. Of the remaining five predicted N-linked sites, those at residues 397 and 906 were confirmed by amino acid sequencing to be glycosylated, while that at residue 78 and the atypical (NKC) site at residue 282 were not glycosylated. The peptide containing the final site at residue 337 was not recovered but is seen to be glycosylated in the electron density maps of the IR ectodomain. The model of the fully glycosylated IR reveals that the sites carrying high-mannose glycans lie at positions of relatively low steric accessibility.  相似文献   

8.
Using PCR mutagenesis to disrupt the NXT/S N-linked glycosylation motif of the Env protein, we created 27 mutants lacking 1 to 5 of 14 N-linked glycosylation sites within regions of gp120 lying outside of variable loops 1 to 4 within simian immunodeficiency virus strain 239 (SIV239). Of 18 mutants missing N-linked glycosylation sites predicted to lie within 10 A of CD4 contact sites, the infectivity of 12 was sufficient to measure sensitivity to neutralization by soluble CD4 (sCD4), pooled immune sera from SIV239-infected rhesus macaques, and monoclonal antibodies known to neutralize certain derivatives of SIV239. Three of these 12 mutants (g3, lacking the 3rd glycan at position 79; g11, lacking the 11th glycan at position 212; and g3,11, lacking both the 3rd and 11th glycans) were approximately five times more sensitive to neutralization by sCD4 than wild-type (WT) SIV239. However, these same mutants were no more sensitive to neutralization than WT by pooled immune sera. The other 9 of 12 replication-competent mutants in this group were no more sensitive to neutralization than the WT by any of the neutralizing reagents. Six of the nine mutants that did not replicate appreciably had three or more glycosylation sites eliminated; the other three replication-deficient strains involved mutation of site 15. Our results suggest that elimination of glycan attachment sites 3 and 11 enhanced the exposure of contact residues for CD4. Thus, glycans at positions 3 and 11 of SIV239 gp120 may be particularly important for shielding the CD4-binding site from antibody recognition.  相似文献   

9.
C-type lectins are innate receptors expressed on antigen-presenting cells that are involved in the recognition of glycosylated pathogens and self-glycoproteins. Upon ligand binding, internalization and/or signaling often occur. Little is known on the glycan specificity and ligands of the Dendritic Cell Immunoreceptor (DCIR), the only classical C-type lectin that contains an intracellular immunoreceptor tyrosine-based inhibitory motif (ITIM). Here we show that purified DCIR binds the glycan structures Lewisb and Man3. Interestingly, binding could not be detected when DCIR was expressed on cells. Since DCIR has an N-glycosylation site inside its carbohydrate recognition domain (CRD), we investigated the effect of this glycan in ligand recognition. Removing or truncating the glycans present on purified DCIR increased the affinity for DCIR-binding glycans. Nevertheless, altering the glycosylation status of the DCIR expressing cell or mutating the N-glycosylation site of DCIR itself did not increase glycan binding. In contrast, cis and trans interactions with glycans induced DCIR mediated signaling, resulting in a decreased phosphorylation of the ITIM sequence. These results show that glycan binding to DCIR is influenced by the glycosylation of the CRD region in DCIR and that interaction with its ligands result in signaling via its ITIM motif.  相似文献   

10.
Follicle stimulating hormone (FSH) is one of the important hormones that regulate gonadal functions. This hormone is glycosylated, and the glycans greatly influence the biological properties. In the present study the negatively charged glycopeptides of equine and human pituitary follicle stimulating hormone (eFSH and hFSH) have been characterized in a glycosylation site-specific manner using FT-ICR-MS and Edman sequencing. The characteristic pattern of glycan distribution at each glycosylation site has been deduced and compared between horse and human FSH preparations. The data suggest that site-specific differences exist between glycoforms of human and equine FSH. For instance, except for one site in the beta subunit (Asn7) of hFSH all other sites in both species have sulfated glycoforms. Also, glycoforms at Asn52 of hFSH are all complex type, whereas in eFSH, both complex and hybrid structures exist at this site. There is also a higher percentage of sulfated glycans in the latter site compared to the former. This is the first study that characterizes the glycans from this hormone in a glycosylation site-specific manner, and these data can be used to begin correlative studies between glycosylation structure and hormone function.  相似文献   

11.
Glycans serve as important regulators of antibody activities and half-lives. IgE is the most heavily glycosylated antibody, but in comparison to other antibodies little is known about its glycan structure function relationships. We therefore describe the site specific IgE glycosylation from a patient with a novel hyper IgE syndrome linked to mutations in PGM3, which is an enzyme involved in synthesizing UDP-GlcNAc, a sugar donor widely required for glycosylation. A two-step method was developed to prepare two IgE samples from less than 1 mL of serum collected from a patient with PGM3 mutation and a patient with atopic dermatitis as a control subject. Then, a glycoproteomic strategy was used to study the site-specific glycosylation. No glycosylation was found at Asn264, whilst high mannose glycans were only detected at Asn275, tri-antennary glycans were exclusively observed at Asn99 and Asn252, and non-fucosylated complex glycans were detected at Asn99. The results showed similar glycosylation profiles between the two IgE samples. These observations, together with previous knowledge of IgE glycosylation, imply that IgE glycosylation is similarly regulated among healthy control, allergy and PGM3 related hyper IgE syndrome.  相似文献   

12.
The majority of synaptic plasma membrane components are glycosylated. It is now widely accepted that this post-translational modification is crucial during the establishment, maintenance and function of the nervous system. Despite its significance, structural information about the glycosylation of nervous system specific glycoproteins is very limited. In the present study the major glycan structures of the chicken synaptic plasma membrane (SPM) associated glycoprotein glycans were determined. N-glycans were released by hydrazinolysis, labelled with 2-aminobenzamide, treated with neuraminidase and subsequently fractionated by size exclusion chromatography. Individual fractions were characterized by the combination of high-pressure liquid chromatography, exoglycosidase treatment or reagent array analysis method (RAAM). In addition to oligomannose-type glycans, core-fucosylated complex glycans with biantennary bisecting glycans carrying the LewisX epitope were most abundant. The overall chicken glycan profile was strikingly similar to the rat brain glycan profile. The presence of the LewisX determinant in relatively large proportions suggests a tissue-specific function for these glycans.  相似文献   

13.
Glycopeptides representing each individual N-glycosylation site in six animal and plant glycoproteins (ovoinhibitor and ovotransferrin, orosomucoid, antitrypsin, phaseolin, and phytohemagglutinin) have been isolated and compared by mass spectrometric analysis. Since the isolation step separates each individual peptide regardless of the nature of the glycan attached to it, it is possible to observe the entire spectrum of glycans associated with each site from the mass spectrum of the corresponding glycopeptide. The three glycosylation sites in ovoinhibitor have very similar but not identical glycans; they are significantly different from those observed in the single site of ovotransferrin. The three sites in serum antitrypsin also have quite similar glycans, whereas the five sites in orosomucoid show considerable variation in both the nature and the relative amount of glycans. The two plant glycoproteins each have two sites with very different glycan structures. Except for the first and third glycosylation sites of antitrypsin which were found to have remarkably homogeneous glycans (97 and 90% of a biantennary complex structure), all the individual glycosylation sites contained heterogeneous mixtures of glycan structures. The results support the proposition that each N-linked glycan in a glycoprotein is affected by its unique protein environment to such an extent that each one may be displayed to the processing enzymes as a unique structural entity. On the basis of a limited number of observations of the glycan interfering with chymotryptic but not tryptic cleavage in the proximity of the glycan attachment site, it is proposed that hydrophobic interactions between the protein and the glycan may be involved in the conformational modulation of the glycans.  相似文献   

14.
Glycosylation, particularly N-linked glycosylation, profoundly affects protein folding, oligomerization and stability. The increased efficiency of folding of glycosylated proteins could be due to the chaperone-like activity of glycans, which is observed even when the glycan is not attached to the protein. Covalently linked glycans could also facilitate oligomerization by mediating inter-subunit interactions in the protein or stabilizing the oligomer in other ways. Glycosylation also affects the rate of fibril formation in prion proteins: N-glycans reduce the rate of fibril formation, and O-glycans affect the rate either way depending on factors such as position and orientation. It has yet to be determined whether there is any correlation among the sites of glycosylation and the ensuing effect in multiply glycosylated proteins. It is also not apparent whether there is a common pattern in the conservation of glycans in a related family of glycoproteins, but it is evident that glycosylation is a multifaceted post-translational modification. Indeed, glycosylation serves to "outfit" proteins for fold-function balance.  相似文献   

15.
TRPM8 member of the TRP superfamily of membrane proteins participates to various cellular processes ranging from Ca2+ uptake and cold sensation to cellular proliferation and migration. TRPM8 is a large tetrameric protein with more than 70% of its residues located in the cytoplasm. TRPM8 is N-glycosylated, with a single site per subunit. This work focuses on the N-glycosylation of TRPM8 channel that was previously studied by our group in relation to proliferation and migration of tumoral cells. Here, experimental data performed with deglycosylating agents assess that the sole glycosylation site contains complex glycans with a molecular weight of 2.5 kDa. The glycosylation state of TRPM8 in cells untreated and treated with a deglycosylating agent was addressed with Terahertz (THz) spectroscopy. Results show a clear difference between cells comprising glycosylated and deglycosylated TRPM8, the first presenting an increased THz absorption. Human TRPM8 was modelled using as templates the available TRPM8 and other TRPM channels structures. Glycosylations were modelled by considering two glycan structures with molecular weight close to the experiment: shorter and branched at the first sugar unit (glc1) and longer and unbranched (glc2). Simulation of THz spectra based on the molecular dynamics of unglycosylated and the two glycosylated TRPM8 models in lipid membrane and solvation box showed that glycan structure strongly influences the THz spectrum of the channel and of other components from the simulation system. Only spectra of TRPM8 with glc1 glycans were in agreement with the experiment, leading to the validation of glc1 glycan structure.  相似文献   

16.
Because the glycosylation of proteins is known to change in tumor cells during the development of breast cancer, a glycomics approach is used here to find relevant biomarkers of breast cancer. These glycosylation changes are known to correlate with increasing tumor burden and poor prognosis. Current antibody-based immunochemical tests for cancer biomarkers of ovarian (CA125), breast (CA27.29 or CA15-3), pancreatic, gastric, colonic, and carcinoma (CA19-9) target highly glycosylated mucin proteins. However, these tests lack the specificity and sensitivity for use in early detection. This glycomics approach to find glycan biomarkers of breast cancer involves chemically cleaving oligosaccharides (glycans) from glycosylated proteins that are shed or secreted by breast cancer tumor cell lines. The resulting free glycan species are analyzed by MALDI-FT-ICR MS. Further structural analysis of the glycans can be performed in FTMS through the use of tandem mass spectrometry with infrared multiphoton dissociation. Glycan profiles were generated for each cell line and compared. These methods were then used to analyze sera obtained from a mouse model of breast cancer and a small number of serum samples obtained from human patients diagnosed with breast cancer or patients with no known history of breast cancer. In addition to the glycosylation changes detected in mice as mouse mammary tumors developed, glycosylation profiles were found to be sufficiently different to distinguish patients with cancer from those without. Although the small number of patient samples analyzed so far is inadequate to make any legitimate claims at this time, these promising but very preliminary results suggest that glycan profiles may contain distinct glycan biomarkers that may correspond to glycan "signatures of cancer."  相似文献   

17.
Epidermal Growth Factor Receptor (EGFR) is a glycosylated tyrosine kinase receptor associated with several cancers. EGFR plays an important role in cancer therapy and inspired several experimental and computational (molecular dynamics simulation) studies to investigate its function and dynamics. N-glycosylation is a critical aspect of EGFR functioning that was mainly unexplained until recently due to the challenges in obtaining and analysis of the structural data involving the glycan moieties. Latest simulations of glycosylated EGFR suggest atomistic mechanisms underlying the experimentally proposed functions of N-glycans in: EGFR increased ligand binding, reduced flexibility and arrangement within the cell membrane. It was shown that the increase in the ligand binding of glycosylated EGFR is mediated by the interaction between the two glycans attached to the growth factor binding subdomains resulting in stabilization of the growth factor binding site. Persistent hydrogen bonds’ formation between the glycans and EGFR contributes to proper folding and reduced flexibly of the glycosylated receptor. Assembly of the cell-integrated EGFR and its relative distance from the membrane are acquired by the lift-up action of the attached glycans. These findings can be used as a framework for implementation of computational techniques to obtain atomistic details of protein glycosylation as one of the most important areas of structural biology.  相似文献   

18.
Glycosylation is one of the most prominent and extensively studied protein post-translational modifications. However, traditional proteomic studies at the peptide level (bottom-up) rarely characterize intact glycopeptides (glycosylated peptides without removing glycans), so no glycoprotein heterogeneity information is retained. Intact glycopeptide characterization, on the other hand, provides opportunities to simultaneously elucidate the glycan structure and the glycosylation site needed to reveal the actual biological function of protein glycosylation. Recently, significant improvements have been made in the characterization of intact glycopeptides, ranging from enrichment and separation, mass spectroscopy (MS) detection, to bioinformatics analysis. In this review, we recapitulated currently available intact glycopeptide characterization methods with respect to their advantages and limitations as well as their potential applications.  相似文献   

19.
A new computer program, GlycoX, was developed to aid in the determination of the glycosylation sites and oligosaccharide heterogeneity in glycoproteins. After digestion with the nonspecific protease, each glycan at a specific glycosylation site contains a small peptide tag that identifies the location of the glycan. GlycoX was developed in MATLAB requiring the entry of the exact masses of the glycopeptide and the glycan spectra in the form of a mass-intensity table and taking advantage of the accurate mass capability of the mass analyzer, in this case a Fourier transform ion cyclotron resonance (FT ICR) mass spectrometer. This program computes not only the glycosylation site but also the composition of the glycans at each site. Several glycoproteins were used to determine the efficacy of GlycoX. These glycoproteins range from the simple, with one site of glycosylation, to the more complex, with multiple (three) sites of glycosylation. The results obtained using the computer program were the same as those determined manually. Model glycoproteins yielded the correct results, and new glycoproteins with unknown glycosylation were examined with the site of glycosylation and the corresponding glycans determined. Furthermore, other functions in GlycoX, including an auto-isotope filter to identify monoisotopic peaks and an oligosaccharide calculator to obtain the oligosaccharide composition, are demonstrated.  相似文献   

20.
N‐linked protein glycosylation occurs in all three branches of life, eukaryotes, bacteria and archaea. The simplest system is that of the bacterium, Campylobacter jejuni, in which a heptasaccharide glycan is added to multiple proteins from a single lipid carrier molecule. In the eukaryotic system a conserved tetradecasaccharide modification is first added to target proteins, but is then modified by trimming and addition of other glycans from additional carrier molecules resulting in a diverse array of glycans of distinct functionality. In the halophilic Archaea from the Dead Sea, Haloferax volcanii, the surface array or S‐layer protein is glycosylated with a pentasaccharide. This glycan is synthesized from two separate carrier molecules, one that carries a tetrasaccharide and another that carries the terminal mannose, in a process that is analogous to that of eukaryotes. In this issue of Molecular Microbiology the glycosylation of the S‐layer of another halophilic Archaea from the Dead Sea, Haloarcula marismortui is characterized ( Calo et al., 2011 ). This S‐layer is glycosylated with the same pentasaccharide as that of Hfx. volcanii, but the intact pentasaccharide is synthesized on a single carrier molecule in Har. marismortui in a process that more closely resembles that of the bacterial N‐linked system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号